
On the Side-Effects of Code Abstraction

Bjorn De Sutter
brdsutte@elis.ugent.be

Hans Vandierendonck
hvdieren@elis.ugent.be

Bruno De Bus
bdebus@elis.ugent.be

Koen De Bosschere
kdb@elis.ugent.be

Electronics and Information Systems (ELIS) Department
Ghent University, Sint-Pietersnieuwstraat 41

9000 Gent, Belgium

ABSTRACT
More and more devices contain computers with limited
amounts of memory. As a result, code compaction tech-
niques are gaining popularity, especially when they also im-
prove performance and power consumption, or at least not
degrade it. This paper quantifies the side-effects of code
abstraction on performance using extensive measurements
and simulations on the SPECint2000 benchmark suite and
some additional C++ programs. We show how to use profile
information in order to obtain almost all the code size re-
duction benefits of code abstraction, yet experience almost
none of its disadvantages.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration;compilers;optimization; E.4 [Coding and Infor-
mation Theory]: Data Compaction and Compression—
program representation

General Terms
Experimentation, Performance

Keywords
performance, code abstraction, code compaction

1. INTRODUCTION
More and more devices contain computers with limited

amounts of memory. Examples are PDAs, set top boxes,
wearables, mobile and embedded systems in general. The
limitations on memory size result from considerations such
as space, weight, power consumption and production cost.
As a result, the last decade has witnessed a growing research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00.

into the automated generation of smaller programs using
compaction and compression techniques.

As the field of program compaction and compression ma-
tures, side-effects of these techniques are more and more
taken into account. The goals for code compaction are grad-
ually shifting. Whereas reducing program size was for a long
time the main objective, the focus has now changed to re-
ducing program size while maintaining or even improving
performance and lowering power consumption.

Code abstraction is a technique by which a program frag-
ment that occurs multiple times in a program is abstracted
into a separate procedure. The original occurrences of the
fragment are replaced by a call to the abstracted procedure.
Code abstraction techniques have proven very efficient in
reducing code sizes of programs in general, and of C++
programs in particular, leading to code size reductions of up
to 35% and more [9].

Unfortunately, code abstraction also introduces a signif-
icant amount of run-time overhead: more instructions will
be executed, in particular more procedure calls and returns.
This influences performance-related design criteria such as
instruction counts and instruction cache hit rates. As a re-
sult, embedded system developers in practice often discard
code abstraction because design criteria like performance
and power consumption are even more important than code
size.

In this paper we present the first extensive empirical study
of the side-effect of code abstraction. With this study, we
refute the performance-related arguments for not applying
code abstraction. We discuss and extensively quantify the
side-effects of code abstraction on execution speed, instruc-
tion cache behavior, code schedule quality and branch pre-
diction. Previously we suggested to avoid performance degra-
dation by using profile information while still obtaining sig-
nificant code size reductions [9]. The main contribution of
this paper is the rigid validation of that suggestion.

2. CODE ABSTRACTION
Code abstraction is the replacement of a multiple occur-

ring code fragment by a single copy. The latter forms the
body of a new procedure, and each original occurrence of
the fragment is replaced by a call to that procedure. This
technique can be seen as the inverse of inlining.

244

In general, code abstraction techniques consist of three
tightly connected phases:

1. First of all, multiple occurring code fragments need
to be detected. While one can chose to detect only
truly identical code fragments, most detection algo-
rithms are able to detect functionally equivalent code
fragments that are not identical. The most complex
algorithms even detect fragments that are not func-
tionally equivalent, but which can be made equivalent
by parameterization.

2. For functionally equivalent but non-identical code frag-
ments, it might be necessary to apply transformations
that enable the abstraction of the fragments. The most
common such transformations are register renaming,
code rescheduling and parameterization.

3. Once abstractable fragments are detected or created,
they must actually be abstracted.

In this paper, we do not discuss the detection phase of
abstraction techniques. In fact we never delve into the tech-
nical details of any specific abstraction technique. For those
interested in detailed discussions, a number of references can
be found in Section 5. In this paper we focus on the con-
ceptual program transformations that are involved in code
abstraction, and their effects on program behavior.

Note that we so far have only spoken about code frag-
ments, and not, e.g., about code sequences. The discussion
in this section is mostly orthogonal to the type of the ab-
stracted code fragment. Examples of fragments might be
basic blocks, subblock instruction sequences, groups of ba-
sic blocks, procedures, etc.

