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ABSTRACT
This paper describes a dynamic memory scheduler IP that is
suitable for FPGA implementation. It is targeted at high-end
multimedia applications with different access patterns. Results
with a realistic application configuration demonstrate 90% of
maximum memory bandwidth utilization. The scheduler IP is
flexible enough to be used in other applications.

1. INTRODUCTION
Dynamic RAM memories are important components in multime-
dia and embedded systems. They are used to store routing tables
in network processors or large frames in multimedia and video
applications. In high-end applications, such as HDTV or elec-
tronic motion pictures, memory cost and bandwidth are critical.
High resolution applications, widely used in motion picture and
advertising industries require up to 2K1 resolutions that trans-
late to a data-rate of 2.1 Gbit per second and channel [2], [1].
The very high end of digital cinema (D-Cinema) applications
have grown in importance over the last couple of years with a
brilliant resolution of 4K per frame [3] and even higher resolu-
tions are to be expected in the future. Real-time processing, such
as filtering for up-/and down-scaling, color keying, compression
or trick effects at this data rate and precision is beyond the scope
of today’s workstations and single DSP processors. The market
volume for such systems is very small, so ASICs are not eco-
nomically viable and therefore not an option. Two approaches
remain:

• using parallel DSP processors with interleaved memory ac-
cess,

• using large FPGAs for highly regular algorithms extended
by DSP processors for less regular applications.

The first option requires many powerful DSPs to achieve the de-
sired results, which leads to complex and expensive systems. The
second option explores the fact that today FPGAs have a very
large amount of logic that can implement multiple arithmetic
operations per clock-cycle. FPGAs can be used to implement
the more regular (less control intensive) parts of the image pro-
cessing algorithms, leaving the more control intensive parts to
be implemented on DSPs. We followed this second philosophy

1This resolution means 2048x1556 pixels per frame at 30
bit/pixel and 24 pictures/s resulting in 11.4 Mbytes memory re-
quirements per frame

Figure 1: Flexible image processing platform

in a previous work when we developed the FPGA-centric archi-
tecture for a commercial HDTV mixer application. The archi-
tecture used is shown in Figure 1. To solve the memory access
bottleneck of this kind of application, a specialized low-latency
memory scheduler was developed [6] which uses short burst ac-
cesses that enable a 70% SDRAM bandwidth utilization. It was
implemented on a V irtexI r FPGA.

However, to achieve higher resolutions and to be able to imple-
ment even more complex algorithms, we propose to extend our
previous approach by making the memory controller stream type
aware. A closer look reveals that three distinct types of accesses
have to be served:

• hard real-time data streams with constant throughput. The
input and output image streams are strictly periodic and
must not lose any pixel data.

• data streams with hard real-time throughput and fixed pe-
riodic access patterns. These streams are found at the in-
terface to the hardware accelerators attached to the FPGA.

• a best effort access with a minimum latency cost function.
The DSP accesses the memory in case of cache misses or
DMA access. This access should be served with minimum
latency to minimize stall times. Best effort is typically
sufficient.

In this paper, we present a parameterized dynamic RAM schedul-
ing IP that covers multiple stream types and scheduling strate-



gies. After a concise introduction to related work, the memory
scheduler IP is described in section 3. The IP, and all other parts,
are modeled using SystemC with a transaction based modeling
style. This is explained in section 4. Using a realistic application
mix, we demonstrate improved performance of more than 90%
maximum bandwidth in section 5. The paper concludes with a
summary and an outlook on future work.

2. RELATED WORK
The Imagine processor [11] uses a configurable memory sched-
uler [10], optimized for the application algorithms that run on
the processor. The scheduler is adapted to a specific application
and does not distinguish different stream types (hard-real time
vs. soft-real-time). The Prophid architecture [7] by Meerbergen
et al. describes a dynamic RAM scheduler for the Prophid DSP
platform that is focused on streams using large FIFO buffers
and round-robin scheduling. The group of UCI [5] provides opti-
mization heuristics for known memory access patterns of a single
processor. Finally, Sonics offers a memory scheduler IP [4] for
their specific TDMA bus protocol.

