
Exploiting Task-Level Parallelism Using pTask

Tarek S. Abdelrahman and Sum Huynh
Department of Electrical and Computer Engineering

The University of Toronto
Toronto, Ontario, Canada M5S 3G4

Abstract

This paper presents pTask— a system that allows users to automatically exploit
dynamic task-level parallelism in sequential array-based C programs. The system
employs compiler analysis to extract data usage information from the program, then
uses this information at run-time to dynamically exploit concurrency and to enforce
data-dependences. Experimental results using a prototype of the system show scaling
performance and low overhead on a 32-processor KSR1 multiprocessor for a number
of applications.

1 Introduction

Compiling sequential programs into parallel programs has been an active area of research for the past
few years. Much of this research has focused on loop-level parallelism and on the efficient execution
of data-parallel programs. An alternative model of parallelism is that of a collection of asynchronous
cooperating tasks, or task-level parallelism. Such a model is attractive for a number of reasons. Some
parallel applications are best expressed as a collection of coarse-grain tasks [12]. Large-scale and
multidisciplinary parallel applications are likely to exploit both loop-level and task-level parallelism
to achieve desired levels of performance [2, 6]. In addition, a recent study [13] suggests that some
data-parallel applications perform better when expressed as task-parallel programs.

In this paper, we describe the design and implementation of pTask, a system for automatically
detecting and exploiting dynamic task-level parallelism in sequential array-based C programs. pTask
uses compiler analysis to statically determine data usage information for tasks, then uses this informa-
tion at run-time to extract available concurrency and to enforce data dependence constraints. pTask
targets shared memory systems; a prototype is operational on the KSR1 multiprocessor.

The remainder of this paper is organized as follows. An overview of pTask is given in Section 2,
describing its model of execution and how tasks communicate. The compile-time analysis performed
by pTask is described in Section 3. The run-time system of pTask is presented in Section 4.
Experimental results are presented and analyzed in Section 5. Related work is reviewed in Section 6.
Conclusions are given in Section 7.

2 Overview and program execution

pTask is a compiler and a run-time system that executes a sequential array-based C program,
automatically creating, synchronizing and scheduling task-level parallelism. A task corresponds to
an asynchronous procedure invocation. To specify a procedure to be invoked asynchronously, the
keyword TASK is prepended to the procedure header. We refer to such procedure as a task-procedure
and to a program containing task-procedures as a pTask program.

pTask executes a sequential C program as follows. The main routine is considered the main task
and it starts executing sequentially. For each task-procedure invocation, an independent thread of
control (i.e., a task) is created to asynchronously execute the body of the task-procedure. This task
may run on a separate processor, concurrently with the task that created it and with other tasks in
the system. It may in turn create child tasks (or subtasks) by invoking task-procedures. In general,
the program can be viewed as a set of tasks executing concurrently, with each task sequentially



Run−time
library

table
Execu−Parallel

task
program

LinkingInput
program

Compile−time
module

Figure 1: The pTask system.

executing the body of its associated task-procedure, and creating more tasks whenever it invokes
task-procedures. A task terminates when it reaches the end of the task-procedure. The program
terminates when all tasks terminate.

Tasks in pTask communicate in two ways. First, the actual parameters of a task-procedure
invocation become input to the new task, making it possible for a (parent) task to pass values to
its child tasks. Second, tasks may communicate by accessing (reading/writing) data in the shared
memory. In a C program, global variables are accessible by all procedures, and thus are shared by
all tasks. In addition to global variables, tasks may also share automatic variables or dynamically
allocated data since a procedure may pass references or pointers to this data to other procedures. In
general, tasks share data if they access the same data at some address in shared memory.

The flow of data in the sequential execution of the program results in data dependences among
tasks. Hence, synchronization of tasks is necessary to preserve program correctness. pTask preserves
a program’s sequential semantics by enforcing serial execution order for tasks performing conflicting
operations on the same data. That is, tasks that write the same shared data must be executed
sequentially in the program’s serial execution order. Similarly, serial execution order is preserved
between a task that writes data and another task that reads the same data. Of course, tasks accessing
different data or only reading the same data may execute concurrently.

pTask is composed of two main components: a compile-time module and a run-time system.
The compile-time module compiles the input sequential program into a parallel task program which
contains calls to the run-time library to create, schedule, execute, and synchronize tasks. The run-time
system carries out the instructions inserted by the compile-time module. The parallel task program
is then linked with the run-time library to produce an executable program. This is shown in Figure 1.