We consider two basic forms of code abstraction: simple
abstraction, that does not involve additional parameters,
and parametrized abstraction.

2.1 Simple Abstraction
Simple abstraction applies to code fragments that are func-

tionally equivalent, i.e. code fragments that perform the
same computations. How these computations are performed
may differ however: the order of the computations might be
different, source and destination operands might be differ-
ent, temporary results might be stored in different locations,
etc.

Consider the program fragment in Figure 1(a). To ease
the discussion, we assume that all boxes in this figure repre-
sent basic blocks, and we assume that the two labeled blocks
A and B are functionally equivalent.

In Figure 1(b), A and B have been abstracted into a pro-
cedure consisting of the single block AB. In order to do so,
we might have to insert four other blocks in the graphs, for
the following reasons:

• As the abstracted block AB is put in a new, separate
procedure, blocks A’ and B’ at least contain the call in-
structions to call the new procedure. To return, block
AB ends with a newly inserted return instruction.

• The control flow transfer instructions at the end of A

and B are put at the continuation points of the inserted
calls, i.e. in A* and B*. These blocks might be empty in
case A or B did not end with a control flow transfer, or
in case they ended with a return that can be eliminated
with tail-call optimization.

(a) Before abstraction

(b) After simple abstraction

Figure 1: Example code fragment for simple ab-
straction.

• As AB is executed in two different contexts, it might
experience more register pressure than A or B sepa-
rately. To abstract it, some spill code might need to
be inserted in any of the newly created blocks.

• While we assumed that A and B perform equivalent
computations, these do not necessarily operate on the
same data. So it might be necessary to add additional
code in A’, B’, A* and/or B* to move data consumed
or produced in AB into the right operand or location.

Furthermore, as AB is supposed to perform at least the
computations of A and B, AB will contain at least as many
instructions as the larger of A and B.

A very similar discussion holds for all other types of code
fragments that can be abstracted without parameterization.

2.2 Parametrized Abstraction
Simple abstraction is typically used for program fragments

that provide equivalent functionality in different contexts.
In some case however, the opposite occurs: almost similar
program fragments differ only very locally. An example is
depicted in Figure 2(a). Assume the two code fragments

245

(a) Before abstraction

(b) After parametrized abstraction

Figure 2: Example code fragment for parametrized
abstraction.

have the same structure, and all the basic blocks are pair-
wise equal, except for blocks C and G.

In such a case, we could apply simple abstraction on all
three pairs of identical blocks. That would result in a high
run-time overhead however.

Another option is parametrized abstraction, which is de-
picted in Figure 2(b). The two code fragments are merged
and abstracted into a new procedure that takes an addi-
tional parameter. This parameter is set just prior to the
calls that replace the original fragments (in blocks A’ and
E’). The parameter is tested in a newly inserted block (T)
in the merged procedure to decide which of the alternatives
(C or G) has to be executed.

Apart from setting and testing the parameter, other addi-
tional operations that might be inserted to perform parame-
trized abstraction are of the same nature as those inserted
for simple abstraction.

3. EFFECTS ON PERFORMANCE
In this section, performance-related side-effects of code

abstraction are discussed.

3.1 Effects on Dynamic Instruction Counts
Following the discussion in section 2, it is clear that more

instructions will be executed when code has been abstracted.

Looking back at Figure 1, the procedure calls in blocks
A’ and B’ are an unavoidable run-time overhead, as is the
return instruction in AB (except when tail-call optimization
is possible). Other possible run-time overhead, depending
on the details of the abstraction techniques used, are all
other instructions in AB, A’, B’, A* and B* that were inserted
in order to enable the abstraction of similar code fragments.

3.2 Effects on Cache Behavior
While the number of executed instructions can only in-

crease as a result of code abstraction, the effects on instruc-
tion cache behavior are not that straightforward.

To get some insight into the possible effects on instruc-
tion cache behavior, we consider the effect on the size of
the hot code in a program. This is the frequently executed
code. The link between the two is as follows: if more code is
hot, cache pressure will be higher, and cache behavior will
degrade if the cache is too small.

