
A parsing technique for TRG languages

Daniele Paolo Scarpazza
Politecnico di Milano

<daniele.scarpazza@elet.polimi.it>

October 15th, 2004

Daniele Paolo Scarpazza A parsing technique for TRG grammars [1]

Abstract

In this presentation, we propose a parsing algorithm for TRG languages which is
an extension of the Cocke-Kasami-Younger (CKY) algorithm. Our algorithm exhibits a
polynomial time complexity.

Agenda:

• a brief review of the original CKY algorithm;

• issues in the extension of CKY algorithm to TRGs;

• a formal description of the steps composing the algorithm;

• the derivation of time complexity;

• a fully-developed example illustrating the algorithm at work.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [2]

A brief review of the CKY algorithm

• The CKY algorithm is a bottom-up
parsing technique for context-free
grammars; the simplest formulation
operates on grammars in the
Chomsky normal form (CNF);

• let G = (V, Σ, P, S) be a CNF
context-free grammar;

• let x ∈ Σ∗ be a string and |x| = n its
length;

• let xi denote the i-th symbol of x;

• given G and x, the algorithm decides
in O(n3) time whether x ∈ (G);

Input : G, x;
Output : x ∈ (G)?;
for all r = 0 to n do

Vr,1 ← {A | (A→ nr) ∈ P}
end for
for all c = 2 to n do

for all r = 1 to n− c + 1 do
Vr,c ← {}
for all r = 1 to n− c + 1 do

if (A→BC)∈P, B∈Vr,k, C∈Vr+k,c−k then
Vr,c ← Vr,c ∪ {A}

end if
end for

end for
end for
if S ∈ V1,n then

output yes
else

output no
end if

Daniele Paolo Scarpazza A parsing technique for TRG grammars [3]

An example illustrating the CKY algorithm

Grammar:

S → SS

S → AA

S → b

A → AS

A → AA

A → a

String: x = aabb

Recognition table:

Vr,c c : 1 2 3 4

a r : 1 A A, S A, S A, S
a 2 A A A ·
b 3 S S · ·
b 4 S · · ·

Daniele Paolo Scarpazza A parsing technique for TRG grammars [4]

Preliminaries: coordinates and rectangles
• A rectangle, indicated as r × c, is the following set of 2D integer coordinates:

r × c = {(1, 1), (1, 2), ..., (1, c), (2, 1), (2, 2), ..., (2, c), ..., (r, 1), (r, 2), ..., (r, c)};
example: 2× 3 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.

• A subrectangle, indicated as r × c + (a, b), is the following set of couples:
r × c + (a, b) = { (a, b), (a, b + 1), ... (a, b + c− 1),

(a + 1, b), (a + 1, b + 1), ... (a + 1, b + c− 1),
...
(a + r − 1, b), (a + r − 1, b + 1), ... (a + r − 1, b + c− 1) }

;

example: 2× 3 + (4, 5) = {(4, 5), (4, 6), (4, 7), (5, 5), (5, 6), (5, 7)}.
• Note: rectangles and subrectangles are sets; usual set operators ∪,∩,−, =, 6=,⊃ and ⊂ are defined.

Operands ∪,∩,− on rectangles yield sets which are not, in general, subrectangles.
Example: (2× 3 + (4, 5)) ∩ (2× 3 + (5, 6)) = (1× 2 + (5, 6)).

• A new notation to indicate subpictures: given p and q, we say that

p[r × c + (i, j)] = q iff q E(i,j) p ∧ |q| = (r, c);

example: p =

 a d g j m
b e h k n
c f i l o

 ⇒ p[2× 3 + (1, 2)] =

(
d g j
e h k

)
.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [5]

Extending the CKY algorithm to TRGs (1/3)

• Cells in the CKY recognition matrix represent all the possible substrings of the input string;
• for TRGs, we need to represent all the possible subpictures of the input picture;
• the extension of the recognition matrix is the tableau, where each cell represents a

possible subpicture.
• Formally: A tableau is a matrix of variable-size matrices. A m × n tableau T contains

m × n matrices, each denoted by Ti,j, ∀(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n. Matrix Ti,j

must have size (m − i + 1, n − j + 1). The notation T [i × j + (a, b)] indicates the
(a, b) element of matrix Ti,j, or (Ti,j)a,b.