3 The compile-time module

The compile-time module performs three main functions. It summaries array accesses in statements;
it translates procedure invocations into task creations; and it inserts synchronization code.

3.1 Data access summaries

The compile-time module summarizes the array accesses of a statement in the form of access
regions [1]. An access region describes the range of elements accessed in an array and the type
of access, which is either read or write. A range of accesses is defined for each dimension of the
array by the lowest and highest indices of the elements accessed in that dimension. Depending on
the subscripts of the array reference, these indices may be constants, variables, or expressions. The
region of an array accessed is the cross product of the range in each dimension of the array. Hence,
the region is the smallest rectangular space enclosing all elements accessed. Figure 2 shows example
regions of an m�m array A.

The union of two or more regions is the smallest region that encloses these regions. Region
union is useful for computing data access summaries for a sequence of statements in a program.
The intersection of two or more regions is the subregion in which these regions overlap. Region
intersection is used to determine if two statements access the same data. Two regions are said to be
in conflict if their intersection is not empty and at least one of them has a write access type.



write A[i:i+1][j:j+2]

i

j

write A[0:1][0:m−1]

j

read A[0:m−1][j:m−1] read A[0:m−1][0:m−1]

Figure 2: Example data access summaries in an m�m array.

3.2 Task-procedure conversion

The compile-time module converts procedure invocations into calls to the run-time system to create
tasks. Each call passes to the run-time system a pointer to the procedure, the actual arguments of the
procedure, a descriptor of the regions accessed by the procedure invocation, and an identifier for the
task.

3.3 Synchronization

A task may access a region only if such access does not violate the execution semantics of the
sequential program. Hence, tasks in pTask are synchronized according to the following rule: a task
can access a region if the region is not in conflict with regions of the tasks that execute and complete
earlier (than the task) as procedures in the sequential program.

The run-time system provides a function called region check which, given one or more
regions of a task, determines whether the task can access the region(s), and if necessary causes the
task to wait until it can access the region(s). The run-time system also provides a function called
region signal which, given one or more regions of a task, allows tasks waiting on the region(s)
to proceed. The implementation of these functions is described in Section 4. The compile-time
module obtains regions of all statements in the program, and inserts calls to these functions where
synchronization is required. In general, at each point where synchronization is required, a task would
call a region check on region(s) before accessing these region(s), and calls a region signal
after having accessed the region(s).

In a program, synchronization is necessary at four specific locations: at entry of task-procedures,
within the body of procedures, at exit points of program blocks, and at program exit points. The
following sections provide the motivations and the methods for synchronization at these locations.

3.3.1 Task-entry synchronization

The invocation of a task-procedure results in a new task which executes the body of the task-procedure
asynchronously. Synchronization is required to ensure the new task accesses its regions only if such
accesses do not violate the synchronization rule. For example, the program in Figure 3 creates a task
t1, followed by task t2. Task t2 must not proceed to access sum until the variable is written by
task t1. This type of synchronization is referred to as task-entry synchronization.

Task-entry synchronization is achieved by having the compile-time module identify the first access
to each variable within the task-procedure and precede each first access with a region check
on those regions of the task associated with the variable. Similarly, the compile-time module
identifies the last access to each variable within the task-procedure and follows each last access with
a region signal. Thus, a task may execute the body of the associated task-procedure as soon as it
is created, but it must check for the regions of each variable before the first access to the variable. This
approach enables the system to better exploit concurrency since regions of a variable are available to
waiting tasks as soon as earlier tasks finish accessing the variable. Also, a task is allowed to execute
until it attempts to access regions that it must wait for.

3.3.2 Task-body synchronization

Task-entry synchronization ensures that a task proceeds to execute only if all existing dependence
constraints are satisfied. However, an executing task may create child tasks and continue to access



int sum;
main() f

t1();
t2();

g

/* TASK() */
void t2 () f

� � � = sum;
g

/* TASK() */
void t1 () f

sum = � � �;
g

Figure 3: Task-entry synchronization.