Consider the abstraction example of Figure 1 again. If
blocks A and B are both hot, all the named blocks in Fig-
ure 1(b) are hot, and the number of hot instructions has
decreased after abstraction. If only one of A and B are hot
however, the hot code size has increased. And in the case
no blocks are hot, the hot code size stays zero. It is clear
that the hot code size, and accordingly the cache pressure,
can either increase or decrease, depending on the execution
counts of the code fragments abstracted.

Moreover, when considering hot code size in the decision
to include or exclude some fragment from a group of identi-
cal fragments to be abstracted, one clearly needs to consider
the execution counts of all involved code fragments, and not
just the execution count of the fragment under considera-
tion. In the example of Figure 1, whether the abstraction of
block A will increase the cache pressure or not depends on
the execution frequency of block B.

It is obvious that taking the precise effect on hot code size
into account to guide the abstraction decision process will
complicate that process significantly. And this will only get
worse if more accurate and more subtle measures than the
hot code size are taken into account to minimize the number
of instruction cache misses.

Code abstraction can also influence instruction cache be-
havior through its indirect effects on code layout. Abstracted
code is connected to more than one (calling) context in the
whole-program control flow graph. It replaces identical code
fragments that were connected to a single context in the
graph. In the latter case, the different occurrences and their
contexts are usually layed out in memory to optimize spa-
tial locality. This is much more difficult after abstraction
has taken place and as a result, depending on the code lay-
out algorithm used, the number of instruction cache misses
can increase significantly.

3.3 Effects on Branch Prediction
It is obvious that all forms of abstraction come with ad-

ditional control flow transfers. While most of them, such as
the procedure calls and returns, are ideally suited for branch
prediction, all of them occupy space in the branch prediction
tables. As a result of the increasing pressure on these tables,
performance can degrade. This effect will be most outspo-
ken for the return address stack predictions: the number of
return addresses that can be stored on this stack is often
very small.

246

On the other hand, conditional branches in procedures
that are abstracted with or without parameterization, are
merged into a single conditional branch, thus decreasing the
number of branches that need to be stored in the prediction
tables. Of course, the merged branches might not be as
easily predictable as their original occurrences.

The influence on branch prediction is therefore not easily
determinable.

3.4 Effects on Code Schedule
In general, code abstraction will introduce relatively more

control flow transfers than other operations. As a result,
the average size of basic blocks decreases, and it becomes
more difficult to schedule the code efficiently. As a result,
pipeline usage will be worse on RISC and CISC processors,
and instruction slots will be less filled on VLIW processors.

Other effects can play as well, such as the grouping of
certain kinds of instructions. A typical example of this
is the factoring of procedure prologues/epilogues. These
code sequences typically consist of a sequence of register
stores/restores, to spill callee-saved registers to the stack.
Such sequences are excellent candidates for abstraction: they
occur frequently and are cheap to detect, as they occur
at easily identifiable locations: procedure entry and return
points.

In compiler-generated instruction schedules, the prologue
and epilogue will be scheduled in between the code of the
procedure body. In order to abstract the prologues/epilogues,
they need to be separated from the procedure bodies how-
ever. This results in abstracted prologues/epilogues that
consist of store/load instruction sequences that will almost
never lead to efficient instruction schedules.

4. EXPERIMENTAL EVALUATION
To quantify the side-effects described in the previous sec-

tion, we’ve compiled the whole SPECint2000 benchmark
suite [20] and three additional C++ programs with the ven-
dor-supplied compilers for the Alpha Tru64 Unix 5.1 plat-
form, and we’ve compacted all binaries with Squeeze++.

The reason we added the C++ programs to the suite is
that C++ programs are often better candidates for code ab-
straction. As discussed and evaluated in [9], they contain a
lot more multiple occurring code fragments, especially when
a lot of templates are used. The SPECint2000 programs
(who’s name begins with a number) are all C programs, ex-
cept 252.eon which is a C++ program as well. The other
C++ programs are lcom (a hardware description language
compiler), fpt (a mixed C/C++ program that parallelizes
Fortran and translates it into High Performance Fortran
code) and LyX (a WYSIWYG word processor). lcom uses no
C++ templates at all. 252.eon and fpt use a rather small
amount of templates, and the LyX code consists for the most
part of template code.

