
Table-based QoS Control for Embedded Real-Time Systems

ABSTRACT

SUGAWARA Tomoyoshi TATSUKAWA Kosuke
C&C Media Research Laboratories, NEC Corporation

Kawasaki, JAPAN
{sugawara,tatsu}@ccm.cl.nec.co.jp

This paper proposes a new QoS control scheme that is suit-
ed for embedded real-time systems. Our scheme focused on
real-time systems where both device control and multimedia
processing are required. Such systems needs to keep timing
constraints of control tasks while providing the highest pos-
sible quality of service(QoS) to multimedia processing tasks.
Although many QoS control schemes are proposed and used
in distributed multimedia systems, they are not suited for
such real-time systems. Their QoS control policies cannot
exactly keep the timing constraints of control tasks.

To overcome this problem we chose a scheme which uses
a table describing resource requirements of all tasks. Re-
source allocations for tasks and total resource utilization in
a system can be calculated from the table. Using our sche-
me, any QoS control policies, such as a fair-share policy or a
priority based policy, can be implemented. In other words, it
has become possible for the first time to allow the intention
of system designers to be directly reflected on &OS control.

We have implemented a CPU time QoS control mecha-
nism based on our proposed scheme and evaluated it on a
p-ITRON Ver.3.0 based real-time OS. The evaluation results
demonstrate that the &OS control scheme can keep deadline
misses low and CPU utilization high under an overloaded
state. The results also show that overhead of the QoS con-
trol mechanism is small enough to support both multimedia
and control applications.

Keywords

QoS control, embedded real-time system, resource alloca-
tion, device control, multimedia processing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
LCTES ‘99 5/99 Atlanta, GA, USA
0 1999 ACM l-58113-136-4/99/0008...$5.00

1 INTRODUCTION

Recently demands for multimedia services are increasing in
embedded real-time systems, such as vehicle navigation sys-
tems. These real-time systems include both hard real-time
tasks to control devices like CD-ROM or various sensors,
and soft real-time tasks to process video and voice. Such sys-
tems must keep timing constraints of hard real-time tasks,
while providing the highest possible quality of service(QoS)
to multimedia tasks. However, there were no &OS control
schemes for such embedded real-time systems to satisfy this
requirement.

In distributed multimedia systems, many &OS control
schemes [1][2][3][5][9] are proposed. These QoS control sche-
mes, in order to efficiently use system resources, automati-
cally reallocate resources among client programs iu response
to variations of server and network loads. However, they are
not suited for embedded real-time systems. One reason is
that the schemes are too complex to be adopted for embed-
ded real-time systems, because distributed systems include
an unspecified number of clients and it is difficult to deter-
mine resource requirements of all clients in advance. The
other reason is that the schemes cannot accurately treat
hard real-time tasks because the tasks always need to keep
their resource and timing constraints and cannot accept the
automatic resource reallocation.

This paper proposes a new QoS control scheme suited
for embedded real-time systems. Our scheme uses a table
for resource allocation. This table is called “QoS table.”
The &OS table contains resource requirements of all tasks
in a system. It is used for resource allocation to tasks and
estimation of overall resource requirement of the system.
The &OS table allows the system designer to specify a QoS
control policy.

The rest of this paper is organized as follows. In Sec-
tion 2, we refer to related works. Section 3 provides our
QoS control scheme and an implementation of QoS control
mechanism for CPU time, and Section 4 demonstrates the
effects of the &OS control mechanism. Finally, Section 5
concludes this paper.

2 RELATED WORK

Many QoS control schemes [l] [2] [3] [9] are proposed for dis-
tributed multimedia systems. The scheme aims at a system
that contains multimedia applications and non-real-time ap-
plications. Their policies are to fairly or proportionally share
resources among all applications and to protect resource al-
located to one application from other applications. So that

65

the &OS control schemes mainly check QoS violation and
downgrade QoS of a violator.

In [5], Lee et al. proposed a practical &OS control sche-
me that uses resource reservation facilities[‘l] provided by the
Real-Time Mach kernel. The proposed scheme allows appli-
cations to specify a quality adjustment policy, an admission
control policy and an overrun control policy as well as re-
source reservation parameters which contains computation
time and an interval of execution. Moreover, application-
s can specify quality adjustment priority that is associated
with each resource reservation. The priority specifies the
global priority at which quality of the application will be
adjusted. However, a priority based scheme is not flexible
because resource allocation of lower priority reservation will
be always decreased before that of higher priority reserva-
tion.