/* TASK() */
void t1 (int *b) f

t2 (b);
/* statement s */
b[0] = � � � ;

g

/* TASK() */
void t2 (int *b) f

b[0] = � � �;
g

Figure 4: Task-body synchronization.

f0 () f
int a[N], b[N], c[N];
t1 (a);
f1 (b);
f2 ();
t2 (c);

g

f1 (int *p) f
t3 (p);

g

f2 () f
int d[N];
t4 (d);

g

/* TASK() */
void t1 (int *p) f

/* access p */
g

/* TASK() */
void t2 (int *p) f

t5 (p);
g

Figure 5: Block-exit synchronization. Task-procedures t3, t4 and t5 are identical to t1.

data that is also accessed by the child tasks, and hence additional synchronization is required to
enforce these new dependences. For example, in the program shown in Figure 4 synchronization
is required in task-procedure t1 to ensure that statement s is executed only after its child task t2
has completed; otherwise the dependence between task t2 and statement s is violated. This type of
synchronization is referred to as task-body synchronization.

To implement this form of synchronization, the compile-time module collects adjacent statements
that do not create subtasks (either directly or indirectly) into groups. A statement that creates a task is
considered a group by itself. The compile-time module obtains regions of each group, and surrounds
each group with a region check and a region signal. Consequently, a task can execute a
statement concurrently with its subtasks if the regions of the statement and the regions of the subtasks
are not in conflict.

3.3.3 Block-exit synchronization

Synchronization is required at exit points of a program block because a block may directly or indirectly
create subtasks that access its local (i.e., automatic) variables. For such blocks, the run-time system
must ensure that the task executing the block leaves the block only after the subtasks have finished
accessing the local variables; otherwise these variables would be de-allocated, causing the subtasks
to access invalid data. For example, synchronization is needed to ensure that the task executing
procedure f2 in Figure 5 returns only after task t4 has terminated, because t4 accesses array d.

In order to provide this form of synchronization, an executing task is suspended until all subtasks
that access its local variables have completed. The insertion of synchronization code is complicated
by the fact that a task may access variables that are automatically allocated elsewhere in the program.
In general, a task may access data allocated in a program block of any ancestor task. For instance, in
Figure 5, task t4 accesses the data allocated in procedure f2 of its parent, while task t5 accesses
the data allocated in procedure f0, its grandparent. The remainder of this section details how pTask
provides this type of synchronization.

We denote a program block that directly or indirectly creates tasks that access its local variables
as a local-access block. Exit points of local-access blocks are preceded with code causing execution
to wait for all tasks created from within. In Figure 5, the compile-time module must insert code to



cause the task executing procedure f0 to wait for task t4 at the end of the local-access block in
procedure f2 and for tasks t1, t2 and t3 at the end of the local-access block in procedure f0.

In order for a task A to wait for a set of subtasks created from within a particular local-access
block, it must know the number of subtasks created in that local-access block. Similarly, in order
for these subtasks to signal task A to continue, each of the subtasks must know in which of task
A’s local-access blocks it was created. This is facilitated by having each task maintain an integer
called the block number which is initialized to zero at the beginning of the task-procedure. At
the top of each local-access block, the compile-time module inserts code to increment the task’s
block number. Before the exit points of each local-access block, code is inserted to decrement the
task’s block number. When a task is created, the current block number of its parent is passed
to it. Also the parent keeps count of the number of subtasks created at a particular block number.
Consequently, a task knows in which of its parent task’s block number it was created, and it also
knows the number of subtasks it created in a particular block number. To force a task to wait for
the subtasks created from within a local-access block, the compile-time module simply precedes the
decrement of the block number with code to cause the task to wait for the subtasks having the
current block number.

3.3.4 Program-exit synchronization

A sequential program terminates upon invoking an exit. In a pTask-generated program, since any
task may invoke exit, synchronization is required to ensure proper program termination. Regardless
which of the tasks invokes exit, the parallel task program must terminate. On most parallel systems,
if the main thread invokes exit then all threads in the program terminate, but if any other thread
invokes exit then only that thread terminates. In pTask, the task that invokes exit (referred as the
exit-task) must terminate, and in addition, states of all other tasks, such as its subtasks, its dependent
tasks, and tasks already running in the system, must be determined.

pTask handles program-exit synchronization by having the compile-time module replace every
exit call by a sys exit call to the run-time system. This procedure:

1. Causes the calling task (i.e., the exit-task) to wait for its subtasks. This is necessary because in
the sequential execution, these subtasks would have been executed before exit is invoked.

2. Calls exit to terminate the program if the calling task is the main task. Since every task waits
for its subtasks and the main task is the ancestor of all tasks, this implies the program terminates
when all tasks have terminated. In other words, this results normal program termination.