• Example: the following figure shows a 3× 6 tableau.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [6]

Extending the CKY algorithm to TRGs (2/3)

• In the CKY recognition matrix, a symbol A in cell Vr,c indicates that substring xr...xr+c−1

is recognized as generated by non-terminal A;

• in TRGs, rules are isometric, and either fixed-size or variable-size; variable-size rules
imply the recognition of LOCu,eq languages;

• as a consequence, the algorithm requires more information in a tableau cell than just A;

• more precisely, elements appearing in cell T [i× j + (a, b)] must provide information on
which rules are recognizable rule on subpicture i×j +(a, b) and which tiles are missing.

• Example: element (R3, {t3,2, t3,3, t3,5}, ...) in a tableau cell indicates that the subpicture
corresponding to that tableau cell only uses tiles present in the right-part of rule R3, and
tiles t3,2, t3,3, are t3,5 not used in the picture.

• An element (Ri, {}, ...) indicates that the subpicture belongs to LOCu,eq of rule Ri, thus
can be recognized as a sentential form of rule Ri.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [7]

Extending the CKY algorithm to TRGs (3/3)

• Due to the formal definitions of TRGs, application areas in a derivation must be disjoint, or included the latter
in the former in couples. More precisely, if application areas are ordered α1, ..., αi, αi+1, ..., αi+j, ...:

(αi ∩ αi+j = ∅) ∨ (αi ⊇ αi+j) .

• During bottom-up recognition, the reversed version of the above principle must be enforced. A violation is
illustrated in the following figure:

• To enforce the above principle, we use multipictures, i.e. pictures containing couples (symbol, area). In the
above example, each B would be replaced by (B, 4× 4 + (1, 4)). The last step would be illegal, because

(4× 6 + (1, 1)) 6⊇ (4× 4 + (1, 4)), (4× 6 + (1, 1)) ∩ (4× 4 + (1, 4) 6= ∅).

Daniele Paolo Scarpazza A parsing technique for TRG grammars [8]

Preliminaries: Multipictures and compatibility

• A multipicture is a matrix m × n where each cell is a set of couples (I, r) where I ∈
(Σ∪N), and r is a subrectangle⊆ m×n; our algorithm uses one multipicture; each cell
of it initially contains the pixel of the input picture; then, for every recognized application
area, corresponding cells are filled with the nonterminal;

• Given a picture p and a multipicture M , both of size m × n (and alphabet respectively
I and 2I×S(m×n)), the compatibility between p and M (denoted as p :: M) is the set of
pictures p′, of size m×n and alphabet I×S(m×n), such that ∀i, k ∈ {1...m}∀j, l ∈
{1...n}:

p
′
i,j = (pi,j, αi,j) ∈Mi,j

and ∀i, k ∈ {1...m}∀j, l ∈ {1...n}:

(αi,j = αk,l ∧ pi,j = pk,l) ∨ (αi,j ∩ αk,l = ∅).

• We say that p is compatible with M iff p :: M 6= ∅.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [9]

Example: pictures (p, p′) and corresponding multipictures (M, M ′) in the first step of a recognition chain. Please consider the
sub-multipicture M ′[2x2 + (1, 1)], bordered in the figure. For it, compatibilities with two tiles are reported:

M
′
[2x2 + (1, 1)] ::

A A
A A

=

{
(A, 4×3+(1, 1)) (A, 4×3+(1, 1))
(A, 4×3+(1, 1)) (A, 4×3+(1, 1))

}

M
′
[2x2 + (1, 1)] ::

x x
x o

=

{
(x, 1×1+(1, 1)) (x, 1×1+(1, 2))
(x, 1×1+(2, 1)) (o, 1×1+(2, 2))

}

Daniele Paolo Scarpazza A parsing technique for TRG grammars [10]

Preliminaries: Copy rules and subrectangles

• If G = (Σ, N, S, R) is a TRG, and A, B ∈ N , a rule in the form

A→
{

B B
B B

}
is said to be a copy rule; it can be easily proved that for every TRG G with copy rules, ∃G′ | L(G) = L(G′)
and G′ is free from copy rules; with no loss of generality, our algoritm operates on TRG grammars free from
copy rules.

