
1

There appears to be an increasing trend towards the use
of the C/C++ language as a basis for the next generation
modeling tools and platform methodology to encompass
design reuse. However, even with this convergence,
industry is suffering the pain that there is no one tool or a
complete tool flow methodology that can implement a top-
down design methodology from C to silicon .

In this paper we suggest a top-down methodology from
C to silicon. In our methodology, we focus on methods to
make the design flow smooth, efficient, and easy. The
proposed methodology is a pure top-down methodology.
We developed our design methodology by using SpecC
[1], VCC[2], and SystemC[3]. We choose SpecC, VCC
and SystemC because they are all C-related and each have
strong support in at least one field of design. Our proposal
for a methodology is based on our experiences of
attempting to model the JPEG encoder with SpecC,
SystemC and VCC, and one internal project, attempting to
implement architecture exploration for MPEG encoding
and decoding using VCC.

HW

SW

HW

SW

SpecC
C Model

Specification
Model

Architecture
Model

Communication
Model

Behavior
 Model

System
Component

Mapping

Implementation
Model

Communication
Model

VCC

SystemC (HW)

Communication
refinement

Implementation
 Model

Pure C (SW)

Figure 1 Top-Down Design Flow Using SpecC, VCC and
SystemC.

As shown in Figure1, we propose combining the design
flows of SpecC and VCC and adding SystemC as a back-
end to either SpecC or VCC.

SpecC methodology is a top down methodology[1]. It
provides four well-defined levels of abstraction (models)
and a well-defined method for moving down these
successive levels. Increasing architectural refinement takes
place with each level [1]. In terms of assisting in this
process, SpecC today provides a performance profiling
tool at the specification level, and a model refinement tool
to help in the conversion from specification level to
architectural level. We use SpecC for behavior exploration
(where a behavior is defined as a collection of functions)
system modeling, and model refinement.

VCC[2] is a Behavior/Architecture co-design and design
export tool. With VCC, the performance of design can be
estimated after mapping specific behaviors to specific
architectural components. Furthermore, VCC can be used
to implement communication refinement. We use VCC for
architecture exploration.

SystemC is a C++ class library that can be used to create
a cycle-accurate model for software algorithms, hardware
architectures, and interfaces, related to system-level
designs[3]. SystemC’s co-simulation and synthesis tool
can help to generate RTL level design model from the
behavior level, thus allowing completion of the design.

We see the potential of success for a SpecC to SystemC
refinement methodology. Based on the result of
architecture exploration from VCC, the SpecC
specification model will be refined to a SpecC architecture
model, using the SpecC refinement tools. By following
SpecC methodology this architectural model will be
refined to a SpecC communication model. The SpecC
communication model is then translated into a SystemC
communication model.

The SpecC to SystemC refinement and synthesis method
is a language-based methodology. Thus, it is consistent and
straightforward. IP can be modeled at different levels and
IP reuse, IP exchange, and IP integration are all possible.
Like SpecC, the SystemC language enables tools to have a
common framework for interoperability. This allows users
to utilize the best “point tool” solution for the
implementation of the methodology. Since both languages
use C as the underlying technology, interoperability can be
achieved. This method quickly converts the C model to an
implementation, resulting in decreased design cycle time.

Reference:
[1] D. Gajski, J. Zhu et al. “SpecC: Specification Lanugaeg and

Design Methodology” Kluwer Academic Publishers, 2000
[2] Cadence, “VCC2.1 Production Documentation”
[3] www.systemc.org

Top-Down System Level Design Methodology Using SpecC, VCC and SystemC
Lukai Cai Paul Kritzinger Mike Olivares Daniel Gajski

UC, Irvine ASA, Motorola ASA, Motorola UC,Irvine

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