3. ARCHITECTURE
Our main design goal was to reach maximum memory bandwidth
for different access sequence types running in parallel. As ex-
plained in the introduction, the maximum bandwidth objective
is a contradictory objective to the minimum latency requirement
for the DSP. On the other hand, real-time stream accesses can
be guaranteed by bounding the maximum latency time.

The only way to obtain low latency times is to minimize the
memory access burst length. Short bursts, however, increase
memory access overhead. This can be reduced by using several
memory banks interleaving bank access. Therefore, the two con-
cerns, memory bandwidth optimization at low latency and access
scheduling are separated and controlled by two distinct sched-
ulers, a Bank Scheduler and a Request Scheduler. The Bank
Scheduler has a known maximum latency time, and the Request
Scheduler can serve both low latency and real-time requests, such
that the chain of both schedulers can serve access sequences with
low latency objectives and, at the same time, access sequences
with hard real-time requirements.

Our proposed architecture is shown in Figure 2. The controller
uses the auto-precharge mode for accessing the SDRAM, which
means that a bank gets automatically precharged after an access.
This results in deterministic bank throughput and access latency
which is needed for a global performance analysis.

3.1 Bank Scheduler
The first scheduler, the Bank Scheduler, is responsible for bank
scheduling to achieve high throughput and, together with the
access controller, for SDRAM access command issuing. In or-
der to increase bandwidth utilization, two aspects have to be
considered: bank interleaving and request bundling.

Bank interleaving is used to increase bandwidth utilization. Ta-
ble 1 shows that for bl = 4, one access takes 4 clock cycles, fol-
lowed by 4 to 6 (read, trp + trcd) or 6 to 9 (write, twr + trp + trcd)
clock cycles of inactivity, respectively. Thus, with bank inter-
leaving

nbanksMin =

�
bl + twr + trp + trcd

bl

�
= 3 . . . 4 for bl = 4

Para- Description common values
meter in clock cycles
bl burst-length in words 1,2,4,8
trcd RAS-to-CAS-delay 2,3
tcl column latency 2,3
twr write recovery 2,3 (usually = tcl)
trp row precharge 2,3
tcbr cycles between refresh 2078
trc row cycle time 12

Table 1: Important SDRAM parameters

banks are needed for maximum throughput. The scheduler main-
tains the internal state of every bank and assigns scheduler prior-
ities to all banks. The bank with the highest scheduler priority
which is not busy is selected for the next access. After every
access, the scheduler priorities are rotated so that the bank ac-
cessed last gets the lowest priority, as proposed in [12] . This
mechanism allows interleaved bank accesses as well as a guar-
anteed access latency, because every bank will get the highest
priority at least once in a cycle of nbank accesses, where nbank is
the number of banks. Due to the auto precharge mode, there is
no advantage in mapping access sequences to the same bank and
row to exploit row buffer hits as with precharge-based SDRAM
controllers [13]. In contrast, if two consecutive requests of one
access sequence hit the same bank, the latency increases due to
the precharge-activate cycle that the bank has to undergo first
before a new access can be issued. However, if those two requests
go to different banks, they can be scheduled back-to-back with-
out additional latency. Therefore, request sequences have to be
spread over all banks. This is done by permutating and xor -ing
original address bits analogous to [14]. This is done in the ini-
tial address translation stage just after the SDRAM controller
inputs.

Request bundling is used to minimize bus direction switches. On
every bus direction switch, tristate cycles have to be inserted (1
for a read-write change, tcl − 1 for a write-read change) which
can lead to a bandwidth decrease of up to 20..27% for alternating
read-write accesses. Bundling requests to consecutive read or
write sequence alleviates this. To prevent deadlocks, only one
request of each bank is allowed in one read or write bundle.

Low latency requests are given precedence over normal requests
so that they are scheduled first, if possible. However, to pre-
vent normal request from being deadlocked by continuous low
latency requests, only one low latency request per bank is ex-
ecuted during one sequence of continuous low latency requests.
Between successive low latency sequences, one normal request
can be executed if available.