3. Signals the main task to indicate that an exit has been invoked if the calling task is not the
main task. Some running tasks may be prematurely terminated and hence the program does
not terminate normally. Such behavior is still valid because the prematurely terminated tasks
must had been accessing different data from that accessed by the exit-task; whether they get to
run to completion or not does not change the intended sequential behavior of the program.

4 The run-time system

The run-time system provides an environment to create, execute and synchronize tasks. It is initialized
and taken down by calls inserted by the compile-time module at the entry and exit points of the main
procedure, respectively. The system consists of a global task queue, and a set of p workers where p
is the number of available processors. A worker is a thread running on a separate processor.

Once a task is created, it is added to the global task queue. Workers remove tasks from the global
task queue and execute them. Each worker also has a local task queue which is read by the worker
itself and can be written to by other workers. If a worker receives a task that must be executed
by another worker, or that can be more efficiently executed by another worker then it adds the task
directly to the other worker’s local task queue. As will be explained later in this section, a suspending
task must be resumed on the same worker that was executing it, and it may be more efficient to
execute a task on the worker that most recently accessed the regions of the task. Tasks on local task
queues are given higher priority. Hence, a worker always removes tasks from its local queue before
tasks from the global queue. Figure 6 illustrates the run-time system.



WORKER

Global task queue

WORKER
Local task queueLocal task queue

Figure 6: The run-time system.

4.1 Task synchronization

Tasks are synchronized based on data regions they access. A task T can access a region if the region is
not in conflict with regions of tasks that execute and complete as procedures before T in the sequential
program. Such tasks are referred to as earlier tasks. The order in which tasks execute as procedures
in the sequential program is referred to as the serial execution order.

Since tasks are created concurrently as task procedures are invoked, the order in which tasks are
created at run-time is not necessarily the serial execution order. The run-time system maintains a
set of data structures referred to as region-lists for the purpose of maintaining and enforcing serial
execution order.

4.1.1 Region-lists

Dynamically created and maintained by the run-time system, a region-list is a list of all regions of
a variable currently being accessed by tasks in the program. Each node on the list contains the
descriptor of the region, the identifier of the task that accesses the region, and a list of pointers to
tasks waiting for this region. For simplicity, we refer these nodes as regions on the region-lists. Each
region-list is maintained such that the order of the regions on the list reflects the serial order in which
tasks access the corresponding variable. That is if tasks t1 and t2 access a variable A, and task t1
accesses A earlier than task t2 according to the serial execution order, then on the region-list of A,
the regions of task t1 are in front of those of task t2. Figure 7 shows an example program and the
associated region lists. All tasks are assumed to access subregions of an array variable A.

Three operations are associated with region-lists: region reserve, region unreserve,
and region check. The first two operations insert and remove regions to and from region-lists,
respectively. The third operation determines whether a region on a list is in conflict with regions of
the earlier tasks.

4.1.2 Region reserve

Given a region of a task, this operation atomically inserts the region onto the region-list of the
associated variable. The region is inserted such that its position on the list reflects the serial data
access order of tasks.

In a sequential program, when a procedure invokes subprocedures, the subprocedures execute
one at a time, each to completion, in the order in which they are invoked. If these subprocedures
access the same data, then they would access the data in the order in which they are invoked, and a
subprocedure always completes its access to the data before returning to the calling procedure. In the
framework of pTask where a procedure invocation corresponds to a task, this implies sibling tasks
access the data in the order in which they are invoked, and a task always completes its access to the
data before its parent continues to access the same data. Thus, regions of a task should be inserted in
front of the regions of its parent, and among the regions of its siblings, reflecting the order in which it
and its siblings are invoked as procedures in the sequential program. Since a task creates child tasks
sequentially, reserving a region of a task essentially amounts to inserting the region immediately in
front of the regions of its parent– provided the parent task reserves all regions of a child task when it
creates the task, and reserves regions of its child tasks in the order in which they are created. This
is the case as described in Section 4.3.1. This ensures that for any two tasks, t1 and t2, where t1



main () f
t1 ();
t2 ();

g

/* TASK() */
void t1 () f

t1 1 ();
g

/* TASK() */
void t2 () f

t2 1 ();
g

/* TASK() */
void t1 1 () f

� � �
g

/* TASK() */
void t2 1 () f

� � �
g

A
write A[1:5] write A[1:11] read A[12:16] read A[12:20]

t1_1 t1 t2_1 t2

Front

Figure 7: An example program and associated region list.

is earlier than t2, and both access some common variable then, on the region-list of the variable,
regions of t1 are always in front of those of t2. A formal proof can be found in [7].

