The Design of the PROMIS Compiler*

Hideki Saito!, Nicholas Stavrakos!, Steven Carroll?,
Constantine Polychronopoulos!, and Alex Nicolau?

! Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign,
1308 W. Main St., Urbana, IL 61801
{saito, stavrako, scarroll, cdp}@csrd.uiuc.edu
% Department of Information and Computer Science,
University of California at Irvine,
Irvine, CA, 92697-3425

nicolau@ics.uci.edu

Abstract. PROMIS is a multilingual, parallelizing, and retargetable
compiler with an integrated frontend and backend operating on a single
unified/universal intermediate representation. This paper describes the
organization and the major features of the PROMIS compiler.
PROMIS exploits multiple levels of static and dynamic parallelism, rang-
ing from task- and loop-level parallelism to instruction-level parallelism,
based on target architecture description. The frontend and the backend
are integrated through a unified internal representation common to the
high-level, the low-level, and the instruction-level analyses and transfor-
mations. The unified internal representation propagates hard to com-
pute dependence information from the semantic rich frontend through
the backend down to the code generator. Based on conditional algebra,
the symbolic analyzer provides control sensitive and interprocedural in-
formation to the compiler. This information is used by other analysis
and transformation passes to achieve highly optimized code. Symbolic
analysis also helps statically quantify the effectiveness of transforma-
tions. The graphical user interface assists compiler development as well
as application performance tuning.

1 Introduction

Most systems under design and likely to be built in the future will employ hierar-
chical organization with many levels of memory hierarchy and parallelism. While
these architectures are evolutional, reflecting advances in hardware technology,
they pose new challenges in the design of parallelizing compilers.

The PROMIS compiler tackles these challenges through its hierarchical in-
ternal representation (IR), the integration of the frontend and the backend,
extensive symbolic analysis, and aggressive pointer analysis. The hierarchical

* This work is supported in part by DARPA/NSA grant MDA904-96-C-1472, and in
part by a grant from Intel Corporation.

IR provides a natural mapping for exploitation of multi-level memory hierarchy
and parallelism. The frontend-backend integration via the unified IR enables
the propagation of more information from the frontend to the backend, which
in turn helps achieve a synergetic effect on the performance of the generated
code[6]. Symbolic analysis not only produces control flow sensitive information
to improve the effectiveness of the existing analysis and optimization techniques,
but also quantitatively guides program optimizations to resolve many tradeoffs.
Pointer analysis uses information provided by symbolic analysis to further refine
aliasing information.

The PROMIS compiler is a multilingual, parallelizing, and retargetable com-
piler with an integrated frontend and backend operating on a single unified/
universal IR (or UIR). Unlike most other compilers, PROMIS exploits multiple
levels of static and dynamic parallelism ranging from task- and loop-level paral-
lelism to instruction-level parallelism, based on target architecture description.

Fig. 1 shows the organization of the PROMIS compiler. The core of the
compiler is the unified /universal hierarchical representation of the program. Both
the frontend and the backend analysis/optimization techniques, driven by the
description of the target architecture, manipulate this common UIR. Support for
symbolic analysis is an integral part of the UIR, which provides control sensitive
information throughout the compilation process. The current implementation of
PROMIS supports C, C++, FORTRAN, and Java bytecode as input languages,
and can target wide variety of systems, such as CISCs, RISCs, and DSPs.

PROMIS is an on-going research project with many parts of its optimizer and
backend still under development. In this paper, we focus on the design aspects
of the compiler, while we anticipate to obtain the first performance results in
early 1999.

The rest of the paper is organized as follows: Section 2 focuses on the
frontend-backend integration. Section 3 describes the PROMIS IR. Issues on
analysis and optimization are discussed in Section 4. The PROMIS GUI is intro-
duced in Section 5. Section 6 discusses related work on compiler development.
Finally, Section 7 summarizes the paper.