• We introduce the function Sr(·) which, given a set of coordinates, returns the smaller subrectangle
containing them. Example:

Sr(1× 1 + (3, 4) ∪ 2× 3 + (5, 7)) = 4× 6 + (3, 4)

Daniele Paolo Scarpazza A parsing technique for TRG grammars [11]

Our algorithm – hypotheses

• Let a TRG G(Σ, N, S, R) and a picture p ∈ Σ(m,n) be given. The following algorithm
determines whether p ∈ L(G) or not.

• let G be free from copy rules;

• let all rules in R be variable-size rules (the extension of the algorithm to fixed-size rules
is trivial);

• let the rules in R be numbered as R1, R2, ..., and their right-hand sides as ω1, ω2, ...; let
the tiles appearing in ωi be numbered as ti,1, ti,2, ... ;

• the algorithm operates by constructing a m×n tableau T , and a m×n multipicture M ;
initially, T [r × c + (i, j)] = ∅ ∀r, c, i, j; and Mi,j = {(pi,j, 1× 1 + (i, j))};

• the following steps are applied until fixed point is reached;

Daniele Paolo Scarpazza A parsing technique for TRG grammars [12]

Our algorithm – step # 1

Step 1: update each cell T [2× 2 + (i, j)], adding elements: if

Re = (Q → ω) ∈ R, t ∈ ω, t′ ∈ (t :: M [2× 2 + (i, j)]),

t′ =
(

(t1,1, α1,1) (t1,2, α1,2)
(t2,1, α2,1) (t2,2, α2,2)

)
then:

(Re, ω − t, Sr(α1,1 ∪ α1,2 ∪ α2,1 ∪ α2,2)) ∈ T [2× 2 + (i, j)] ;

Where the function Sr(·) yields the smallest subrectangle including the given elements.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [13]

Our algorithm – step # 2

Step 2: update T adding elements:
∀(r, c) | 2 < r ≤ m, 2 < c ≤ n in lexicographical order: if

(Re, ω1, α1) ∈ T [r×(c−1)+(i, j)] ∧ (Re, ω2, α2) ∈ T [r×(c−1)+(i, j + 1)] or

(Re, ω1, α1) ∈ T [(r−1)×c+(i, j)] ∧ (Re, ω2, α2) ∈ T [(r−1)×c+(i + 1, j)]

then
(Re, ω1 ∩ ω2, Sr(α1 ∪ α2)) ∈ T [r × c + (i, j)] ;

Comment: elements of two horizontally adjacent tableau cells m× n can be merged into a
corresponding m×(n+1) cell. Similarly for vertically adjacent cells. Given the same rule,
the set of missing tiles is the intersection of the sets of missing tiles, and the scope is the
Sr(·) of the union of scopes.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [14]

Our algorithm – step # 3

Step 3: update M adding elements: for each element such that

(Re, {}, α) ∈ T [r × c + (i, j)] | α ⊆ r × c + (i, j), Re = (A → ...)

add elements:

∀(i, j) ∈ r × c + (i, j) (A, (r × c + (i, j)) ∈ Mi,j ;

Comment: whenever all the tiles of subpicture r × c + (i, j) appear in the right part of
rule Re, and no tile is missing (Re, {}, ...) and the scope α of all the recognized symbols is
inside the current subpicture, then recognize the subpicture as application area of rule Re.
Update multipicture, adding a couple (A, r × c + (i, j)) in every cell of sub-multipicture
r × c + (i, j).

Daniele Paolo Scarpazza A parsing technique for TRG grammars [15]

Our algorithm – final step

Final step (to be executed when fixed point is reached):
if ∀(i, j) ∈ r × c (S, m× n + (1, 1)) ∈ Mi,j then:

declare p ∈ L(G)

else
declare p 6∈ L(G).

Comment: the recognition of a rule which has the starting symbol S as the left-hand
side, and the whole picture as application area (m × n + (1, 1)), indicates that the picture
is recognized. In short, the multipicture must contain element (S, m× n) in every cell.