While these benchmarks are not typical for the embedded
world, we think there are some good reasons for using them.
First of all, we want to use benchmarks that resemble future
embedded applications. Today it is very hard to find embed-
ded applications written in C++. Yet one of the ultimate
goals of program compaction research is to enable the use of
higher level programming languages for embedded systems.
Therefore we included the C++ benchmarks.

Also, we opted for the SPECint2000 benchmark suite,
rather than, e.g., MediaBench or MiBench programs, be-

cause the SPECint2000 programs come with well-studied
training and reference input data sets. These are engineered
to avoid tainting evaluation results with the use of profile
input data that is either not at all representative of, or too
resembling to the input data used for the actual measure-
ments. The SPECint2000 input sets incorporate the fact
that it is not always possible to guarantee the representa-
tiveness of profile data.

4.1 Squeeze++
The code abstraction techniques whose side-effects are

studied in this paper have been implemented in Squeeze++,
a link-time binary rewriter aimed at program compaction.
The compaction techniques implemented in Squeeze++ are
two-fold:

1. Whole-program analyses and optimizations, including
liveness analysis, constant propagation, useless and
unreachable code elimination, dead data elimination,
profile-guided code layout, etc. [10, 11].

2. A range of code abstraction techniques [9] on differ-
ent types of program fragments. The most important
types of abstracted program fragments are:

• whole procedures — Of two or more identical pro-
cedures, all but one are eliminated. This fre-
quently occurs for template instantiations, be-
cause different instances at the source code can
result in identical instances at the assembly level.
Often however, procedures will be almost identi-
cal, with very local differences only. In such cases,
Squeeze++ tries to abstract the procedures using
parameterization.

• whole basic blocks — Identical and functionally
equivalent whole basic blocks are abstracted. Reg-
ister renaming and adding spill code are the only
transformations applied in order to create abstrac-
table blocks. Renaming registers is done by in-
serting the necessary copy operations before and
after the blocks to be abstracted. In Figure 1(b),
such copy instructions would show up in blocks
A’, B’, A* and B*. Spill code is only inserted in
those same blocks, and it must be said that regis-
ters are not spilled to the stack, but rather to oth-
erwise unused registers. As such, this spill code
consists of copy operations as well. A copy elimi-
nation optimization phase follows the abstraction
of basic blocks in Squeeze++ to eliminate some
of the inserted copy operations.

• procedure prologues and epilogues — As discussed
in section 3.4, procedure prologues and epilogues
are good candidates for abstraction.

• subblock instruction sequences — General sub-
block instruction sequences are abstracted as well.
As the search space for general instruction se-
quences is potentially extremely large, their ab-
straction in Squeeze++ is limited to mostly iden-
tical sequences. No rescheduling is tried, and reg-
ister renaming is very limited.

More details on these techniques can be found in [9].
Given the possible negative side-effects of code abstrac-

tion on performance, we adapted Squeeze++ to limit all

247

(a) code size reduction

(b) slowdown

Figure 3: Code size reductions and program slowdown obtained with full abstraction and profile-guided
abstraction.

code abstraction techniques that involve run-time overhead
to cold code only.1 Using different options for Squeeze++,
five versions of the binaries were generated:

• No abstraction techniques at all were applied for the
basic versions of the binaries used for comparison.

• In full mode, all abstraction techniques are applied,
without taking profile information into account.

• Three versions are produced with the profile-guided
mode, in which basic block counts are used to differ-
entiate between hot and cold code and for which three
different hot/cold thresholds were used. A threshold
of 90% means that the most frequently executed basic
blocks that account for 90% of the dynamic instruction
count are considered hot. These blocks are excluded

1In this mode, only the abstraction of whole identical pro-
cedures is applied on hot code.

from abstraction. Using different thresholds of 90, 95,
and 99%, we had Squeeze++ generate three different
versions of the programs (named cool, cold, and freez-
ing).

The fact that all binaries are generated with Squeeze++
assures that the same compiler back-end is used (same sched-
uler, same code layout algorithm, etc.) and thus assures a
fair comparison between different versions of the binaries.

The basic block counts were obtained using the training
data sets of the SPECint2000 benchmark and small input
files for the additional C++ benchmarks. These input data
differ considerably from the input data we used to measure
the effects on performance. For those measurements, we
used the reference data inputs of the SPECint2000 bench-
marks, and larger input files for the C++ benchmarks.