2 Motivation for the Frontend-Backend Integration

Conventional compilation frameworks use abstract syntax information (typically
represented in the form of source or intermediate code) to connect the frontend
and the backend. Examples include restructuring tools (such as Parafrase-2[13],
Polaris[3], and KAP[11]) and system vendors’ backend compilers. This conven-
tional framework makes the development of the frontend and the backend inde-
pendent and modular. However, the inability to transfer dependence information
from the frontend to the backend results in performance degradation[6].

For example, suppose the backend is a multiprocessor-aware compiler which
is capable of dealing with parallel directives (such as C$DOACROSS and C$0PENMP
PARALLEL D0). In this case, the frontend usually augments a parallel loop with a
parallel directive and leaves other optimizations to the backend. However, since

Parallelizing/Optimizing Frontend Machine-Independent Backend

Static Cost
Anaysis Parameterized
Resource Allocation

Analysis
Dataflow, Data& Control Depend, Instructi
nstruction
Pre-scheduling
Automatic Loop and ; i
. . High-level Universal

Functional Parallelism Intermediate Representation Code
> Optimization

@ Symbol}c, and Interprocedural
> —
Parallelization HUIR
LUIR Code
Low-level Universal .
@ ol Intermediate Representation [ﬂ]
Register Allocation

Fig. 1. Overview of the PROMIS Compiler

dependence analysis in the backend is usually less accurate than in the frontend
(due to loss of array index expressions, data dependence analysis is substituted
with memory disambiguation at the level of memory addresses) intra-iteration
dependence information gets lost, resulting in lower performance. Backend com-
pilers can still perform extensive dependence analysis in the high-level represen-
tation before optimizing in the low-level representation. However, it is simply a
waste of compilation time to perform time-consuming dependence analysis both
in the frontend and in the backend if such information can be communicated.

In cases where the backend is a uniprocessor-oriented compiler (such as
GCCQC), the situation is even worse. A typical frontend replaces a parallel loop
with a call to a runtime library routine (such as DOALL()), creates a function
for the loop body, and uses the pointer to this loop body function as an argu-
ment to the runtime library call. Since the loop body is now a separate function
requiring interprocedural analysis, the backend optimization is unlikely to be as
effective.

Furthermore, there are cases where inter-processor parallelism and intra-
processor parallelism can be exchanged[6]. A frontend which is independently
developed from the backend may package what could best be exploited as ILP

parallelism into iteration level parallelism. This not only leads to lower functional
unit utilization, but can also increase the total execution time.

In PROMIS, these problems are tackled by integrating the frontend and the
backend via the common IR. The following section describes the PROMIS IR
and how it is used to address these problems.

3 The PROMIS IR

In the PROMIS compiler, the frontend and the backend operate on the same
internal representation, which maintains all vital program structures and pro-
vides a robust users’ and developers’ IR interface. The IR interface makes most
transformations and optimizations independent of the implementation details of
the IR data structures. The PROMIS IR is capable of dealing with multiple in-
put languages and output ISAs (instruction set architectures). This is achieved
through transformations and optimizations viewing and accessing IR structures
as semantic entities, not as syntactic constructs. The IR framework consists of
the following;:

— Symbol Table
— Expression Trees
— Control Flow Edges (CFEs)
— Control Dependence Edges (CDEs)
— Data Dependence Edges (DDEs)
— Hierarchical Task Graphs (HTGs)
e HTG nodes
e Hierarchical Control Flow Edges (HCFEs)
e Hierarchical Control Dependence Edges (HCDEs)
e Hierarchical Data Dependence Edges (HDDEs)
— Support for the whole program optimization

The Hierarchical Task Graph (HTG) has been successfully used both in a
frontend parallelizer[13] and in a backend compiler[12]. In the HTG, hierarchical
nodes capture the hierarchy of program statements, and hierarchical dependence
edges represent dependence structure between tasks at the corresponding level
of hierarchy. Therefore, parallelism can be exploited at each level of the HTG:
between statements (or instructions), between blocks of statements, between
blocks of blocks of statements, and so on. This flexibility promotes a natural
mapping of the parallelism onto the hierarchy of the target architecture.