Rosu et al.[8] proposed an adaptive resource allocation
model for high-performance distributed real-time applica-
tions, such as radar systems. Each application task has a
set of configurations that contain predetermined resource
requirements. One of the configurations is selected to satis-
fy application’s timing requirements. This model resembles
our scheme in that resource requirements are predetermined
and one of them is selected at run time. However, because
evaluation function is used for selecting a configuration, it
is difficult to reflect designer’s intention to the selection.

3 TABLE-BASED QOS CONTROL

In this section, we introduce our QoS control scheme and
describe the implementation of QoS control over CPU time.

3.1 QoS Control Scheme

Our &OS control scheme is based on the idea that quality
level of an application task is discrete, not continuous, and
the task has a different resource requirement for each quality
level. In our &OS control scheme, the system maintains a
single value which represents the quality level of the overall
system. We call this value “QoS level.” Resource allocation
to each task is determined according to QoS level. &OS
level is downgraded or upgraded in response to variations of
resource utilization in a system.

We assume that resource requirements of a task is rough-
ly predictable. In the design phase of a real-time system,
the system designer makes a table that contains resource
requirements of all tasks in the system. This table is called
“QoS table”. Each row,in the &OS table corresponds to QoS
level. Each field in the &OS table represents the resource re-
quirement for &OS level.

In the QoS control scheme, predetermined upper lim-
it and lower threshold of resource utilization trigger QoS
control. When overall resource utilization in the system ex-
ceeds the limit, QoS level is downgraded and then resource
allocations of some tasks are decreased according to the &OS
table. On the other hand, when unused resource exceeds the
threshold, &OS level is upgraded and resource allocations of
some tasks are increased according to the QoS table.

Example of a QoS table is shown in Table 1. This QoS
Table is designed for QoS control over CPU time. The
left most column of the table represents QoS level values
and the other columns represent resource requirements of
tasks. In this case, the values of the QoS table represent
CPU utilization. CPU utilization U is calculated as U(%) =
100 * C/T. For a periodic task, T is the period and C is the
computation time in the period. For a non-periodic task, T

Table 1: Example of &OS Table

is the interval time of execution and C is the computation
time per execution. In this case, CPU utilization of Task
A is 50% when QoS level is at 6, 30% when &OS level is
between 2 and 5 and 20% when QoS level is at 0 or 1. Note
that CPU utilization of Task C is 0% when QoS level is
between 0 and 3, this means Task C cannot execute in these
QoS levels.

We assume that all the tasks are scheduled using rate
monotonic algorithm[6]. This means that tasks are sched-
uled by fixed-priority scheduling, all task are periodic and
independent, and a task with shorter interval time is giv-
en higher priority of execution. In this case, all the task
are schedulable if the total CPU utilization is less than a
threshold. In other words, by reducing total CPU utiliza-
tion under the threshold, alI tasks can meets its deadline.
In addition, to simplify admission control, we assume that
the periods of tasks are multiples of the shortest period. In
this case, we can use 100% as the threshold.

Let us describe detailed &OS control process using the
sample QoS table. First, suppose tasks A, B and C are
executing in the system. In this case, from the QoS table,
total CPU utilization is 50 + 30 + 10 = 90%. Because the
overall system CPU utilization is allowed up to lOO%, these
three tasks are acceptable with QoS level at 6. Next, if task
D newly becomes runnable, total CPU utilization becomes
130% with QoS level at 6, and exceeds the limit. In this case,
QoS level is downgraded to 4 at which total CPU utilization
of the four tasks is 90%. As a result, CPU utilization of task
A is reduced from 50% to 30% and task D is executed with
20% of CPU utilization.

Another case, when tasks A, B and C are executing with
QoS level at 6, suppose task A cannot meet its deadline.
In this case, though a calculative total CPU utilization is
90%, the actual CPU utilization probably exceed a system
limit. In order to decrease CPU utilization, QoS level is
downgraded until task A can meet its deadline. &OS level
is first downgraded to 4, and next it is downgraded to 3 if
deadline misses still occurs.