248

4.2 Code Size Reductions
In Figure 3(a) we have depicted the code size reductions

we obtained with full and profile-guided abstraction. In gen-
eral, the obtained code size reductions are modest. It is only
when templates are used in C++ programs that really high
reductions are obtained. On average the size of our bench-
mark programs is reduced with about 10%. For a lot of C
programs, this is merely 5%.

The importance of the bars in Figure 3(a) lays in the fact
that profile-guided abstraction results in almost the same
code size reduction as full abstraction. There are two rea-
sons for this. The main reason is that according to the
conventional wisdom of the 10/90 rule, a very small fraction
of the code is usually responsible for a high fraction of the
dynamic instruction count.

On top of that comes a more subtle effect, related to the
trade-off between optimization and code abstraction. Op-
timization is closely related to specialization, and the more
some code fragment is specialized for its (important) exe-
cution contexts, the less likely will other identical or func-
tionally equivalent code fragments be found. Programmers
optimize the hot code in their programs. Whereas they
might be using some generic template container class from
the C++ Standard Template Library to store cold data,
they will often use customized, self-written container classes
for hot data. Likewise, hot loop bodies are less likely to
contain procedure calls, as programmers try to avoid the
performance degradation they cause.

As a result of these algorithmic and source code level opti-
mizations by the programmer, relatively fewer abstractable
code fragments are found in hot code than in cold code.

4.3 Execution Speed
All generated binaries were executed on a lightly loaded

dual 667 MHz Alpha 21264 EV67 machine running Compaq
Tru64 Unix 5.1. The 4-way superscalar processors each have
a split four-way associative L1 data and instruction cache of
64KB and a unified L2 cache of 2MB. The main memory is
2.5 GB large.

The execution slowdown caused by full and profile-guided
abstraction is shown in Figure 3(b). Full code abstraction
results in significant slowdowns. On average, it is about
15%. For some programs however, it is more than 30%.

The slowdown caused by profile-guided abstraction is much
lower however. On average, it is less than 1% and the maxi-
mal slowdown observed is around 8% for a threshold of 90%,
and as small as 3% when only freezing code is abstracted.

Note that for some benchmarks, profile-guided code ab-
straction seems to result in a speed-up instead of a slow-
down, which is at first sight counter-intuitive. These ob-
served speedups relate to non-determinism in the quality of
the generated code schedules. On the Alpha processor we
used for our experiments, the execution time of an instruc-
tion sequence depends on its alignment. As Squeeze++ is a
compaction tool, it normally does not insert no-ops to opti-
mize code alignment. The alignment of the hot code there-
fore is not very deterministic, and execution times can sig-
nificantly vary, even if no really hot code fragments are ab-
stracted. While we have adapted Squeeze++ to insert a very
limited amount of no-ops to avoid this non-determinism, we
have not been able to avoid it completely. Depending on
the heuristics used to insert no-ops, there were always some
benchmarks for which this effect occurred.

Figure 4: Increase of the dynamic instruction count
resulting from code abstraction.

4.4 Dynamic Instruction Counts
and Code Schedules

Figure 4 depicts dynamic instruction counts relative to the
counts of the unabstracted program versions. These instruc-
tion counts were measured with the SimpleScalar simulation
toolset [4]. Because of the extremely long simulation time,
only part of the reference input data was used for the SPEC
programs. Still, the simulations range from 4G instructions
for fpt to 132G instructions for 252.eon.

While the dynamic instruction counts for the fully ab-
stracted programs show a strong correlation with the slow-
downs observed, the slowdowns are much higher than the
increases in executed instructions.

This is caused by the type of the instructions that are
inserted during code abstraction. These additional instruc-
tions are mostly branches, which causes the number of in-
structions per basic block to decrease significantly. This is
shown in Figure 5. For each benchmark, the basic block size
when no abstraction is applied is shown between brackets.
The basic block size is decreased with up to 28%, which sig-
nificantly impacts both the compiler and the processor. The
compiler is hampered to generate a good code schedule, as it
cannot re-order instructions easily across control transfers.
The processor suffers from additional control stalls and has
a harder time to exploit instruction level parallelism, as the
scheduler already did a worse job.

The strong increase in branch instructions alone does not
fully explain the difference between the increase in execution
time and the increase in dynamic instruction count. In the
next sections we show that code abstraction also leads to an
unproportionally large increase in instruction cache misses
and branch mispredictions.