4.1.3 Region unreserve

Given a region on a region-list, this operation atomically removes the region from the region-list. If
there are tasks waiting for this region then region unreserve resumes these tasks. The process
of task resumption is explained in Section 4.3.3. The region signal operation in the previous
section directly translates into this operation.

4.1.4 Region check

While the previous two operations are used to maintain task serial data access order, this operation is
used to detect inter-task data dependencies. Given a region on a region-list, this operation determines
whether the region is in conflict with those of the earlier tasks. This operation involves traversing
the associated region-list starting from the given region toward the front of the list, checking the
region against those on the path until the head of the list is reached or a conflicting region is found;
two regions are in conflict if their intersection is not empty and at least one has the write access
type. In the case of a conflict, region check returns the conflicting region. For example, given
the region-list in Figure 7, a region check on the region of task t2 would return no conflicting
region, while a region check on the region of task t1 would return the region of task t1 1.

4.2 Enforcing the synchronization rule

The run-time system maintains sequential execution semantics. That is, given any two arbitrary tasks
t1 and t2 such that t1 is earlier than t2, and they access some common data, the run-time system
will always detect and enforce the data dependencies that exist between these two tasks. This can be
easily seen because:

1. The region reserve operation will always insert the regions of t1 ahead of the regions of
t2 on region-lists to indicate that task t1 is earlier to task t2, regardless of the order of their
creations.

2. t1 and t2 each execute a region check before accessing the data and a region signal
after accessing the data. If a region of task t2 is in conflict with a region of task t1 then
region check returns the conflicting region and task t2 will be forced to wait until task t1
issues a region signal on the conflicting region. When region check on the regions of
task t2 returns no conflicting region, then the run-time system allows t2 to access its regions.



4.3 Task activities

4.3.1 Task creation

A create task call in the parallel program performs three functions. First, it creates a data
structure representing the new task. Contained within this structure are the task identifier, the parent
task identifier, the pointer to the associated task-procedure, the task-context, and the regions of the
task-procedure invocation. Next, it establishes the serial data access order for the new task by
reserving all regions of the task using the region reserve operation. Finally, it adds the new
task to the global task queue.

4.3.2 Task execution

A worker executes a task as soon as it receives the task. During the execution of the task, if a
region check returns no conflicting region, the execution is continued. Otherwise, the worker
adds a pointer to the task to the conflicting region’s list of waiting tasks, saves the task’s execution
context, and fetches another task.

4.3.3 Task resumption

Once a task completes its accesses to a set of regions, a region unreserve is called for each
of these regions. For each unreserved region, the worker obtains the list of tasks waiting on the
region and adds each of these tasks to the local task queue of the worker that previously executed and
suspended the task. This worker would eventually restore the task’s execution context and continue
with its execution. This restriction simplifies the design of the run-time system by not allowing task
contexts to migrate.

In the case where a task must wait for its child tasks to terminate, the child task which terminates
last adds the parent task back to the local task queue of the worker on which the parent task was
executing before being suspended. This worker would eventually resume the parent task.

4.4 Scheduling for data locality

The default scheduling strategy is to execute a task on the first idle worker that becomes available.
This strategy maintains the load among the processors fairly balanced and incurs little run-time
overhead. However, it does not take into account the fact that on most scalable shared-memory
multiprocessors, the time it takes a processor to access data depends on the location of the data with
respect to the processor. The farther away data is from a processor, the longer it takes the processor
to access the data. Thus, this default strategy may result in poor data locality. On the other hand,
restricting a task to execute only on the processor closest to the data needed by the task is likely to
result in poor load balance.

The run-time system provides a locality-conscious scheduling strategy which exploits data locality
without sacrificing load balance. Given a task, this strategy assigns the task to the idle worker that
has highest data affinity for the task. This scheduling strategy incurs more run-time overhead since
task-processor data affinity must be determined at run-time.