On the other hand, when idle CPU time expands, QoS
level is upgraded to increase overall CPU utilization.

In this example, the &OS table contained only tasks, but
it can also contains interrupt handlers.

This scheme is simple and flexible. Any QoS control poli-
cies, such as fair-share policy or priority based policy, can
be implemented using the scheme. Other examples of &OS
table are shown in Table 2 and Table 3. Table 2 represents
a QoS table that implements fair-share policy by allocating
same resources to all tasks at any QoS level. This policy can
be used when all tasks are multimedia processing tasks. On
the other hand, Table 3 represents a QoS table that imple-
ments priority-based policy. This policy can be used when
the priority of a task is important.

66

QoS Level] Task A] Task B 1 Task C 1 Task D
0 I 20% I 20% I 20% I 20%

Table 2: QoS Table with Fair-share Policy

OS Level Task A Task B Task C Task D
0 t 20% t t
1

j
t
j j

t
’

10% t
2 1 20% 1 i-
3 I t I :: I t I 00
4 10%
5 ; 20%
6 50% 30% 30% 30% _

Table 3: QoS Table with Priority Based Policy

Because a QoS table can contain any type of resource
requirement, the QoS control scheme can be adopted to any
type of resources, CPU time, file I/O, network, and memo-
l-Y*

3.2 QoS Control Mechanism for CPU Time

We implemented a &OS control mechanism that treats CPU
time using our scheme. The &OS control mechanism is com-
posed of the following components. The structure of the
QoS control mechanism is depicted in Figure 1.

QoS Control Module A module to control QoS level and
resource allocation. This module also maintains the
QoS table.

QoS Handler A handler function resides in an application
task and it is called to change behavior of the task
when the resource allocation has changed.

Deadline Monitoring Module A module to detect dead-
line misses. This module notifies the QoS control mod-
ule that deadline misses have occurred in order to
downgrade QoS level.

Waste Detection Module A module to measure free CPU
time. If free CPU time exceeds a predetermined thresh-
old, this module notifies the QoS control module in
order to upgrade QoS level.

The QoS control mechanism was implemented on the
NEC RX830, p-ITRON Ver.3.0[4] based real-time kernel.

3.3 QoS Control Module

The QoS control module is a central components of our &OS
control mechanism. This module changes CPU time allo-
cation to tasks and control QoS level of the system. The
module does the following work.

l Downgrading &OS level when the system is in over-
loaded state.

Figure 1: The Components of the QoS Control Mechanism

s Upgrading QoS level when the system has more idle
CPU time than a predetermined threshold.

l By an admission test, examining that all runnable
tasks are acceptable in new &OS level

l Finding tasks where CPU utilization changes by ad-
justing QoS level.

l Notifying QoS modification to tasks.

The &OS control modules is woken up by the following
events.

l Notification from the deadline monitoring module.

l Notification from the waste detection module.

l Starting a task execution.

o Terminating a task execution.

Currently, the &OS control module is implemented as a
task, not as part of the kernel. The QoS control task has
higher priority than any application tasks, because the &OS
control task must be executed in overloaded state.

3.4 Deadline Monitoring Module

CPU overload can be detected by monitoring deadline miss-
es, because response time of a task becomes worse in over-
loaded state. The deadline monitoring module checks whether
deadline misses have occurred and then notifies the QoS con-
trol module of the occurrence of deadline misses. The &OS
control module will downgrade QoS level to reduce total
CPU utilization.

Deadlines are specified by application tasks as relative
time from the beginning of the periods of the tasks, or al-
lowable elapsed time for a set of computations.

The deadline monitoring module can be implemented ei-
ther as part of kernel functions or a separated module from
the kernel. We implemented the deadline monitoring mod-
ule using the cyclic handler function of p-ITRON Ver.3.0
that enables a periodic execution of user-defined functions.

67

3.5 Waste Detection Module

When a system has enough free CPU time, it should be u-
tilized to provide better QoS for tasks. In order to achieve
this, the waste detection module measures idle CPU time
over the system. If the idle CPU time exceeds a predeter-
mined threshold, the module notifies the &OS control mod-
ule that the system has enough free CPU time to exploit.
The QoS control module will upgrade &OS level to increase
the total system CPU utilization.