If such area is not recognized and a fixed point is reached, the picture is not in the
language.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [16]

Our algorithm – informal comments

• The algorithm scans the tableau and the multipicture several times; at each scan, one or
more disjoint application areas are recognized;

• each tableau cell T [r×c+(i, j)] is filled with triples (Re, ω, α) where if rule Re = A→
ωe exists, then

ω = ωe − B2,2(M [r × c + (i, j)]).

• When (Re, ∅, α) ∈ T [r × c + (i, j)], then exactly all the tiles in rule Re are used in
subpicture M [r × c + (i, j)]; moreover

• α is the smallest subrectangle including the activation areas of the symbols in the
multipicture which comply with rule Re.

• If α is not smaller or equal to the subrectangle r × c + (i, j) the rule is discarded, since
it would violate the theorem of disjointness of application areas.

• Every time a rule Re = (A → ...) is recognized over an activation area q, a couple
(A, q) is added to every cell of M [q], so that the next iteration of the algorithm can use
the newly added symbol to recognize larger activation areas.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [17]

Time complexity

• if the input picture has dimensions m × n, the input size is N = m · n; time complexity
is derived as a function of the size of the input N ;

• the complexity is determined by the most complex step (number 2);
– this step fills a m× n tableau which has m(m−1)n(n−1)

4 ≤ k1N
2 cells;

– for each cell, it compares couples of elements of exactly two other cells;
– elements are in the form (Re, ω, α)⇒ they can be at most |R| ·maxi|ωRi

| · |S(m×
n)|, where k2 = |R| ·maxi|ωRi

| is fixed, while |S(m× n)| ≤ k1N
2;

– therefore, the time complexity of each comparison in step 2 is ≤ (k1k2)
2N4, and the

overall complexity of step 2 is ≤ k1(k1k2)
2N6.

• Steps 1–3 are iterated until fixed point. At every iteration, one or more application areas
are detected. Thanks to the exclusion of copy rules, an application area can appear at
most once in a derivation.

• Therefore # of iterations ≤ # application areas ≤ k1N
2.

• Therefore, the time complexity of the whole algorithm is O(N8).

Daniele Paolo Scarpazza A parsing technique for TRG grammars [18]

A full example

In the next slides we fully develop an example, with the help of the above storyboard. Elements updated
in each slide will be marked in black. Elements will be illustrated in this order:

• the input picture and the input grammar;

• the result of initialization on the tableau T and on the multipicture M will be shown;

• the effects of the first iteration;

• the effects of the second iteration (and conclusion).

For sake of clarity, T and M at initialization, iteration 1 and 2 are represented as separate entities.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [19]

A full example: the input picture

p =

x x x x x x

x o o o o x

x o o o o x

x o o o o x

x x x x x x

Daniele Paolo Scarpazza A parsing technique for TRG grammars [20]

A full example: the input grammar (1/2)

G = (Σ, N, S, R)

Σ = {x, o}
N = {S, A,B}

R1 : S → B2,2

(
A A B B
A A B B

)

R2 : A→ B2,2

x x x
x o o
x o o
x x x

R3 : A→ B2,2

x x x
o o x
o o x
x x x

Daniele Paolo Scarpazza A parsing technique for TRG grammars [21]

A full example: the input grammar (2/2)

For ease of reference, we give names to the tiles in each right-hand side.

R1 : S → B2,2

(
A A B B
A A B B

)
=

{
t1,1=

(
A A
A A

)
, t1,2=

(
A B
A B

)
, t1,3=

(
B B
B B

)}

R2 : A→ B2,2

x x x
x o o
x o o
x x x

 =

{
t2,1=

(
x x
x o

)
, t2,2=

(
x x
o o

)
, t2,3=

(
x o
x o

)
,

t2,4=

(
x o
x x

)
, t2,5=

(
o o
x x

)
, t2,6=

(
o o
o o

)}

R3 : A→ B2,2

x x x
o o x
o o x
x x x

=

{
t3,1=

(
x x
o x

)
, t3,2=

(
x x
o o

)
, t3,3=

(
o x
o x

)
,

t3,4=

(
o x
x x

)
, t3,5=

(
o o
x x

)
, t3,6=

(
o o
o o

)}

Daniele Paolo Scarpazza A parsing technique for TRG grammars [22]

A full example: tableau initialization

• At initialization time, the tableau is empty.

• Being the input picture dimensions equal to 6×5, also the tableau T will have 6×5 cells.