4.4.1 Accessed region-lists

For each region-list, the run-time system maintains a corresponding list of unreserved regions. The
region unreserve operation appends removed regions from a region-list to the corresponding
unreserved list. These unreserved lists are referred to as accessed-lists because regions on these lists
are regions that have already been accessed by tasks. Each node on the accessed-list has the identifier
of the worker which executed the task that accessed the region. For simplicity, we refer these nodes
also as regions on the accessed-lists. Since regions are appended onto these lists in roughly the
order in which they were accessed, regions at the rear of an accessed-list are more recently accessed
compared to those at the front.



for each region (called LESSR R for less recent) from
the rear to the front of the associated accessed-list

LESSR ISIZE = number of elements R and LESSR R intersect
if (LESSR R is the region at the rear)

LATEST R = LESSR R, LATEST ISIZE = LESSR ISIZE
else if (LESSR ISIZE > LATEST ISIZE)

if (LATEST R is of read type)
LATEST R = LESSR R, LATEST ISIZE = LESSR ISIZE

else
if (WORKERID of LESSR R == WORKERID of LATEST R

or LESSR ISIZE - LATEST ISIZE > LATEST ISIZE)
LATEST R = LESSR R, LATEST ISIZE = LESSR ISIZE

endif
endif

endif
if (LATEST ISIZE = size of R)

return WORKERID of LATEST R, and LATEST ISIZE
endif

endfor
return WORKERID of LATEST R, and LATEST ISIZE

Figure 8: Task-worker affinity algorithm.

4.4.2 Measuring task-worker data affinity

Accessed-lists are used to measure task-worker data affinity. Since a task may access many regions
that were accessed by tasks executed on different workers, there may be more than one worker having
data affinity for the task. Given a task that is ready for execution, for each of the task’s regions, the
worker determines the set of workers having data affinity for the region and the extent of affinity that
each of these workers has for the region. The worker computes data affinity for all regions for each
of these workers and assigns the task to the idle worker having the highest data affinity.

The algorithm shown in Figure 8 determines the worker that has the highest data affinity for
a given region. Given a region, a worker locates the latest copy of the region by traversing the
associated accessed-list from the rear toward the front, intersecting the given region with those on
the path. We use the amount of data in the intersection to determine how much of the given region
was accessed by a worker. We also use the accessed-regions’ access types to determine whether
the elements accessed are the most up-to-date values. The algorithm takes into account the fact
that an accessed-region may only intersect part of the given region, and the intersection of the last
(as positioned on the accessed-list) accessed-region of write access type contains latest elements of
the given region. The algorithm stops when the front of the accessed-list is reached, or when an
intersection that is the latest copy of the given region is found. The worker that accessed most of the
latest copy is the one having the highest data affinity for the given region.

5 Experimental results

We have implemented a prototype of pTask using the Sigma II toolkit [5], which is a compiler
infrastructure for building source-to-source translators and performance analysis tools. Sigma II is
used to parse the input program, to calculate regions, and to generate the output code. Presently,
Sigma II cannot analyze regions of while or do-while loops, of recursive procedures, and of
array accesses that use pointers. Hence, while and do-while loops must be re-coded into for
loops; calls to recursive procedures must be annotated [7]; and array data must be accessed by array
indexing.

In this section we report on the performance of applications using the prototype on a 32-processor
KSR1 system. We compare the performance of the pTask-generated programs to that of manually
parallelized versions of the programs when possible. We use the speedup, defined as the ratio of the
execution time of the sequential program to the execution time of the parallel program, to measure
performance improvements. We use the overhead ratio, defined as the ratio of the time spent in the
run-time system during parallel execution to sequential execution time, to measure the extent of the
overhead introduced by pTask.



0

4

8

12

16

20

24

28

4 8 12 16 20 24 28

Sp
ee

du
p

Processors

Linear
pTask

(a) MPI

0

4

8

12

16

20

24

28

4 8 12 16 20 24 28

Sp
ee

du
p

Processors

Linear
pTask

(b) Radar

0

4

8

12

16

20

24

28

4 8 12 16 20 24 28

Sp
ee

du
p

Processors

Linear
Manual

pTask grain=512/p

(c) 2D FFT

0

4

8

12

16

20

24

28

4 8 12 16 20 24 28

Sp
ee

du
p

Processors

Linear
pTask

(d) Search

0

4

8

12

16

20

24

28

4 8 12 16 20 24 28

Sp
ee

du
p

Processors

Linear
Manual

pTask

(e) TSP

0

4

8

12

16

20

24

28

4 8 12 16 20 24 28

Sp
ee

du
p

Processors

Linear
Manual

pTask grain=1M/2p
pTask grain=4096

(f) Mergesort

Figure 9: Speedup of applications using pTask.