We implemented the waste detection module as a task
with the lowest priority. The task repeatedly execute a loop
and measures elapsed time per fixed number of times. Free
CPU utilization can be calculated by dividing ideal elapsed
time by the measured elapsed time, where the ideal elapsed
time is elapsed time when no other tasks and only the loop
is executed. For example, if ideal elapsed time is 1Oms and
measured elapsed time is looms, then idle CPU utilization
is 10%.

3.6 QoS Handler

A QoS handler is called when the QoS control module changes
CPU time allocation to a task. The task must change the
amount of computation by using an alternate algorithm or
changing the rate at which a task is executed. The handler
is part of an application task and written by a developer
of the application. A &OS handler is registered to the &OS
control module before a task starts its execution. The QoS
handler is called with new QoS level of the system as its
argument.

4 EVALUATION RESULTS

In this section, we present evaluation results of our &OS
control scheme. We have measured the number of deadline
misses and overall system CPU utilization with and without
the QoS control mechanism for CPU time. The overhead
against the number of tasks is also presented.

4.1 Evaluation System

We implemented and executed our &OS control programs
and evaluation programs on an evaluation board for RX830.
The specification is as below.

Name: RTN-V831-PC(Midas Lab. Corp., Japan)
CPU: NBC V83ltincluding V830 core)

lOOMl32 li8MIPS
Bus clock rate: 33MHz
Cache : 4XB(Instruction) , 4XB (Data)
DRAM: 8MB
EPROM: 128XB
Flash ROM: 8MB

All programs are linked into one object and it is down-
loaded from front-end PC through a ROM emulator. The
elapsed time and CPU utilization are measured by perfor-
mance analyzer running on the PC.

4.2 Effect of QoS Control

First, we show effect of our QoS control mechanism. The
purpose of CPU time QoS control is reducing overall CPU
utilization in system overloaded state as quickly as possible,
while keeping overall CPU utilization high. We measured

the number of deadline misses to validate that the &OS con-
trol mechanism could cope with system overloaded state.
We also measured total CPU utilization of the system to
check that QoS control mechanism could efficiently exploit
CPU time.

In this evaluation, one high priority task(HP task) rep-
resenting a control task, four low priority tasks(LP tasks)
representing multimedia processing tasks and a clock inter-
rupt handler are always executed. Then, an additional load
is added to the system. We have caused overloaded state by
using the following three different types of load.

1. Interrupt handling

2. HP task

3. LP task

CPU time allocations for LP tasks are changed by &OS
control, while those of HP tasks and an interrupt handler
does not vary during execution. All tasks and interrupt
handlers are executed periodically by means of the cyclic
handler function of RX830.

4.2.1 The Influence of Interrupts

In embedded realtime systems, frequent interrupts can easily
interfere with task execution. The first results show the
influence of interrupts.

We assume non-periodic interrupts in this case. Over-
loaded state caused by such interrupts cannot be predicted
because occurrence of interrupts cuot be expected before-
hand. The QoS ‘control mechanism does not function until
a deadline miss is detected. We measured three types of
results usingno QoS control: Guaranteed, Middle and Best
effort.

Guaranteed The CPU time necessary for interrupt han-
dling is allocated in advance, remaining CPU time is
shared among tasks. All tasks can be successfully ex-
ecuted, if additional interrupts occur.

Best effort All CPU time is shared to tasks without con-
sideration to interrupts. Some tasks can fail, if addi-
tional interrupts occur.

Middle Half of CPU time necessary for interrupt handling
is allocated in advance, remaining CPU time is allo-
cated to tasks. Some tasks can fail, if additional inter-
rupts occur.

Table 4 shows task attributes and contents of QoS table.
Task attributes include period of execution, relative deadline
from the beginning of a period and CPU utilization. For LP
tasks, three types of attributes are defined. The three types
of attributes, Guaranteed, Middle and Best effort, respec-
tively corresponds to the three case when no &OS control is
used. In this experiment, the additional interrupts require
35% of CPU utilization for a duration of 5OOms. The values
in these tables are not derived from a particular application,
but learned from our experience. For example, an interval
time and a CPU utilization of LP tasks are associated with
multimedia processing that display twenty frames of images
per one second.

