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ABSTRACT
Reducing device energy has become one of the most impor�

tant challenges to embedded systems designers� Processors
with dynamic voltage scaling permit trading performance

for reduced energy consumption as a program executes� In
this paper� we �rst present a novel hybrid scheme that

uses dynamic voltage scaling to adjust the performance of

embedded applications to reduce energy consumption while
also meeting time constraints� Our �ne�grained approach

uses the compiler to insert power management hints in
the application code� These hints convey path�speci�c run�

time information about the program�s progress to power
management points invoked by the operating system that
adjust processor performance� Second� we present an algo�

rithm for inserting power management hints along di�er�
ent program paths� Finally� we experimentally evaluate our

approach and show that signi�cant energy reduction can be

achieved� On two embedded applications� MPEG movie
decoding and automatic target recognition� our scheme re�

duces energy by up to ��	 over no power management and
by up to 
�	 over static power management� We also ex�

perimentally demonstrate that our scheme achieves more
energy savings compared to two purely compiler�directed

schemes�
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1. INTRODUCTION
Energy consumption has become vitally important to

battery	operated portable and embedded systems� By low	
ering energy consumption� battery life and mission dura	
tion is extended and more capabilities can be included in
a device for the same battery capacity� Furthermore� re	
duced energy results in lighter devices and less expensive
packaging� These factors reduce the total cost of building
portable and embedded systems�
Embedded systems are experiencing explosive growth in

sales volume with estimates of up to ������� cell phones
sold per day by ���� �
�� and up to �� million personal
digital assistants 
PDAs� sold in ���� �
��� Indeed� em	
bedded computer systems can be found in a number of
domains� ranging from military devices to inexpensive con	
sumer electronics to complex automobile control systems�
One distinguishing and common characteristic of such sys	
tems is their sensitivity to cost� particularly energy con	
sumption�
A number of these computer systems include applica	

tions that have time constraints that must be satis�ed dur	
ing an application�s execution� An example of such a time	
sensitive application is the MPEG decoder which displays
movies with a given frame rate� Other time constrained
applications include digital speech coding� Doppler radar	
based cruise control and collision warning for automobiles�
face screening� living maps for driving direction� voice recog	
nition� highway sensor networks for telematics� and auto	
matic target recognition�
There have been several techniques proposed for manag	

ing energy in portable and embedded computer systems�
One solution that has been adopted by a number of pro	
cessor manufacturers� including Intel� AMD� and Trans	
meta� is dynamic voltage scaling 
DVS�� In a processor
that has DVS� the clock frequency and supply voltage can
be changed on	the	�y to make a trade o� between perfor	
mance and energy consumption�
While most DVS techniques exploit variability in load

across an entire set of applications� in this paper we pro	
pose an approach that uses �ne	grain information about
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execution variability within an application to reduce en	
ergy consumption� The technique exploits timing vari	
ability in program paths� resulting from constructs such
as loops with variable trip counts� Ours is a hybrid ap	
proach that relies on both the compiler and the operat	
ing system to adapt performance and reduce energy con	
sumption of the processor� The compiler conveys path	
speci�c run	time information about a program�s progress
to the operating system� These so	called power manage�
ment hints 
PMH� are inserted by the compiler in the code�
based on program structure and estimated worst	case per	
formance� A PMH is very low cost instrumentation that
collects path	speci�c information for the operating system
about how the program is behaving relative to worst	case
performance� The operating system periodically invokes
a power management point 
PMP� to change the proces	
sor�s performance based on the timing information from
the power management hints� This collaborative approach
has the advantage that the lightweight hints can collect ac	
curate timing information for the operating system with	
out actually changing performance� Further� the period	
icity of performance�energy adaptation can be controlled
independently of power management hints to better bal	
ance the high overhead of adaptation� Also� as we show
with two di�erent algorithms� a collaborative scheme sep	
arates hint insertion from performance adaptation� per	
mitting the use of di�erent algorithms in the operating
system to make trade o�s between performance and en	
ergy consumption� In this way� energy consumption can
be reduced by running at the lowest performance settings
based on actual program performance while still meeting
time constraints�
We evaluate our technique on two time	sensitive ap	

plications� an MPEG	� decoder and an automatic target
recognition 
ATR� application� Using models of commer	
cially available processors with dynamic voltage scaling�
the Transmeta�s Crusoe and Intel�s XScale� we show that
our technique can achieve signi�cant energy reductions of
up to ��� over no power management and up to ��� over
static power management� We further demonstrate that
our collaborative scheme achieves less energy consump	
tion than a scheme that uses a simple compiler placement
of PMPs at each procedure call and even better than a
scheme that uses PMPs only placed in code using our hint	
placement algorithm�
In the next section� we review why DVS is useful for

reducing the energy consumption of applications with time
constraints� We then explain our collaborative compiler	
operating system scheme in Section � and the compiler�s
role in inserting power management hints in Section �� A
set of experimental results shows the e�ectiveness of our
approach in Section �� Related work is discussed in Section
� and we conclude the paper in Section ��

2. DVS AND APPLICATION MODELS
Several commercial processors have recently included

DVS capabilities to make trade	o�s between performance
and energy consumption� In CMOS circuits� power is
directly proportional to the square of the input voltage

P � CV �

ddf� where C is the switched capacitance� Vdd
is the supply voltage� and f is the operating frequency�

Hence� reducing the voltage reduces the power consump	
tion quadratically� However� because the processor clock
frequency is related to the input voltage� reducing Vdd
causes a program to run slower� The energy consumed
by an application is E � Pt� where t is the time taken to
run an application with an average power P � Thus running
a program slower with reduced Vdd and frequency leads to
energy savings�
Two examples of DVS processors come from Transmeta

and Intel� The Transmeta Crusoe ���� has 
� voltage levels
that range from 
�
V to 
���V operating at ��� MHz to
��� MHz respectively� Each speed step is around �� MHz�
The Intel X	scale ���� has fewer levels and larger steps� The
voltages range from ����V to 
��V 

�� MHz to 
 GHz
with a ��� then ��� MHz step�� In all DVS processors�
a transition from one power level to another has a time
and energy overhead� The overhead results from changing
the supply voltage and allowing it to become stable� This
overhead ranges from ��� sec to 
��� sec and consumes
up to ��J �
�� ��� For the rest of this paper� we refer to
changing the voltage and frequency as a �speed change��
We assume that a time	sensitive application has a cer	

tain allotted time frame by which it should �nish execu	
tion� even when applying DVS� This allotted time usually
comes from CPU reservations in real	time operating sys	
tems 
OSs� or from engineering time	sensitive embedded
systems� Each application is characterized by its worst�

case execution time� To avoid violating the time con	
straint� an application is scheduled assuming it will run
for its worst	case duration� Since� in a DVS system� the
time taken to execute an application varies with the speed
at which the processor is operating� the execution of an
application is expressed in cycles rather than time units�
i�e�� the application duration is represented by worst case

cycles 
WCC��

3. COMPILER & OS COLLABORATION
To use DVS� system designers must de�ne how to initiate

a speed�voltage change and how to select a speed�voltage
level� Automatically deciding on the proper locations to
insert PMPs by the compiler in an application code is not
trivial� One problem is how frequently the speed should be
changed� Ideally� the more voltage scaling invocations� the
more the application can exploit dynamic slack� and fur	
ther reduce energy� However� we do not have this freedom�
as there is energy and time overhead associated with each
speed adjustment� In �
� a special case was considered in
which a program�s code is composed of sequential blocks�
We showed that too many PMP invocations would hurt
as much as too few of them� Our goal was to determine
how many PMPs should be inserted in the code to min	
imize energy consumption while taking into account the
speed�voltage scheduling overhead� We presented a theo	
retical solution that determines how far apart 
in cycles�
any two PMPs should be placed� With sequential code
and an estimate of instruction latency� we could then in	
sert PMPs into the code� Beyond that preliminary work

i�e�� applications with sequential code�� the problem in
real applications is harder due to the presence of branches�
loops and procedure calls that eliminate the determinism
of the executed path compared to sequential code� In gen	
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eral� the overhead of DVS should be kept to a minimum
by avoiding excessive PMP invocations�
To control the overhead of speed scheduling during the

execution of an application� we use a compiler	directed
technique� During compile time� the compiler inserts in	
strumentation code 
PMH� that computes information ab	
out the worst�case remaining cycles 
WCR� of the applica	
tion� During execution� a PMH passes timing information
to the operating system� To keep the overhead of hints
as low as possible� it updates the WCR in a predeter	
mined memory location or a special register� rather than
invoking the OS or performing any speed changes� Peri	
odically� the operating system is invoked by a watchdog
timer interrupt to execute a PMP� The time interval for
the watchdog timer is determined at compile	time based
on minimizing the number of PMPs executed for an appli	
cation� yet achieve as low energy consumption as possible�
as in �
�� The timer interrupt is armed with an interrupt