Figures 4 and 5 confirm that limiting the code abstraction
to cold code can avoid most of the overhead that comes with
code abstraction. As with some of the execution measure-
ments, the instruction count decrease observed for 255.vor-
tex results from the insertion and execution of no-ops to
align the hottest code.

249

Figure 6: Increase in the number of instruction cache misses for 5 benchmarks.

Figure 5: Reduction in the number of instructions
per basic block resulting from code abstraction.

4.5 Instruction Cache Behavior
With the SimpleScalar toolset we also measured the num-

ber of level 1 instruction cache misses for all versions of five
benchmarks. To get representative numbers that do not de-
pend on any single cache organization, we have simulated
direct-mapped, 2-way and 4-way set associative caches of
different sizes. Because of space concerns however, Figure 6
only depicts the increase in the number of instruction cache
misses for 2-way set-associative caches.2 For other configu-
rations, the results were along similar lines. In all simula-
tions the cache line width was set to 64 bytes. Also, it is

2For caches of 16K and larger, the number of instruction
caches misses for 252.eon was too small to be significant.
We have therefore not included those numbers in the chart.

important to note that we used a close variant on the Pet-
tis and Hansen profile-guided algorithm to determine code
layout [19]. This, together with the fact that we checked
the results for numerous cache configurations, guarantees
that the presented cache miss numbers are not the result
of random code layout or cache configuration anomalies, as
discussed in [3].

Note that all depicted increases in instruction cache misses
for a cache configuration are relative to the number of misses
for the program without abstraction executed on that same
configuration. In other words, the depicted results do not at
all allow to compare the performance of the different cache
configurations.

As can be seen from Figure 6, code abstraction can re-
sult in a significantly increased number of instruction cache
misses. The main reason is the increase of the hot code size
when hot code is abstracted together with cold code. For
very small caches, most of this can be avoided by limiting
the code abstraction to cold code only. The one impor-
tant result from this graph is that, unlike what we’ve seen
for instruction counts or execution speeds, the move to the
“freezing” version seems to be worthwhile not only for some
programs, but also on average.

4.6 Branch Prediction
In order to quantify the effect of abstraction on return

address prediction, we have simulated five benchmarks on
architectures with return address stacks (RAS) of 4, 8 and
12 elements. For all of these benchmarks, the number of
misses with 12-element stacks was insignificant. Therefore
Figure 7(a) only shows the increase in the number of misses
for tables with 4 or 8 elements. As can be seen, return
address prediction suffers heavily from full abstraction, with
increases in the number of misses of up to 180%. As the
stack becomes larger, the negative effect of code abstraction
diminishes, as the stack is large enough to also predict the
additional returns. Note that for 252.eon, even the very
small stack suffices to predict almost all the return addresses.
The reason is that all versions of 252.eon show very flat

250

(a) return address prediction misses

(b) branch direction prediction misses

Figure 7: Increase in the number of missed predictions resulting from full abstraction and profile-guided
abstraction.

procedure stack traces. For the other benchmarks, most of
the degradation can be avoided by limiting the abstraction
to cold code only however.

The influence on conditional branch prediction is quanti-
fied in Figure 7(b). Again, to get results that are not tied
to one particular organization, we have simulated hybrid
branch predictors consisting of 128, 1024 and 8192-entry bi-
modal and meta-predictors and 256, 2048 and 16384-entry
gshare predictors. Conditional branch prediction proves not
to be as sensitive to code abstraction as the RAS, and also
not as straightforward. A first reason for the latter is that,
due to the variations in code layout, correlating branches
are mapped to the same entries in the predictor when using
one code layout (i.e. one abstraction threshold) but not in
another. This is the same cause of small variations in the
instruction cache misses. A second reason is that sometimes
the branches that are abstracted together are correlated and
sometimes they are not. In 252.vortex they were not. The
third reason is that the branches inserted for parameteriza-
tion can also be or not be well predictable. In 252.eon and
fpt, a relatively high number of conditional branches was in-

serted for parameterization. For fpt, these proved to be very
well predictable, but for 252.eon this is clearly not the case.
In cases such as 252.eon and 255.vortex, limiting the ab-
straction to cold code again severely limits the experienced
performance degradation.