• The first cell, T1,1, will be a 6 × 5 matrix. Cells in this matrix represent each 1 × 1 tile in
the input picture.

• T1,2, will be a 6 × 4 matrix, i.e. with one less column, and so on, up to T1,6, which is a
6× 1 matrix. Same considerations apply to the second and following rows.

• The last cell, T5,6, is a matrix composed by a single cell, representing the whole input
picture.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [23]

A full example: multipicture initialization

The multipicture is initially set to the contents of the picture. The scope of
each terminal symbol is set to the 1× 1 cell where the symbol belong.

M =

(x, 1×1+(1, 1)) (x, 1×1+(1, 2)) (x, 1×1+(1, 3)) (x, 1×1+(1, 4)) (x, 1×1+(1, 5)) (x, 1×1+(1, 6))

(x, 1×1+(2, 1)) (o, 1×1+(2, 2)) (o, 1×1+(2, 3)) (o, 1×1+(2, 4)) (o, 1×1+(2, 5)) (x, 1×1+(2, 6))

(x, 1×1+(3, 1)) (o, 1×1+(3, 2)) (o, 1×1+(3, 3)) (o, 1×1+(3, 4)) (o, 1×1+(3, 5)) (x, 1×1+(3, 6))

(x, 1×1+(4, 1)) (o, 1×1+(4, 2)) (o, 1×1+(4, 3)) (o, 1×1+(4, 4)) (o, 1×1+(4, 5)) (x, 1×1+(4, 6))

(x, 1×1+(5, 1)) (x, 1×1+(5, 2)) (x, 1×1+(5, 3)) (x, 1×1+(5, 4)) (x, 1×1+(5, 5)) (x, 1×1+(5, 6))

Daniele Paolo Scarpazza A parsing technique for TRG grammars [24]

A full example: iteration #1

All tableau cells corresponding to 1× n and n× 1 cells are never used by
the algorithm, and always remain empty.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [25]

A full example: iteration #1, step #1

Add elements to cells T [2× 2 + (i, j)] in the tableau: informally, for each of the 2× 2 tiles t in the multipicture
which appear in the right-hand size of a rule, add a (Ri, ωi − t, 2× 2 + (i, j)) entry.

For the first cell, T [2× 2 + (1, 1)]:

M =

(x, 1×1+(1, 1)) (x, 1×1+(1, 2)) ...

(x, 1×1+(2, 1)) (o, 1×1+(2, 2)) ...

...

⇓

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2×2+(1, 1)) ...

... ...

Daniele Paolo Scarpazza A parsing technique for TRG grammars [26]

A full example: iteration #1, step #1 (continued)

Same for the second cell, T [2 × 2 + (1, 2)]. Please note that the corresponding tile appears in the
right-hand side of two rules, these two elements are added to the tableau:

M =

(x, 1×1+(1, 1)) (x, 1×1+(1, 2)) (x, 1×1+(1, 3)) ...

(x, 1×1+(2, 1)) (o, 1×1+(2, 2)) (o, 1×1+(2, 3)) ...

...

⇓

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2×2+(1, 1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6}, 2×2+(1, 2)) ...

(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2×2+(1, 2)) ...

... ...

Daniele Paolo Scarpazza A parsing technique for TRG grammars [27]

A full example: iteration #1, step #2

For all the matrices in the tableau from T2,3 to T2,6, each cell can be filled by “merging” the contents of a couple
of cells in the tableau matrix immediately on the left:

(Re, ω1, α1) ∈ T [r×(c−1)+(i, j)] ∧
(Re, ω2, α2) ∈ T [r×(c−1)+(i, j + 1)]

}
⇒ (Re, ω1 ∩ ω2, Sr(α1 ∪ α2)) ∈ T [r × c + (i, j)]

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2×2+(1, 1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6}, 2×2+(1, 2)) ...

(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2×2+(1, 2)) ...

... ...

⇓

T2,3 =
(R2, {t2,3, t2,4, t2,5, t2,6}, 2×3+(1, 1)) ...

... ...