service routine 
ISR� that does the PMP� that is� the ISR
adjusts processor speed based on the latest WCR informa	
tion 
provided by the hints�� The strength of our collabora	
tive scheme lies in three properties� First� a separate PMH
placement algorithm can be devised to supply the OS with
the necessary timing information about an application at
a rate proportional to the ISR 
PMP� invocation� Second�
the actual speed change 
which has expensive overhead� is
done seldom enough by the OS at pre	computed time in	
tervals to keep the overhead low� This interval is tailored
to an application�s execution behavior in a way that guar	
antees minimize energy consumption while meeting time
constraints� Finally� by giving the OS control to change
speed� our scheme controls the number of executed PMPs
based on the length of execution rather than based on a
speci�c path of execution�
The advantage to using a collaborative scheme that in	

cludes both PMHs and PMPs is that timing information
can be inexpensively collected without actually doing a
speed change and incurring its high overhead� Since the
overhead of executing a hint 
setting a register or writing
to memory� is much less than executing a PMP 
comput	
ing a new frequency and adjusting the supply voltage�� we
have more freedom to add hints in the code as often as
necessary to enhance the accuracy of updating the WCR�

3.1 The Collaborative OS Role
In order to implement the collaborative scheme� the OS

requires a de�nition for a new ISR for adjusting the pro	
cessor speed and two system calls to communicate with the
running application� First� the ISR reads the current WCR
and computes the speed according to the selected dynamic
speed setting scheme from ��� 
�� Then� the ISR issues a
speed change request if needed� Second� the system calls
transfer the timing information from the application to the
OS� Two system calls are needed that are called only once
at the start of an application� 

� a system call that gives
the address of the bu�er that holds timing information col	
lected by hints� so that whenever a PMP is invoked� it can
�nd the WCR in this location� and 
�� another system call
is called to set the ISR interval 
in cycles��
Figure 
 shows how PMHs and PMPs work together� In

this �gure� a PMP interrupt service routine is periodically
invoked 
the large bars� to adjust processor speed based
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Figure �� Invocations of PMHs and PMPs for a
speci�c path�

on WCR� The power management hints are executed at
some point before a PMP to update the WCR based on a
path of execution� The task of the compiler is to insert the
hints in the application code in such a way that guarantees
that a PMH is always executed before a PMP is invoked�
However� note that more than one hint can be executed
before the PMP without harm� The compiler is essentially
mapping the time interval to the static program code and
inserting at least one PMH in that interval� This work
deals with non	preemptive applications executing in the
system� which is the case for many embedded systems�
In case of process preemption� the OS should keep track

of the operating frequency and the interrupt interval sta	
tus as part of the context of the departing process 
applica	
tion�� This information gets replaced by the corresponding
values of the newly dispatched process�

3.2 The Compiler Role
To support our proposed scheme� the compiler inserts

PMHs in the application code� For computing the remain	
ing time dynamically� the compiler instruments the PMHs
in a way to collect the application�s dynamic behavior in	
formation�
To keep track of the remaining time at each hint located

inside a procedure� the remaining time at the start of each
procedure instance j �� p wcrj� should be stored and re	
trieved at run time� The compiler allocates and manages
memory space for a table that stores p wcrj updated by
PMHs� Each entry in this table is deleted at the termina	
tion of a procedure instance that corresponds to this entry�
From our experiments� this table size does not exceed �ve
entries� That is� there are no more than �ve active pro	
cedures that have hints at the same time� Hints inside
these active procedures retrieve p wcrj from the table and
compute the remaining time based on this value� The next
section presents our algorithm for inserting power manage	
ment hints�

4. PMH PLACEMENT SCHEME
Our algorithm for energy management has four steps�



� extraction of timing information� 
�� determination of
the PMP interrupt interval� 
�� PMH insertion by the com	
piler� and 
�� run	time execution of PMHs and PMPs� Ini	
tially� timing extraction is done to gather timing informa	
tion about the application 
Section ��
�� Next� using the

�The p wcrj values are stored for only procedures that
include hints inside their bodies�
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timing information� an interval of how often the OS should
invoke a PMP is computed 
Section ����� Then� the com	
piler inserts PMHs in the code at speci�c locations 
Section
����� Lastly� hints are executed at run	time to update the
WCR based on actual execution paths taken through the
code 
Section �����

4.1 Extraction of Timing Information
Before deciding on the locations of the PMHs in the

code� prior timing knowledge about an application is needed�
Software timing analysis is one way in which this informa	
tion can be determined� In �
��� the compiler estimates the
performance of a piece of code in �ne	grained execution
time analysis� Other techniques use static and dynamic
path analysis �
��� While such techniques could be used
to guide the insertion of PMHs� it is beyond the scope of
our work� Instead� we rely on program pro�les to collect
timing information at the source code level� The pro�les
should be collected on representative data input sets that
show a variety of an application�s behavior� The data set
should include a worst	case scenario for the application be	
ing considered� In case an actual program execution time
exceeds the worst case time from the training data set� a
signal could be invoked to indicate the violation of a dead	
line�
For collecting the timing information in our approach�

we divide the control �ow graph 
CFG� into regions� Each
region contains one or more adjacent basic blocks� Since
the typical size of a block is small 
tens of cycles� compared
to the interrupt interval 
hundreds of thousands of cycles��
some blocks can be aggregated into a region to be pro�led�
Regions are determined by a region construction algorithm
described in ���� The basic idea of region construction is to
isolate basic blocks containing procedure calls 
as their ex	
ecution times contribute to the time of the basic block� in
a separate region� Other basic blocks can form a single re	
gion unless one or more basic blocks containing procedure
call
s� is part of the same program statement�
After forming regions� pro�ling is used to extract timing

information about the program� To estimate the timing in	
formation for loops at run time� we collect the maximum
cycle count of loop segments along with the maximum trip
count of that loop� Note that we refer to loop body as the
piece of code iteratively executed inside the loop� while
loop segment includes the total execution cycles of the loop
and the trip count is the number of iterations in the loop�
For each procedure� we collect the time spent executing
that procedure� Since the PMH placement algorithm tra	
verses the modi�ed CFG region	by	region� we also collect
the worst	case cycles of each region� High level informa	
tion 
worst and average case cycle count� about the entire
application is used to compute the interrupt interval size
as described in Section ����

4.2 Setting the Interrupt Interval Length
To determine the interval for invoking PMPs� we view

a program�s entire execution as sequential computation to
determine the interrupt interval size in cycles� This ap	
proach is based on our prior work �
� that devised a the	
oretical formulation of speed computation for sequential
code� With the knowledge of the worst and average case
execution cycles of the application and with the overhead

of the speed computation and voltage change considered�
we �nd an estimate of the optimal number of PMPs that
should be inserted to consume minimum energy� By di	
viding the total worst	case cycles of the application by the
number of PMPs� we get the best interval size 
in cycles�
to execute the PMPs�
During run	time� whenever a speed change is encoun	

tered in the service routine� the interrupt timer is updated
according to the new frequency� For the rest of this pa	
per� the terms �interrupt interval� and �interval� are used
interchangeably�

4.3 Insertion of PMHs
After computing the interrupt interval� the goal of the

hint	placement algorithm is to ensure that a hint is exe	
cuted before the invocation of the next interrupt instance�
The placement algorithm traverses the CFG to insert PMHs
no further apart than the size of the interrupt interval�
Note that hints are inserted in terms of the interrupt inter	
val speci�ed in cycles� Ideally� a hint should execute right
before the ISR is invoked� Since we do not control the ap	
plication�s dynamic behavior� more than a single hint can
be executed in each interval to improve the accuracy of
speed computation�
The basic idea of the hint	placement algorithm is while

traversing the CFG of a procedure� a cycle counter ac is in	
cremented by the value of the elapsed worst	case cycles of
each traversed regions� A PMH is inserted in the code be	
fore this counter exceeds the interval length� The hint in	
strumentation is inserted in the appropriate locations and
the counter is reset� PMH locations are selected based
on the code structures� sequential code� branches� loops or
procedure calls� Next we describe the criteria of placement
in each of these cases�

4.3.1 Sequential code
We de�ne a sequential segment as a series of adjacent

regions in the CFG that are not separated by branches�
loops� joins or back edges� Sequential placement inserts
a hint just before ac exceeds the interval size� It is non	
trivial to insert a hint when a region contains a procedure
call� since the procedure�s cycles is accounted for in the en	
closing region�s execution time� If the called procedure is
too large� then inserting hints only at the region boundary
is not su�cient to update the WCR time before the next
service routine invocation� For this reason� we need to fur	
ther investigate possible locations inside a region related to
the locations of procedure calls� For regions in a sequential
segment� hints are inserted according the following cases�

� When the cumulative counter ac exceeds the inter	
rupt interval cycles and there are no procedure calls
in the region then a hint is placed before the current
region�

� If a region contains a procedure call and the body
of a called procedure exceeds the interval size� a hint
is placed before the procedure call and another hint
after the procedure call� The procedure is marked
for later placement by adding it to a table that we
call the Procedure Placement Table 
PPT�� The hint
before the call indicates the WCR at the start of this
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procedure execution� Computation of WCR is path	
dependent� that is� its value is dependent on the path
this procedure instance is called from� The hints be	
fore and after the called procedure that contains hints
simplify the PMH placement scheme by eliminating
the need for any inter	procedure placement of hints

i�e�� ac does not have to be remembered from one
procedure to the next��

4.3.2 Branches
For any branch structure� each of the individual branch

paths is treated as a sequential segment or recursively as a
branch structure� At any branch� the value of ac is prop	
agated to all the branch paths� In a join� ac is set as the
maximum value of propagated counters of all the joined
branches�

4.3.3 Loops
The decision of placing hints in a loop is based on the

pro�led loop segment and loop body sizes� The di�erent
cases for inserting PMHs in loops are as follows�

� If the sum of ac and loop segment exceeds the interval
but the loop segment is smaller than the interval then
one hint is placed before the loop�

� In case a loop segment exceeds the interval but the
loop body is smaller than the interval� then a PMH
is placed at the beginning inside of the loop body in
addition to the PMH placed before the loop� Another
hint is inserted after the loop exit�

� If the size of the loop body exceeds the interval� a
hint is placed at the start of the loop body and the
loop is treated separately as either sequential code or
code with branches� Another PMH is inserted after
the loop exit�

The reason for placing a hint after the loop in the last
two cases is to adjust any over estimation of the WCR
done by the loop hints� Over	estimation of the WCR is
possible in the case when the loop bounds are unknown
during loop execution�

4.3.4 Procedure calls
In the processing of sequential segments� procedure calls

are detected and also the selection of the procedures that
require hint placement takes place 
by storing them in
the PPT�� The procedure selection is subject to satisfy	
ing the need for updating the WCR 
through hints� at
least once during each ISR interval� For each procedure
processed from the PPT� instrumentation code is inserted
in the procedure prologue to retrieve the WCR computed
dynamically by the hint located before the call� The in	
strumentation is necessary because a procedure may be
called from multiple sites 
in di�erent program paths� and
each one can result in a di�erent WCR value for the called
procedure�
At run	time� the hints placed before procedure calls com	

pute the WCR of procedure instances� This value is stored
in the procedure�s stack space� Each hint located inside
this procedure uses this value in its calculations� This is
bene�cial in case of recursive calls� where each call instance
has its own WCR estimate�

������
������
������
������

������
������
������
������

PMH4

PMH5

����������

����������

��������

����������

R1

R4

R2

R3

R5

ac = 0

ac = 0

ac = 200

ac = 50

ac = 500

ac = 700

ac = 500

PMH1
PMH2

PMH3

PMH4
PMH5

R3

call Proc1

Figure �� Example of the PMH placement method�
ology in a simple CFG�

Table �� The regions� timing information
Region� 
 � � � �
WCC ��� ��� 
��� ��� ���

Loop body 
��� max� iter� count 
�
Procedure size 

�� disp of Proc
 ��

4.4 Run-Time PMH Execution
The placement algorithm can insert two di�erent types

of hints based on a program structure� The two types
compute the WCR di�erently based on whether the PMH
is located inside a loop or not�

4.4.1 Static PMH
This type of hint is placed in any location in the code

outside a loop body� A PMH inside a procedure computes
the WCR based on the WCR at the start of the procedure
instance� p wcr� Since the execution path is only known at
run	time� a procedure instance retrieves its p wcr stored
in its stack�s space as discussed in Section ���� A static
hint computes the WCR by subtracting the displacement
of the hint location from p wcr� For example� in a PMH
inserted 
�� cycles from the beginning of the procedure�
the WCR is computed as p wcr� 
���

4.4.2 Index-controlled PMH
Hints of this type are inserted inside the body of a loop

where the WCR varies according to the current loop itera	
tion counter� The hint computes the WCR based on equa	
tions from �
��� WCR is computed as wcr before loop�

iteration count� loop body�� ldisp� The wcr before loop

value is determined at run	time from the hint that pre	
cedes the loop� The average loop body is computed as

loop segment�maximum iteration count�� The displace	
ment� ldisp� is computed from the start of the loop body�
This technique can also be used in case of nested loops�

4.5 Example of PMH Placement
This example shows how the placement algorithm works

for a simple CFG as in Figure �� where each rectangle
represents a region� Assume the interrupt interval length
equals 
��� cycles� We �rst give the details on how the
algorithm selects the hints� locations and then the details
of each inserted hint� The timing information for the CFG
is listed in Table 
�
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Table �� The inserted PMHs details
no� Type Computed as


 static p wcr 	 � 
� 
���� for this procedure instance�
� static p wcr 	 ��� 
� 
���� �
� index	controlled 
���� 	 
iteration count x 
����
� index	controlled 
���� 	 
iteration count x 
���� 	 ���
� index	controlled 
���� 	 
iteration count x 
���� 	 
���

PMH�� A hint is placed at the beginning of the proce	
dure� indicating the WCR 
� 
���� cycles��
PMH� and PMH�� Since R� starts a loop with a seg	
ment size of 
���� that is larger than the interval size�
then PMH� is placed at the end of R
 
before the loop��
Because the body of the loop exceeds the interval� PMH�
is placed at the start of R� 
inside the loop��
PMH� and PMH	� Because the sum of ac and R� cy	
cles is larger than interval� the algorithm looks for the
�rst called procedure 
i�e�� Proc�� in the region R� which
is located at �� cycles from the top of R�� Since the proce	
dure body is larger than interval then PMH� and PMH�
are placed before and after the procedure call� respectively�
An entry corresponding to Proc� is inserted in the runtime
table 
discussed in Section ����� The hints placed inside
procedure Proc� are not shown in this example�
Assuming that the presented CFG is the application�s

main procedure� p wcr � application�s WCR � 
�����
Table � lists the details of each inserted hint� Note that
PMH� is useful in evaluating the WCR just before the
loop� wcr before loop�

5. EXPERIMENTS
We evaluate the e�cacy of our scheme with respect to re	

ducing the energy consumption in processors� For this� we
use the Simplescalar micro	architecture toolkit �
�� with
the con�guration shown in Table �� We extended the sim�
outorder simulator by adding a module that computes the
energy of the running application based on the number of
cycles C spent at each voltage level V 
E � CV ��� C in	
cludes the cycles for executing the application as well as
the cycles for computing the speed in PMPs and the WCR
in PMHs� We also considered the overhead of setting the
speed by adding a constant energy overhead for each speed
change to the total energy� In the experiments below� we
used the Transmeta Crusoe and the Intel XScale processor
speed models� The Transmeta Crusoe has 
� speed lev	
els and the XScale has �ve levels� The voltage�frequency
ranges of the processors are discussed in Section �� The
energy consumed in other subsystems is beyond the scope
of this evaluation�
We emulate the e�ect of the ISR in Simplescalar by

�ushing the pipeline at the entry and exit of each rou	
tine� The ISR computes a new frequency at each interval
and then sets the corresponding voltage� To compute the
speed� we use a dynamic greedy and a static speed manage	
ment schemes presented in ���� The greedy scheme uses all
the available slack to reduce the speed for the next interval�
while the static speed management runs the entire applica	
tion on a single CPU speed based on the static slack� Our
base case is with no power management 
i�e�� execute at

maximum speed�� We also compare our scheme with two
schemes that use only PMPs� the �rst 
PMP�pcall� places
a PMP before each procedure call� and the second 
PMP�

placement� inserts PMPs according to our hint placement
algorithm to show the potential bene�t of using hints�
We show the experimental results of two time	sensitive

applications� automated target recognition 
ATR� ��� and
an MPEG� decoder ��
�� A general observation in all the
presented results is that� as the time allotted to an ap	
plication to execute is increased� less energy is consumed
due to the introduction of more slack that can be used to
reduce the speed�voltage of the processor�
Although the schemes that use only PMPs have better

estimation of the WCR at each PMP invocation� the over	
head introduced for such estimation and computation of
a new speed occurs very often that may overshadow the
bene�t of a potential voltage scaling�

Automatic target recognition (ATR)
The ATR application� does pattern matching of a target
in data frames 
images�� We experimented with 
�� ac	
tual data frames� The number of target detections in each
frame varies from zero to eight detections� A frame pro	
cessing time is proportional to the number of detections
within that frame� Each frame has a certain time interval
to be processed� In Figure �� the greedy scheme utilizing
hints consume less energy than the static scheme because
of dynamic slack reclamation�
Since the static scheme operates on a single speed through	

out a frame processing� As deadline increases� the system
load decreases and the processor operates on a discrete
lower performance level� This explains the step	like shape
of the normalized energy of the static scheme� The number
of steps increases in the Crusoe over the XScale model as
XScale has fewer performance levels to operate on� The
energy of the static power management may exceed the
no power management at full load due to the introduced
overhead of setting the speed once at the start of each
frame�
The overhead in the PMP	pcall scheme is high due to

the large number of called procedures in ATR� It is also
the case that most of the executed PMPs do not yield
to a speed change� and thus no energy saving is achieved
from these PMPs� Due to this overhead� the scheme may
consume more energy than the static scheme 
as in Fig	
ure �	b�� The PMP	placement scheme has close energy
consumption to our scheme�

�The code and data were provided by Northrop Grum	
man�Vanderbilt University
ISIS��
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Table �� The simplescalar con�guration
fetch width � inst�cycle decode width � inst�cycle
issue width � out of order commit width � inst�cycle
RUU size 
� inst LSQ size � inst
FUs � int� 
 int mult�divide� � fp 	 
 fp mult�divide
branch pred� bimododal� ���� table size
L
 D	cache �
� sets� ��byte block� �byte�block�
 cycle
L
 I	cache �
� sets� �� byte block� �byte�block�
 cycle
L� cache 
��� sets� ��byte block� �byte�block�
 cycle
memory 
� cycle hit� � bytes bus width
TLBs instruction�
� sets� ���� byte page 	 data��� sets� ����byte page

MPEG2 decoder
We collect timing information about the MPEG� decoder
using a training data set of six �les and test it on a set
of �� di�erent data �les� The scheme inserts PMHs in the
decoder�s code based on the pro�led information about
frames of the training set movies� We run experiments for
four di�erent frame rates� 
�� ��� �� and �� frame�sec�
Those correspond to deadlines ��� ��� ��� and 
� msec
per frame� In our experiments the deadlines were met
for each frame in the tested movies� Figure � shows the
results of the energy consumption for three of the test
movies for Transmeta and XScale� Similar to ATR re	
sults� our proposed scheme consumes less energy than the
other schemes�
The MPEG decoder code includes mainly a set of nested

loops� most of which have large variation in their execution
times� As a result� in our scheme� the number of executed
hints is much larger than the invoked PMPs� Hence the
WCR estimation is improved� In comparison with PMP	
placement technique 
replacing the hints with PMPs�� the
overhead increases which overshadows the gain of the few
extra speed adjustments� The PMP	pcall scheme has the
highest energy consumption due to the large number of
procedure calls within loops in this application�

Overhead of the scheme
Increasing the number of inserted instructions could have a
negative e�ect on the cache miss rate and the total number
of executed instructions� Both factors could degrade per	
formance� In our scheme� the e�ect of increasing the code
size on the instruction cache miss rate is minimal since
the inserted hint code is very small� There is no appre	
ciable increase in cache misses 
instruction and data� for
our benchmarks� For example in ATR� the absolute num	
ber of misses in the data cache increased by ������ level
two cache misses increased by ���
�� Instruction caches
misses increased by ���� however this increase is only ���
misses 
on average� which are most likely to be compulsory
misses� Hence we do not expect a negative e�ect on the
memory energy consumption due to our scheme�
A PMH takes 
� instructions to execute� while the ISR

takes 
�� instructions to compute and select a speed 
ex	
cluding the actual voltage change�� On the other hand�
the number of executed instructions is kept minimal by in	
voking the ISR 
PMP� at relatively large intervals 
ranges
from ��� to ��� Kcycle in the presented applications� and
avoiding the excessive insertion of PMHs� For example

in ATR application� for each interrupt interval� only ex	
tra ��� instructions are executed on average 
including all
executed PMHs and a PMP in this interval��� The total
increase in the number of executed instructions due to the
overhead is ����� for ATR and ����� for MPEG� This
code increase contributes to an increase in the number of
cycles that ranges between ��
�� to ���� for ATR and
���� to 
��� for MPEG� Note that the total overhead cy	
cles decreases by decreasing the processor frequency� This
is due to relatively decreasing the memory latency com	
pared to the CPU frequency�

6. RELATED WORK
There have been a number of research projects that

use DVS schemes to reduce the processor�s energy con	
sumption� Examples on work that implements DVS in
non time	critical applications include ��� ��� An operat	
ing system solution proposed in ���� periodically invokes
an interrupt that adjusts the processor speed in order to
maintain a desired performance goal� The OS keeps track
of the of the accumulated application�s instruction level
parallelism throughout the application execution time� In
���� the compiler identi�es program regions where the CPU
can be slowed down� The speed set in each region is based
on the expected time the CPU would wait for a memory
access� Work presented in �
�� selects the best supply volt	
age for each loop nest based on simulated energy consumed
in a loop nest� The voltage levels are set at compile time
for each region using an integer linear programming DVS
strategy�
Time restrictions in time	sensitive applications mandate

the processor to �nish the application�s execution before
its deadline� On the OS level� work in ��� determines a
voltage scheduling that changes the speed within the same
task�application based on task�s statistical behavior� The
work in �
�� modi�ed the EDF and RMS in RT	Linux to
incorporate voltage scheduling�
References �
�� �� 
�� deal with applying a compiler con	

trolled DVS in time	sensitive applications� Authors of �
��
introduced a dynamic voltage scaling technique that takes
place at the boundary of loop nests� In ��� the compiler in	
serts checkpoints at the start of each branch� loop� function
call� and normal segments� Each code segment initiated
with a checkpoint constitutes a node in a hierarchical CFG�
At each checkpoint encountered during runtime� informa	

�An inserted hint can be executed more than once in a
single interval� for example if placed inside a loop�
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Figure �� Average energy consumption normalized to the no power management scheme for ATR employing
the 
a� Transmeta Crusoe and 
b� Intel XScale processor models�
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Figure �� Average energy consumption normalized to the no power management scheme for the MPEG�
decoder employing 
a� Transmeta Crusoe and 
b� Intel XScale models�
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tion about the checkpoints along with pro�le information
is used to estimate the remaining cycle count and hence
compute a new frequency� Runtime overhead of updating
data structures and setting the new voltages are relatively
high especially on the constructed nodes granularity 
al	
most every basic block�� The authors proposed pruning
the hierarchical CFG to reduce the runtime overhead by
merging small execution and variation nodes� but it was
not clearly explained what nodes to merge� In �
��� each
basic block in the constructed CFG is augmented with its
worst	case execution along with the WCR till the end of
the program� �Branches in CFG that drop the remain	
ing worst case faster than the execution rates are selected
as locations to insert the speed change procedure�� The
speed update ratio is expressed in terms of the di�erence in
the remaining worst case cycles between the departed node
and its selected successor� However they did not mention
how to deal with procedure and function calls especially
when they are called from di�erent paths� the WCR cycles
of these procedures would be dependent on the path they
are called from�
There are several static and dynamic compiler techniques

for estimating the best and worst case execution times of
programs� A review of di�erent tools for estimating the
worst case execution time is presented in �

�� Some of
these tools use static analysis to produce a discrete worst
case bound� On the other hand� parametric analysis for
computing the worst case as in �
�� evaluates expressions
in terms of parameter variables carrying information about
some program segments� e�g�� worst case execution time of
loops is presented by symbolic formulas that are evaluated
at runtime when the number of loop iterations is deter	
mined�

7. CONCLUSION
In this paper� we presented a hybrid compiler	operating

system scheme for reducing the energy consumption of
time	sensitive embedded applications running on proces	
sors with dynamic voltage scaling� The operating system
periodically adapts processor performance based on the
dynamic behavior of an application� Information about
how the application is behaving is gathered through low
cost power management hints 
PMHs� inserted by the com	
piler in the application� We described our collaborative
scheme and its advantages over a purely compiler	based
approach� We also presented an algorithm for inserting
power management hints in an application code to collect
accurate timing information for the operating system� Fi	
nally� we presented results that show the e�ectiveness of
our scheme over other schemes that utilize PMPs alone�
Our results showed that our scheme is up to ��� better
than no power management and up to ��� better than
static power management on several embedded applica	
tions� Improvement over schemes that use only PMPs is
dependent on the PMP placement strategy�
We are currently implementing our techniques for timing

extraction and power management hint insertion in a post
link	time inter	procedural optimization framework�
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9. GLOSSARY OF USED ACRONYMS

ATR � Automatic target recognition

CFG � Control �ow graph

DVS � Dynamic Voltage scaling

ISR � Interrupt service routine
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PMH � Power management hint

PMP � Power management point

PPT � Procedure placement table 
for hint placement�

WCC � Worst	case execution cycles�

WCR � Worst case remaining cycles 
till the end of an
application�

p wcr � WCR at the start of a procedure instance�
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