Finally, we want to note that there is no need to study the
branch target buffer miss rates. As all calls to abstracted
procedures are encoded as direct calls, code abstraction does
not impact the number of indirect, unconditional non-RAS
branches.

5. RELATED WORK

5.1 Code Abstraction
Most of the previous work on code abstraction to yield

smaller executables treats an executable program as a simple
linear sequence of instructions [2, 7, 13]. They use suffix
trees to identify repeated instructions in the program and
abstract them into procedures. The size reductions they
report are modest, averaging about 4–7%.

251

In contrast, our previous work on code abstraction [9,
11] works on control flow graphs, and it considers differ-
ent granularities of program fragments, such as instruction
sequences, basic blocks or procedures.

Chen et al. [5] study the compaction of single-entry
multiple-exit regions. Instead of using abstraction, they use
tail-merging and parameterization to avoid run-time over-
head. No run-time overhead measurements are presented
however, and neither are code size reductions for whole pro-
grams.

Clausen et al. [6] applied minor modifications to the Java
Virtual Machine to allow it to decode macros that combine
frequently recurring bytecode instruction sequences. They
report code size reductions of 15% on average.

Fraser and Proebsting [14] look for repeated patterns in
the intermediate program representation used by the com-
piler. Frequently occurring so called super-operators are de-
tected and used to extend an interpretable code, for which
the program is compiled and an interpreter is generated.
They report an average code size reduction of 50%, albeit
with an undesirable large impact on execution speed. Evans
and Fraser [12] further propose compact encodings for inter-
preted programs, based on transformations of the grammar
of the interpreted language.

In a totally different computer science field, that of soft-
ware engineering, code duplication detection has been stud-
ied to measure (and improve) the quality of software. Komon-
door and Horwitz [16] and Krinke [17] describe slice-based
approaches to detect duplicated code fragments of all pos-
sible kinds and shapes. These fragments are not necessarily
candidates for abstraction or tail-merging however.

5.2 Relation with Inlining
Code abstraction is the inverse operation of inlining, and

as such, it is sometimes called outlining. It is therefore no
surprise that there are similarities between the findings of
this paper and the conclusions of research into inlining.

Possible advantages of inlining include the elimination of
procedure calls and code to implement calling conventions,
the possible optimization of the inlined callee in the context
of the caller, and the optimization of the caller around the
inlined callee. Inlining, because of the duplication of code,
can also result in more opportunities to exploit spatial lo-
cality during code layout. As a result, inlining can result in
significant speedups [1].

These advantages correspond to the most important dis-
advantages of code abstraction. Code abstraction involves
additional control flow, in particular procedure calls and re-
turns. While abstracted procedures do not need to adhere to
calling conventions (since their callers are all known at ab-
straction time), the actual abstraction most often involves
the insertion of copy operations or parameter settings to al-
low the actual abstraction, as discussed in section 2. Also,
the optimization of inlined procedure bodies is the inverse
of the insertion of conditional branches during parameteri-
zation.

The main drawback of inlining, when applied blindly, is
code growth because of the code duplication. If the result of
inlining is that the size of the working set exceeds the size
of the instruction cache during program execution, perfor-
mance can suffer. Therefore most research into inlining fo-
cuses on maximizing the inlining benefits under limited code
growth constraints [15]. For profile-guided techniques [18],

that only inline procedures at frequently executed call-sites,
limiting the code growth is equivalent to limiting the growth
of the hot code.

Sometimes however, because of the optimizations that in-
lining allows, inlining can actually reduce the (hot) code
size [8]. This is trivially so when procedures with only one
(hot) call-site are inlined, or when the body of an inlined
procedure is smaller than the code needed for implementing
the call and return. While these trivial case have no cor-
responding case for code abstraction, we similarly noticed
that code abstraction, if applied blindly, can result in an
increased hot code size.

Whereas most inlining techniques try to balance between
code growth and program optimization, we have opted to
completely abandon the abstraction of hot code in our profile-
guided approach. Given the disadvantages of abstracting
hot code as discussed in sections 4.4, and the fact that the
results in section 4.2 show that we should not expect signifi-
cant code size reductions of abstracting hot code, we believe
there is no need to try more complex schemes.

6. CONCLUSIONS
We have shown that blindly applying code abstraction

can reduce program sizes significantly. Often however, a
high price is payed on almost all performance criteria. We
quantified this price for execution time (15% average slow-
down), instruction cache misses (on average 30-50% more
misses), instruction counts (8-17% increases), code schedule
quality (up to 28% less instructions per basic block) and
branch prediction (on average 2 times more return address
mispredictions for small return address stacks).