Table 5 shows the results under the iniluence of interrupt-
s. The first column shows CPU utilization in non-overloaded
state and second column shows CPU utilization in overload-
ed state. The last column shows the number of deadline

68

Period Deadline CPU Utilization
HP Task 1oms - 15%
Timer Interrupt lms - 3%
LP Task O-J(Guaranteed1 50ms 49ms 11%
LP Task 0-J(Middle)
LP Task O-3(Best effort)
Additional Interrupt

0 1 2 3 4 5 6 7 8 9 I 10 1 11 I 12 I 13 I 14 I 15 1

1 Additional Interrupt I 35 I 35 (35 I 35 1 35) 35 I 35 I 35 I 35 I 35 I 35 I 35 I 35 I 35 I 35 I 35 1

Table 4: Task attributes 8nd QoS Table (The interrupt case)

QoS Control Guaranteed Middle Best effort
CPU Util. (Non-overload) (%) 93.9 58.9 74.9 94.9
CPU Util. (Overload) (S)

(LP Task O/172/3)
91.4 93.9 94.9 89.9

DL Misses o/o/1/4 o/o/o/o o/o/o/lo 0/0/10/10

Table 5: Results under the Influence of Interrupts

misses of LP tasks. Notation “nl/nz/ns/nr” represents that
nr , ns, tas and tad deadline misses occurred in LP task 1, LP
task 2, LP task 3 and LP task 4 respectively.

In the three cases using no QoS control, total CPU uti-
lization of the system are nearly at the limit while interrupts
are oc curring. However, they are much different in comple-
tion of task execution. In the best effort case, LP tasks 2
and 3 always failed to complete during the overloaded state.
Because CPU time was consumed nearly at its limit even
while the interrupts are not occurring, so the CPU time for
tasks 2 and 3 were taken away by the interrupts.

In the middle case, only task 3 could not meet its dead-
line ten times, because 20% of free CPU time, that corre-
sponds to CPU utilization of only one LP task, remained
while the interrupt load does not exist. On the other hand,
deadline misses does not occur in the guaranteed case be-
cause the CPU time for interrupts is reserved in advance.

In contrast, CPU utilization of three cases are apparently
different while interrupts are not occurring. About 40% of
CPU time is wasted in the guaranteed case, while almost all
CPU time is exploited in the best effort case.

On the other hand, in the case of using QoS control,
deadline miss occurred once in task 2 and four times in task
3, while the total CPU utilization is from 91.4% to 93.4%.
The results demonstrates that our QoS control mechanis-
m can efficiently utilize CPU time while reducing deadline
misses.

In order to explain the cause of four deadline misses in
task 3, we investigated the transition of QoS level when in-
terrupt load is added and deleted. The result is shown 8s the
timing chart of calculative total CPU utilization in Figure
2. In this figure, the vertical line represents the calculative
CPU utilization and the horizontal line represents elapsed
time after the interrupt load was inserted. The calculative
total CPU utilization is calculated from &OS level and the

140 - Overloaded Period 5oOms b

12n - QoS Level=1 1

100 -

80 -

60-

A

-100 0 loo 200 300 400 SC0 600 Time(ms)

Figure 2: Transition of the calculative total CPU utilization

CPU utilization specified in Table 4.
As mentioned above, when a deadline miss occurs, the

QoS control module downgrades QoS level. In order to es-
timate excess CPU utilization, the module uses CPU uti-
lization of tasks that cannot start execution as a hint. If
there are no such tasks, the module can only downgrade the
QoS level one by one. As a result, the module can reduce
&OS level from 15 to 11 in the first 5Oms, but, after that,
can downgrade only one level per 50ms. Therefore it takes
2OOms to reach appropriate QoS level.

4.2.2 Inff uence of a High Priority Task

The next result shows the influence caused by addition of
a HP task. The HP task that is newly added represents

69

a control task with hard real-time constraint. In this case,
the system call starts up the additional task. At this point,
the QoS control module can check whether the total CPU
utilization of the system becomes more than its limit.