Multidimensional polynomial interpolation (MPI) [11] interpolates an n-dimensional function.
The program makes n calls to a procedure that performs a 1-dimensional interpolations, and then
uses the same procedure to perform a final interpolation using the results computed by the previous
set of calls. We declare this procedure as a task procedure, allowing n tasks to execute concurrently,
followed by one task that performs the final interpolation. The performance of the pTask-generated
program for n = 256 is shown in Figure 9(a). The overhead is below 5% of sequential execution
time.

The narrowband tracking radar benchmark [3] (radar for brief) was developed by researchers at
MIT Lincoln Labs to identify targets from a sequence of radar returns. The program inputs data from
a single sensor along a number of independent channels. Over each channel, the program receives
a 512 complex vectors each of length 10 every 5 milliseconds. The vectors fill a 512 � 10 input
matrix, which is then processed in the following way: (1) the matrix is corner-turned into a 512� 10
matrix; (2) 10 independent 512-point FFTs are applied to each row of the matrix; (3) the resulting
complex matrix is reduced to a real 40� 10 submatrix; and finally, (4) the elements of the submatrix
are threshold based on the sum of the submatrix elements. The procedures that receive the data,
fill the matrix from the input vectors, corner-turn the matrix and perform the FFT are declared as
task-procedures. The performance of the pTask-generated program is shown in Figure 9(b) for 32
channels. The run-time overhead is quite low and this is reflected in a speedup that is close to linear.

The 2-dimensional FFT program consists of two passes. The first pass performs independent
1-dimensional FFTs on the rows of the input matrix. The second pass performs independent 1-
dimensional FFTs on the columns of the matrix. A task is created to perform a 1-dimensional
FFT on a set of rows or columns. The system exploits parallelism by executing tasks in each pass
concurrently. Figure 9(c) shows the speedup of the parallel program using a 512� 512 input matrix.
The pTask curve shows the speedup when the granularity of a task is 512=p rows or columns, where
p is the number of processors. The run-time overhead is 0.15% of sequential execution time. The
performance is almost identical to that of a manually parallelized data-parallel version.

Search [8] is a program from Stanford University that uses a Monte-Carlo method to simulate
the elastic scattering of electrons from an electron beam into various solids. The main computation
performed by the program simulates six different solids for 10 initial values of beam energy. Each
solid-energy simulation tracks 5,000 electron trajectories. With pTask we declare the procedure that



Applicalion p=16 p=22 p=28

Radar 3% 5% 5%
Mergesort 16% 13% 21%

Table 1: Impact of locality-conscious scheduling on Radar and Mergesort.

performs one solid-energy simulation as a task-procedure. Tasks that simulate different solid-energy
points can execute concurrently. The performance of the pTask-generated program is shown in
Figure 9(d). The speedup for this application is close to linear. There is negligible run-time overhead
because the sizes of tasks in this application are relatively large.

The Travelling Salesman Problem (TSP) program is an example of an application which cannot
be expressed in a data-parallel form. The sequential program solves a TSP instance using a branch-
and-bound algorithm. Parallelism is exploited by concurrently traversing branches in the branch-
and-bound tree; a task is created for each call to a procedure that traverses a fixed number of paths in
the tree, and then updates the current bound. Figure 9(e) shows the speedup of the parallel program
solving a 11-city problem. Although the performance of the automatically generated parallel program
is worse than that of a manually parallelized version, it scales with the number of processors. The
overhead of the run-time system is about 5% of computation time.

The speedup of a mergesort program (1 M integers), is shown in Figure 9(f). The automatically
generated program performs almost identical to a manually parallelized version. The speedup is low,
but it is close to what is attainable from divide-and-conquer parallelism [9].

The impact of the locality-conscious scheduling strategy is summarized in Table 1. It shows
the improvement in performance obtained by using the locality-conscious strategy as opposed to the
simple default strategy. It indicates performance benefits for radar and mergesort. There is no benefit
for the other four applications, but there is no performance degradation either. The lack of benefit for
these applications stems from the lack of data reuse in each application, making a locality-conscious
strategy unnecessary. The overhead of scheduling is too small to degrade performance.

6 Related work

Dongarra and Sorenson [4] describe Schedule, in which programmers explicitly partition their
programs into tasks, and analyze these tasks to determine inter-task dependences. A task is a
subroutine call, and programmers specify task dependencies by supplying the system with a unique
identifier for each task, the number of prerequisite tasks, and the number of dependent tasks and their
identifiers.