Daniele Paolo Scarpazza A parsing technique for TRG grammars [28]

A full example: iteration #1, step #2 (continued)

Also cells in matrix T3,2 can be derived from cells in T2,2:
(Re, ω1, α1) ∈ T [(r−1)×c+(i, j)] ∧
(Re, ω2, α2) ∈ T [(r−1)×c+(i + 1, j)]

}
⇒ (Re, ω1 ∩ ω2, Sr(α1 ∪ α2)) ∈ T [r × c + (i, j)]

T2,2 =

(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2×2+(1, 1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6}, 2×2+(1, 2)) ...
(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2×2+(1, 2)) ...

(R2, {t2,1, t2,2, t2,4, t2,5, t2,6}, 2×2+(2, 1)) ...

... ...

⇓

T2,3 =
(R2, {t2,2, t2,4, t2,5, t2,6}, 3×2+(1, 1)) ...

... ...

Daniele Paolo Scarpazza A parsing technique for TRG grammars [29]

A full example: iteration #1, step #2 (continued)

The contents of the remaining cells in the tableau can be derived by applying the same
horizontal and vertical merging rules shown in the last two slides:

(Re, ω1, α1) ∈ T [r×(c−1)+(i, j)] ∧
(Re, ω2, α2) ∈ T [r×(c−1)+(i, j + 1)]

}
⇒ (Re, ω1 ∩ ω2, Sr(α1 ∪ α2)) ∈ T [r × c + (i, j)]

(Re, ω1, α1) ∈ T [(r−1)×c+(i, j)] ∧
(Re, ω2, α2) ∈ T [(r−1)×c+(i + 1, j)]

}
⇒ (Re, ω1 ∩ ω2, Sr(α1 ∪ α2)) ∈ T [r × c + (i, j)]

Daniele Paolo Scarpazza A parsing technique for TRG grammars [30]

A full example: iteration #1, step #3

(R2, ∅, 5×3+(1, 1)) (R2, {t2,1, t2,3, t2,4, }5×3+(1, 2)) (R2, {t2,1, t2,3, t2,4}, 5×3+(1, 3)) R3, ∅, 5×3+(1, 4))
(R3, {t3,1, t3,3, t3,4}, 5×3+(1, 2)) (R3, {t3,1, t3,3, t3,4}, 5×3+(1, 3))

Let’s consider the final state of tableau cell T5,3: rules R2 and R3 were recognized:

• an entry (A, 5×3+(1, 1)) is added to all the pixels in the 5×3+(1, 1) subpicture of the multipicture M ;

• an entry (B, 5×3+(1, 4)) is added to all the pixels in the 5×3+(1, 4) subpicture of the multipicture M .

The final state of the multipicture at the end of iteration 1 is shown in the next slide.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [31]

M =

(x, 1×1+(1, 1)) (x, 1×1+(1, 2)) (x, 1×1+(1, 3)) (x, 1×1+(1, 4)) (x, 1×1+(1, 5)) (x, 1×1+(1, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))

(B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(B, 5×5+(1, 1)) (B, 5×5+(1, 2))

(x, 1×1+(2, 1)) (o, 1×1+(2, 2)) (o, 1×1+(2, 3)) (o, 1×1+(2, 5)) (o, 1×1+(2, 5)) (x, 1×1+(2, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))

(B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(B, 5×5+(1, 1)) (B, 5×5+(1, 2))

(x, 1×1+(3, 1)) (o, 1×1+(3, 2)) (o, 1×1+(3, 3)) (o, 1×1+(3, 4)) (o, 1×1+(3, 5)) (x, 1×1+(3, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))

(B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(B, 5×5+(1, 1)) (B, 5×5+(1, 2))

(x, 1×1+(4, 1)) (o, 1×1+(4, 2)) (o, 1×1+(4, 3)) (o, 1×1+(4, 4)) (o, 1×1+(4, 5)) (x, 1×1+(4, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))

(B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(B, 5×5+(1, 1)) (B, 5×5+(1, 2))

(x, 1×1+(5, 1)) (x, 1×1+(5, 2)) (x, 1×1+(5, 3)) (x, 1×1+(5, 4)) (x, 1×1+(5, 5)) (x, 1×1+(5, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))

(B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(B, 5×5+(1, 1)) (B, 5×5+(1, 2))

Daniele Paolo Scarpazza A parsing technique for TRG grammars [32]

Daniele Paolo Scarpazza A parsing technique for TRG grammars [33]

A full example: iteration #2, step #1

Step #1 is applied on the new multipicture. Entire subrectangles of A’s and B’s are recognized by rule R1.