The results using &OS control are compared to the results
using no QoS control. We have measured result for the three
cases, “Guaranteed”, “Middle” and “Best effort” In this
experiment, the additional HP task requires 35i of CPU
utilization for a duration of 5OOms.

The task attributes and &OS table are described in Table
6.

Table 7 shows the results. The results using no QoS con-
trol are similar to that of the interrupt case. This means
that a high priority task has almost the same effect as in-
terrupt handlers for a low priority task by preempting CPU
time of a low priority task.

In the case of using QoS control, the results is better
than the interrupt case; the deadline misses never occurred,
and the total CPU utilization is 94.9%. The reason for the
improvement is because the QoS control module can calcu-
late the excess CPU utilization caused by a high priority
task in advance.

In the current implementation, when starting a new task,
the &OS control module adjusts &OS level to keep the total
CPU utilization less than its limit. Therefore no deadline
misses occur. When stopping a running task, the module
adjusts QoS level so that the total CPU utilization is as
high as possible below its limit. Therefore the total CPU
utilization in the system does not decrease after stopping
tasks.

However, this is an ideal case, because all tasks obey their
predetermined computation time. In actual applications,
the computation time of tasks are variable, so that it may
be difficult to obtain a result like this experiment.

4.2.3 Influence of a Low Priority Task

The last result shows the influence caused by addition of
a LP task. The result of using QoS control is compared
with two cases using no &OS control. The two cases are
“Guaranteed” and “Best effort”. In this experiment, the
additional LP task requires 16% of CPU utilization in the
guaranteed case, 20% of CPU utilization in the best effort
case and from 0 to 20% of CPU utilization in the case with
QoS control. It runs for 5OOms. The “Middle” case are not
shown in this evaluation, because the result was almost the
same as the “Best effort” case.

The task attributes and QoS table are described in Table
a.

Table 9 shows the result. In the guaranteed case, no
deadline misses occurred, but CPU utilization is less than
80%. In the best effort case, the additional LP task always
fails to complete.

In the case of using QoS control, only one deadline mis-
s occurred and the total CPU utilization is from 90.9 to
94.9. The deadline miss is caused by slight excess of total
CPU utilization due to the overhead of QoS control mech-
anism and other system operations, such as context switch.
Because the deadline miss caused downgrade of &OS level,
the total CPU utilization in overloaded state is lower than
in non-ove$oaded state. We ensured that &OS level is at
the unexpected low level just after the &OS control, but it
returned to the expected level within 3OOms.

300
ADD(Max.) +-

3
5
E

250

8
%
a 200
‘Ej

1
100 i I I I I I I I I J

10 20 30 40 50 60 70 80 90 100
The number of tasks

Figure 3: QoS Control Overhead V.S. Number of Tasks

4.3 Overhead of QoS Control

We also measured the overhead imposed by the QoS control
mechanism for various number of tasks.

Figure 3 shows processing time within the QoS control
module for various number of tasks. This graph contain-
s the result of two types of &OS control operations, ADD
and DEL. The QoS control module performed the following
works when these operations called.

l Added iin entry to &OS table or deleted an entry from
&OS table.

l Downgraded or upgraded QoS level by one,

l Performed an admission test at new QoS level.

l Found one task that can be changed resource alloca-
tion and decreased or increased its resource allocation

l Called QoS handler to change QoS of the task.

The minimum and maximumlatencies of both operations
are plotted. In order to remove the effect of the CPU cache,
the cache is flushed before each operation.

The result shows the latency is less than 250~s in the
worst case. This means that the impact of QoS control on
performance is quite small, because overhead of the QoS
control mechanism is much less than a period of a typical
multimedia processing task (about 25ms), and the overhead
is also less than response time of a control task, such as
CD-ROM control and sensor monitoring (more than lOms).
Therefore the QoS control mechanism can efficiently support
real-time systems that contains multimedia processing tasks
and device control tasks.

The result also shows that all latencies increased in pro-
portion to the number of tasks, and the maximum latency
increases rapidly than the the minimum latency. The rea-
son for the difference is search operations to find eligible
tasks. In the current implementation, the QoS control mod-
ule searches a bitmap created from the &OS table in order
to iind the task whose resource allocation can be modified.
Since this bitmap size increases in proportion to the number
of tasks and QoS levels, maximum search time also increas-
es.