3.2 Request Scheduler
The second scheduler is the Request Scheduler who forwards re-
quests of several input streams, one request per clock cycle, to
their appropriate bank buffer FIFOs. It works similar to the
Bank Scheduler by assigning scheduler priorities to the inputs
and trying to schedule inputs with a higher scheduler priority
first. There is a priority rotation scheduling scheme that guar-
antees a maximum worst case execution time for each access
sequence. Low latency requests are given precedence as with the
Bank Scheduler.



Figure 2: SDRAM controller architecture

3.3 FIFOs
Two FIFO stages exist in this design. The first stage is the
Request Buffer in which requests get buffered before they enter
the Request Scheduler. The second stage is the Bank Buffer
between the Request Scheduler and the Bank Scheduler, where
the requests are stored sorted by bank. All FIFOs in both stages
are relatively short with about 5 entries. Again, requests with a
higher stream priority are allowed to ”overtake” normal requests
to provide short latencies.

3.4 Data flow
The write-request data first gets stored inside the Data Buffers.
For later access, the according request gets a tag assigned. Once
the request has been scheduled, the data is selected by that tag
and transferred to the SDRAM. Read requests work the opposite
way.

3.5 Parameters
The controller is parameterizable to serve different applications.
The most important parameters are the SDRAM layout (rows,
columns, banks (nbanks)) and timing (Table 1), number of inputs
ninput and the FIFO sizes. Those parameters directly influence
the latency and throughput. Generally, the maximum latency
increases with increasing value of any parameter except for the
stream priorities. The increase of ns, nmc and the FIFO sizes
has greater impact than the SDRAM timing parameters due to
the increasing round-robin cycle in the scheduler and the longer
FIFO queues. Increasing nb also increases the round robin cycle
of the Bank Scheduler and thus the maximum latency, however,
due to the request scattering over all banks the average latency
increases less than linear. The introduction of stream priorities
reduces the maximum latency for high priority streams, how-
ever the latency for normal streams increases. The maximum
throughput depends on nb, nmc and the FIFO sizes. Raising
nb up to nbf increases the throughput strongly because up to
this value not enough banks are available for full bank interleav-
ing. From this value on the throughput still increases slowly,
because the probability that consecutive requests are mapped to
the same bank decreases with more banks available. The effect
of increasing nb is strong for small values with a smaller influ-
ence for higher values. FIFO sizes have the same effect, since
increasing the FIFOs first gives the scheduler a bigger choice
to select requests for different banks, but this effect depreciates
with deeper FIFOs. Stream priorities have a very slight negative
impact, since they might cause a higher bus direction switching
activity.

Figure 3: Simulator

4. SIMULATOR
We created an experimental system model for evaluation consist-
ing of the SDRAM, SDRAM controller and two clients: a CPU
with caches and a hardware implementation of a discrete wavelet
transformation (DWT) algorithm (Figure 3).

We used SystemC for implementation because it allowed us to
model at several abstraction levels in one language and to easily
reuse available C models.

4.1 SDRAM controller and SDRAM model
For speed reasons, the SDRAM controller and the SDRAM model
were implemented at transaction level, except for the interface
between controller and SDRAM which is at RTL. To get mean-
ingful results, clock synchronization points were inserted at sev-
eral points and assumed latencies, for the function units derived
from synthesizing all or part of these blocks, were added for every
module.

4.2 Discrete Wavelet Transformation
The DWT implementation is based on [9] and was implemented
in SystemC at RT-Level. The reason for doing it at RTL was
that we needed a good idea about the speed of an FPGA imple-
mentation. After synthesis, place and route for a Xilinx V irtexII r



Figure 4: DWT data consumption/production timing
example for a 32 pixel width image line