Results were also presented that prove that having the
code abstraction guided by a very simple form of profile in-
formation, namely basic block counts, suffices to obtain al-
most all the code size reduction benefits of code abstraction,
yet experience almost none of its disadvantages.

While the exact numerical results depend on the target
platform and the specific details of the used abstraction al-
gorithms, this study gives a very good indication of the per-
formance degradation one can expect from code abstraction,
and more importantly, how it can easily be avoided.

Acknowledgement
Bjorn De Sutter, a post-doc research Fellow of the Fund
for Scientific Research - Flanders (FWO), is grateful for
their support. Hans Vandierendonck and Bruno De Bus
are supported by the Flemish Institute for the Promotion of
Scientific-Technological Research in the Industry (IWT).

7. REFERENCES
[1] A. Ayers, R. Schooler, and R. Gottlieb. Aggressive

inlining. In Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 134–145, 1997.

[2] B. S. Baker and U. Manber. Deducing similarities in
Java sources from bytecodes. In USENIX Annual
Technical Conference, pages 179–190, June 1998.

[3] J. P. Bradford and R. Quong. An empirical study on
how program layout affects cache miss rates. ACM
SIGMETRICS Performance Evaluation Review,
27(3):28–42, 1999.

252

[4] D. Burger, T. M. Austin, and S. Bennett. Evaluating
future microprocessors: The SimpleScalar tool set.
Technical report, Computer Sciences Department,
University of Wisconsin-Madison, July 1996.

[5] W.-K. Chen, R. Gupta, and B. Li. Code compaction
of matching single-entry multiple-exit regions. In
Proceedings of the the 10th Annual International
Static Analysis Symposium, June 2003. To appear.

[6] L. Clausen, U. Schultz, C. Consel, and G. Muller. Java
bytecode compression for low-end embedded systems.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 22(3):471–489, 2000.

[7] K. Cooper and N. McIntosh. Enhanced code
compression for embedded RISC processors. In
Proceedings of the 1999 ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI), pages 139–149, 1999.

[8] K. D. Cooper, M. W. Hall, and L. Torczon.
Unexpected side effects of inline substitution: a case
study. ACM Letters on Programming Languages and
Systems (LOPLAS), 1(1):22–32, 1992.

[9] B. De Sutter, B. De Bus, and K. De Bosschere. Sifting
out the mud: Low level c++ code reuse. In
Proceedings of the 2002 ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 275–291, 2002.

[10] B. De Sutter, B. De Bus, K. De Bosschere, and
S. Debray. Combining global code and data
compaction. In Proceedings of the 2001 ACM
SIGPLAN Workshop on languages, compilers and
tools for embedded systems (LCTES), pages 29–38,
2001.

[11] S. Debray, W. Evans, R. Muth, and B. De Sutter.
Compiler techniques for code compaction. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 22(2):378–415, 2000.

[12] W. Evans and C. Fraser. Bytecode compression via
profiled grammar rewriting. In Proceedings of the 2001
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
148–155, 2001.

[13] C. Fraser, E. Myers, and A. Wendt. Analyzing and
compressing assembly code. In Proceedings of the 1984
ACM Symposium on Compiler Construction, pages
117–121, 1984.

[14] C. Fraser and T. Proebsting. Custom instruction sets
for code compression.
http://research.microsoft.com/˜toddpro, 1995.

[15] O. Kaser and C. Ramakrishnan. Evaluating inlining
techniques. Computer Languages, 24:55–72, 1998.

[16] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In Proceedings of
the 8th Static Analysis Symposium (SAS), 2001.

[17] J. Krinke. Identifying similar code with program
dependence graphs. In Proceedings of the 8th Working
Conference on Reverse Engineering, pages 301–309,
2001.

[18] R. Leupers and P. Marwedel. Function inlining under
code size constraints for embedded processors. In
Proceedings of the 1999 IEEE/ACM International
Conference on Computer-aided Design, pages 253–256,
1999.

[19] K. Pettis and R. Hansen. Profile-guided code
positioning. In Proceedings of the 1995 ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 16–27,
1995.

[20] http://www.spec.org.

253