M =

....

... ...
(A, 5×3+(1, 1)) (A, 5×3+(1, 1))

... (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) ...
(A, 5×5+(1, 1)) (A, 5×5+(1, 1))

... ...

... ...
(A, 5×3+(1, 1)) (A, 5×3+(1, 1))

... (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) ...
(A, 5×5+(1, 1)) (A, 5×5+(1, 1))

... ...

...

⇒ T2,2 =

....

...
(R1, {t1,2, t1,3}, 5×3+(1, 1))

... (R1, {t1,2, t1,3}, 5×4+(1, 1)) ...

(R1, {t1,2, t1,3}, 5×5+(1, 1))

... ...

...

Daniele Paolo Scarpazza A parsing technique for TRG grammars [34]

A full example: iteration #2, step #2

At the end of step 2, cell T5,6 contains the following value:

T2,2 = (R1, ∅, 5×6+(1, 1)) .

Thus, an application area for rule R1 was recognized over the entire multipicture.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [35]

A full example: iteration #2, step #3

• An element (S, 5×6+(1, 1)) is added to every cell in the multipicture belonging to the
rectangle 5×6+(1, 1), which is the whole picture.

• The picture is therefore recognized.

• The final state of the multipicture is shown in the next slide.

Daniele Paolo Scarpazza A parsing technique for TRG grammars [36]

M =

(x, 1×1+(1, 1)) (x, 1×1+(1, 2)) (x, 1×1+(1, 3)) (x, 1×1+(1, 4)) (x, 1×1+(1, 5)) (x, 1×1+(1, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(S, 5×6+(1, 1)) (B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))

(S, 5×6+(1, 1)) (B, 5×5+(1, 1)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))
(S, 5×6+(1, 1)) (S, 5×6+(1, 1))

(x, 1×1+(2, 1)) (o, 1×1+(2, 2)) (o, 1×1+(2, 3)) (o, 1×1+(2, 5)) (o, 1×1+(2, 5)) (x, 1×1+(2, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(S, 5×6+(1, 1)) (B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))

(S, 5×6+(1, 1)) (B, 5×5+(1, 1)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))
(S, 5×6+(1, 1)) (S, 5×6+(1, 1))

(x, 1×1+(3, 1)) (o, 1×1+(3, 2)) (o, 1×1+(3, 3)) (o, 1×1+(3, 4)) (o, 1×1+(3, 5)) (x, 1×1+(3, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(S, 5×6+(1, 1)) (B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))

(S, 5×6+(1, 1)) (B, 5×5+(1, 1)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))
(S, 5×6+(1, 1)) (S, 5×6+(1, 1))

(x, 1×1+(4, 1)) (o, 1×1+(4, 2)) (o, 1×1+(4, 3)) (o, 1×1+(4, 4)) (o, 1×1+(4, 5)) (x, 1×1+(4, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(S, 5×6+(1, 1)) (B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))

(S, 5×6+(1, 1)) (B, 5×5+(1, 1)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))
(S, 5×6+(1, 1)) (S, 5×6+(1, 1))

(x, 1×1+(5, 1)) (x, 1×1+(5, 2)) (x, 1×1+(5, 3)) (x, 1×1+(5, 4)) (x, 1×1+(5, 5)) (x, 1×1+(5, 6))
(A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×3+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4))
(A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×4+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3))
(A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (A, 5×5+(1, 1)) (B, 5×3+(1, 4)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2))
(S, 5×6+(1, 1)) (B, 5×5+(1, 2)) (B, 5×4+(1, 3)) (B, 5×4+(1, 3)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))

(S, 5×6+(1, 1)) (B, 5×5+(1, 1)) (B, 5×5+(1, 2)) (S, 5×6+(1, 1))
(S, 5×6+(1, 1)) (S, 5×6+(1, 1))

Daniele Paolo Scarpazza A parsing technique for TRG grammars [37]

Daniele Paolo Scarpazza A parsing technique for TRG grammars [38]

The end

Thank you for your attention.

Questions are welcome.