FPGA, the CAD tools reported a maximum operating frequency
of 100 MHz. This frequency is not a integer fraction of the ex-
pected 150 MHz SDRAM memory interface clock. So in order
to achieve maximum throughput we used asynchronous FIFOs
to transfer data between the two different clock domains. The
FIFOs where build using special dedicated memory blocks in-
side the FPGA. The minimum size of one of these blocks is large
enough to store half of one line (assuming an image width of
2048 pixels). Our DWT consumes two pixels per clock cycle and
produces four periodic output streams with burst property, as
seen in Figure 4. The period of the output streams depends on
the image width and on the current DWT level [9]. Because
this algorithm, as well as most other image transform or filtering
algorithms, have a known memory access pattern, we are able
to apply pre-fetching to all input data. This is aided by the
fact that the avaliable FIFOs on the FPGA are relatively large.
This combination makes it possible to transform hard real-time
latency constraints into soft real-time data-rate constraints. In
Section 5 we will show how this transformation plays a key role
in the overall system performance.

4.3 CPU
For CPU simulation, the SimpleScalar SimSafe DLX simulator
together with an adaptation of the Dinero cache simulator were
used. In reality, we would use a DSP with higher performance
but we could not find an easily portable simulator code for it.
To be able to use this CPU simulator inside the SystemC envi-
ronment, we replaced the SimpleScalar memory model and cre-
ated a “shell” SystemC module for the procedural C-code which
provided the needed interfaces. To reflect the proposed flexible
platform for image processing (Figure 1), the CPU was equipped
with a SRAM for program and local variables (Figure 3). To
simplify the design and coding of applications, all program and
stack accesses where routed to the local RAM, whereas accesses
to the heap area were routed to the SDRAM. Thus, any access
to memory space returned by malloc() and new() went to the
SDRAM. All this was done in 2 days including understanding
the SimpleScalar source code.

5. SIMULATION RESULTS
To evaluate the concept, we did several tests. For the first exper-
iment, the DWT was setup for a three level 512 x 512 grayscale
image, and the CPU did a compression of a 128 x 128 color
image using cjpeg from the media testbench [8]. The SDRAM
controller and the DWT were clocked at 100 MHz, which our
tools indicated is reachable with our FPGA configuration. The
CPU and the cache were clocked at 1 GHz to compensate for
the weak DLX performance (as said in Subsection 4.3 ideally
we would use a powerful DSP instead). The SDRAM was an 8
bank, 128 MB module with trcd, tcl, twr, trp = 2, tcbr = 2078
and trc = 12. Datapaths were set to 32 bits. We measured

the execution time of the DWT and the CPU for several runs.
Results are shown in Table 2.

First, we did some tests with various buffer sizes. As a result,
we see that a small Request Buffer of just one entry is sufficient
for the request scheduler. Since only one request per clock cy-
cle of 9 inputs is forwarded to the bank buffers and the clients
are continuously issuing new requests, there are always enough
requests available for scheduling. However, decreasing the bank
buffer to one shows a negative effect. In this case, request se-
quences from one input are stalled as soon as the request goes
to the same bank buffer as a previous request from the same
or from a different sequence. Deeper FIFOs avoids these stalls
allowing subsequent requests being scheduled, which often go to
another bank. This leads to a better bank buffer utilization and
thus gives the bank scheduler a greater flexibility to select and
schedule banks.

Next, we gave the CPU accesses a higher priority. This is possi-
ble, since the DWT uses a long pre-fetch that hides even longer
latencies. By decreasing the CPU access latency, we observe a
slight CPU speedup, with almost no DWT slowdown.

For the second experiment, we gave the real time accesses a
higher priority. This can be used if timing constrains are very
strict and the guaranteed latency of the normal requests would
not fit. For this experiment, we removed the DWT and the
CPU and created two streams with 50/50 read/write accesses to
random addresses, one ”best effort” (BEF) stream with a fixed
load and one ”real-time” (RT) stream. Then we increased the
load of the RT stream and tested for the first data loss on the RT
would not fit. For this experiment, we created two streams with
50/50 read/write accesses to random addresses, one ”best effort”
(BEF) stream with a fixed load and one ”real-time” (RT) stream.
Then we increased the load of the RT stream and tested for the
first data loss on the RT stream. At this point, we recorded the
current RT load, the yielded BEF load and the latencies for both
RT and BEF streams. We did this test with several BEF loads
and with and without higher priorities for the RT stream. The
results are shown in Table 3.