70

Period Deadline 1 CPU Utilization’1

QoS Level 1 0 1 1 1 2 1 3 1 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 1

Table 6: Task attributes and QoS table(The High Priority Task Case)

OS Control Guaranteed Middle Best effort
CPU UtiI. (Non-overload) (%) 94.9 58.9 74.9 94.9
CPU UtiI. (Overload) (7)

(LP Task O/lj2/3)
94.9 93.9 94.9 89.9

DL Misses o/o/o/o o/o/o/o o/o/o/lo 0/0/10/10

Table 7: Results under Influence of the High Priority Task

I I Period I Deadline I CPU Utilization 1
HP Task
Timer Interrupt
LP Task 0-JIGuaranteedl

I

1oms - 15%
lms - 3%

5oms 49ms 16%
LP Task 0-J(Best effort) 5oms 49ms 20%
Additional LP Task(Guaranteed) 50ms 49ms 16%
Additional LP Task(Best effort) 5oms 49ms 20%

QoS Level 1 0 1 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15]

Table 8: Attributes of Tasks and QoS Table(The Low Priority Task Case)

QoS Control Guaranteed Best effort
CPU UtiI. (Non-overload) (%) 94.9 78.9 94.9

CPU UtiI. (Overload) (S)
DL Misses (LP Task O/1/2/03/4)

90.9 94.9 94.9
O/O/O/O/l o/o/o/o/o o/o/o/o/lo

Table 9: Results under the Influence of a Low Priority Task

71

5 CONCLUSION

We proposed a new QoS control scheme suited for embedded
real-time system. The scheme uses a QoS table, that con-
tains resource requirements of tasks, in order to determine
resource allocation to the tasks. We have implemented a
CPU time &OS control mechanism using our proposed sche-
me and evaluated it on an evaluation board with ,u-ITRON
Ver.3.0 based real-time OS. The evaluation results shows
that the QoS control mechanism achieves an efficient CPU
utilization at more than 90%, while reducing deadline miss-
es to a few times, in system overloaded state. The results
also shows that the latencies of &OS control operations are
small enough for multimedia applications.

In future, we will try to apply the QoS control scheme
to other resources, such as memory, file I/O or network.

ACKNOWLEDGEMENTS

We thank Hirokazu Tamura, Noriaki Takakura and Kazuya
Hashimoto for providing test and evaluation environment
to this research. We are grateful to Yousuke Takano and
Toshiyuki Nakata for comments and reviews of this paper.

References

[l] G. Coulson and G. Blair. Architectural principles and
techniques for distributed multimedia application sup-
port in operating systems. ACM Operating Systems Re-
view, 29(4):17-24, October 1995.

[2] H. Fujita, T. Nakajima, and H. Tezuka. A processor
reservation system supporting dynamic qos control.

In International Workshop on Real- Time Computing
Systems and Applications, October 1995.

[3] R. Gopalakrishnan and G. Parulkar. A real-time upcall
facility for protocol processing with qos guarantees. In
ACM Symposium on Operating Systems Principles, De-
cember 1995.

[4] ITRON Technical Committee. The ITRON spec-
ifications. http://www.ertl.ics.tut.ac.jp/ITRON/eng-
spec.html.

[5] C. Lee, R. Rajkumar, and C. Mercer. Experiences
with processor reservation and dynamic qos in real-time
math. In International Symposium on Multimedia Sys-
tems, 1996.

[S] C. L. Liu and J. W. Laylaud. Scheduling algorithms
for multi-programing iu a hard-real-time emvironment.
ACM, 20(l), 1973.

[7] C. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves: OS support for multimedia applications. In
IEEE International Conference on Multimedia Comput-
ing Systems, May 1994.

[8] D. ROSU, K. Schwan, S. Yalamanchili, and R. Jha. On
adaptive resource allocation for complex real-time ap-
plications. In IEEE Realtime System Symposium, pages
320-329, December 1997.

[9] C. A. Waldspurger and W. E. Weihl. Lottery schedul-
ing: Flexible proportional-share resource management.
In the Symposium on Operating Systems Design and Im-
plementation, Nov. 1994.

72