Yang and Gerasoulis [14] implement Pyrros, in which only static task-parallelism is allowed
and programmers are required to provide estimates of task execution times. The system generates
the output program and the scheduling of tasks to processors.

Lam and Rinard [8] describe the Jade language in which programmers augment sequential
programs with high-level data usage constructs. In Jade, programmers specify tasks and each task’s
side effects. The run-time system detects concurrency and enforces data dependences. In this respect,
pTask is similar to Jade, particularly in the run-time system. However, in pTask programmers only
identify tasks; the compiler automatically determines task side effects and inserts synchronization.

Gross, O’Hallaron, and Subholk [6] design and implement a compiler based on HPF called Fx.
It extends HPF to allow programmers to specify task parallelism. Fx defines a task as a procedure
invocation, but restricts parallelism to programmer-defined parallel sections. Furthermore, it requires
programmers to supply directives that define input/output parameters of each task, and the mapping
of tasks onto processors.

Markatos and LeBlanc [10] describe an affinity conscious scheduling algorithm for parallel loops.
Assuming an HPF-like data distribution for arrays accessed in a parallel loop, the iterations of the
loop are dynamically assigned to processors to both enhance locality and balance the workload.



7 Conclusions

In this paper, we have described the design and implementation of pTask, a system that automatically
exploits task-level parallelism in sequential C programs. The system executes a program in parallel
while dynamically detecting and enforcing dependences among tasks to maintain sequential execution
semantics. The system is implemented on a KSR1 multiprocessor and the performance of applications
validate our approach– the system incurs low overhead at run-time and results in good performance
improvements. A scheduling strategy which takes into consideration data locality was presented and
shown to improve the performance of applications in which data reuse exists.

References

[1] V. Balasundaram, “A mechanism for keeping useful internal information in parallel program-
ming tools: the data access descriptor,” Journal of Parallel and Distributed Computing, vol. 9,
no. 6, pp. 154–170, 1990.

[2] B. Chapman, H. Zima and P. Mehrota, “Extending HPF for advanced data-parallel applications,”
IEEE Parallel and Distributed Technology, vol. 2, no. 3, pp. 59–70, 1994.

[3] P. Dinda, et al., The CMU task parallel program suite, Technical Report CMU-CS-94-131,
School of Computer Science, Carnegie Mellon University, March, 1994.

[4] J. Dongarra and D. Sorenson, “A portable environment for developing parallel FORTRAN
programs,” Parallel Computing, vol. 5, no. 2, pp. 175–186, 1987.

[5] D. Gannon, et al., “SIGMA II: A tool kit for building parallelizing compilers and performance
analysis systems,” in Programming Environments for Parallel Computing, N. Topham and T.
Bemmerl (eds.), pp. 17–36, Elsevier Science Publishers, 1992.

[6] T. Gross, D. O’Hallaron and J. Subholk, “Task parallelism in High Performance Fortran frame-
work,” IEEE Parallel and Distributed Technology, vol. 2, no. 3, pp. 16–26, 1994.

[7] S. Huynh, Exploiting task-level parallelism automatically using pTask, M.A.Sc. Thesis, Uni-
versity of Toronto, Toronto, 1996.

[8] M. Lam and M. Rinard, “Coarse-grain parallel programming in Jade,” Proc. ACM PPOPP, pp.
94–105, 1991.

[9] T. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice Hall, Englewood
Cliffs, New Jersey, 1992.

[10] E. Markatos and T. LeBlanc, “Using processor affinity in loop scheduling on shared-memory
multiprocessors,” Proc. Supercomputing, pp. 104–113, 1992.

[11] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical recipes in C: the art of
scientific computing, Cambridge University Press, 1988.

[12] H. Printz, et al., “Automatic mapping of large scale signal processing systems to a parallel
machine,” Proc. SPIE Symp. on Real-Time Signal Processing, pp. 2–16, 1989.

[13] J. Subholk, et al., “Exploiting task and data parallelism on a multicomputer,” Proc. ACM
PPOPP, pp. 13–22, 1993.

[14] T. Yang and A. Gerasoulis, “PYRROS: Static task scheduling and code generation for message
passing multiprocessors,” Int’l Conf. on Supercomputing, pp. 428–437, 1992.