At high BEF loads, the loss on the RT stream occurred later with
priorities activated. Figure 5 and 6 show the throughput and
latencies of test number 3 and 4 (Table 3) over the time. Without
priorities, the RT throughput increases while the latency stays
constant until a maximum total SDRAM throughput of ∼ 95% is
reached, then the first data loss occurs. If the RT load is further
raised, the yielded BEF rate starts to drop since the available
bandwidth is split evenly

between the two streams. Since the SDRAM scheduler now can-
not fulfill all requests, the buffers are always full and thus the
latency increases.

With priorities activated, the yielded BEF rate starts to drop
quickly when the overall SDRAM throughput of∼ 95% is reached,
while the RT rate continues to increase without data losses. Also,
the BEF latency starts to increase quickly. The point of first data
loss occurs later compared to the no-priority experiment, how-
ever not at a RT rate of ∼ 95% as someone would expect. Even
with priorities activated, some BEF requests will interfere with
RT requests and thus affect the maximal possible throughput for
the prioritized stream.



Req. buff. Bank buf. cpu Cache DWT CPU
size size pri size / assoc. Mcycles Mcycles / CPI
10 10 no 2K / 4 1.4 26.8 (3.42)
10 5 no 2K / 4 1.4 26.8 (3.42)
10 1 no 2K / 4 1.4 28.0 (3.57)
5 5 no 2K / 4 1.4 26.7 (3.42)
1 5 no 2K / 4 1.4 26.7 (3.42)
1 5 no 2K / 4 1.4 26.7 (3.42)
1 5 yes 2K / 4 1.41 25.7 (3.29)

Table 2: Experiment 1: Simulation setup and results

load RT Throughput Latency
Nr. BEF priori- total max. RT yield BEF RT BEF

[w/c] tizing [w/c] [w/c] [w/c] [cycles] [cycles]
1 0.2 no 0.96 0.8 0.16 11 / 10 11 / 11
2 0.2 yes 0.96 0.8 0.16 10 / 10 11 / 10
3 0.5 no 0.94 0.5 0.44 80 / 55 81 / 52
4 0.5 yes 0.95 0.8 0.15 44 / 31 328 / 245
5 0.8 no 0.94 0.22 0.72 57 / 51 58 / 51
6 0.8 yes 0.95 0.57 0.28 22 / 20 143 / 85

w/c - words per cycle
BEF - Best Effort
RT - Real-time

Table 3: Experiment 2: real-time vs. best effort

Figure 5: Experiment 2, real-time vs. best effort, test nr. 3



Figure 6: Experiment 2, real-time vs. best effort, test nr. 4

Although the current implementation of SystemC still showed a
few pitfalls, the simulation performance and the flexibility were
convincing. One test of experiment 1 above took about 5 minutes
(gcc, 1.5GHz Athlon). A simple image pixel averaging scaling
algorithm with no additional filtering, a simpler version of the
SDRAM controller and a SDRAM model, thus overall a much
less complex system, took about 480 minutes using Synopsys
Scirocco on the same machine.

6. CONCLUSION
Based on earlier experience with a fixed architecture for a recon-
figurable HDTV system, we presented a dynamic RAM sched-
uler IP that supports several concurrent access sequence types
with different requirements including hard real-time periodic se-
quences and cache accesses with a minimum latency objective.
It consists of a 2-stage scheduler, a Bank Scheduler for mem-
ory efficiency optimization and a Request Scheduler to arbitrate
the access streams. We explained the chosen IP parameters and
their impact on design performance. The IP has been evaluated
in a simulation environment consisting of a processor with cache,
an application specific data path for wavelet coding and video
I/O, all implemented in SystemC. In the evaluation, we demon-
strated the high flexibility and efficiency of the 2-stage approach.
The simulation data show a 90% memory bandwidth utilization
and adherence to access requirements for a wide range of load
scenarios. The IP can easily be adapted to DDR-RAM or RAM-
BUS DRAM by simply exchanging the memory interface and the
bank model.
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