3.1 Multilingual Frontend

Unlike previous attempts at multilingual IR (such as UNCOL), PROMIS does
not try to accommodate all programming languages. Instead, PROMIS aims
at generating high performance code for the mainstream imperative program-
ming languages, such as C, C++, and FORTRAN. The current version of the

PROMIS IR represents a subset of the union of the language features of C++,
FORTRAN, and Java. Performance critical features are directly supported, and
thus represented in the PROMIS IR. Mere syntax sugar is still supported but
must be converted during the IR construction process. For example, virtual func-
tion calls are directly supported, while some of the operators, such as, comma,
increment, and decrement are converted.

PROMIS translates stack-based Java bytecode into register-based statements
and applies language independent analyses and optimizations. Two major chal-
lenges in optimizing Java are exceptions and type inference. In PROMIS, both
of these challenges are tackled by symbolic analysis.

3.2 Frontend-Backend Integration

Enhanced support for integrated compilation in PROMIS is enabled by the UIR,
which propagates vital dependence information obtained in the frontend to the
backend.

The PROMIS IR has three distinctive levels of representation: high-level
(HUIR), low-level (LUIR), and instruction-level (IUIR). Although the UIR can
be at any arbitrary sub-level between the HUIR and the LUIR during the course
of the IR lowering process, the focus of the current development effort is given to
the three major levels. In the PROMIS IR, statements are represented as HTG
nodes.

The abstract syntax trees from the parser can have arbitrarily complex ex-
pression trees. During the construction of the HUIR, expression trees are nor-
malized to have a single side effect per statement. Function calls and assignments
to pointer dereferences are identified and isolated as separate statements.

During IR lowering (from HUIR to LUIR), complex expression trees are
broken down to collections of simple expression trees, each of which is simi-
lar to quadruples. Data dependence information is maintained and propagated
throughout the lowering process. Therefore, the PROMIS backend utilizes the
same quality of dependence information as the frontend, unlike conventional
compilers.

Fig. 2(a) shows a HUIR representation of the statement a[i] = b * c. At
the leaf-level of the HTG, there is an AssignStmt node corresponding to this
assignment statement. The associated expression tree gives the semantics of the
statement. DDEs connect the source and the destination expressions of data
dependence for this expression tree. HDDEs connect the source and the destina-
tion HTG nodes, summarizing detailed data dependence information provided
by the DDEs. Fig. 2(b) is the LUIR corresponding to Fig. 2(a). In this example,
IR lowering is performed for register-register type architectures. The PROMIS
IR represents virtual registers in almost the same way as any other temporary
variables, which is reflected in the way addresses of the virtual registers are
taken. During the lowering process, local dependence information is generated
and non-local dependence information is updated to reflect the lowering.

In addition to providing detailed dependence information to the backend,
the UIR also enables sharing of compiler passes between the frontend and the

backend. For example, tools such as the available expression analyzer and the
constant propagator can work on the HUIR dealing with complex expressions,
on the LUIR dealing with simple expressions, and the IUIR dealing with simple
expressions, opcodes, and side effects. The ability to raise the IR from IUIR to
LUIR and from LUIR to HUIR (again, without loss dependence information)
is unique to the PROMIS IR. Since the LUIR is a proper subset of the HUIR,
high-level analysis and transformation techniques can be seamlessly applied to
the LUIR. Raising from the IUIR to the LUIR is simply performed by removing
the opcode and transforming the node to a set of single side-effect nodes.

Magro Code Genggation

LoadAddr R1, a

SESEOper

LEA

Load R2, i \V

[SESEOp >

Lw

Add R3, R1, R2
Side Effects

Legend
Control Flow Hierarchical
Data Dependence

1 Data Dependence

(a) High-level (b) Low-level (c) Instruction-level

Fig. 2. High-level, low-level, and instruction-level IR

3.3 Multitarget Backend

Macro code generation on the PROMIS IR converts the LUIR into the TUIR.
This involves the conversion of generic simple expression trees to a restricted
set of simple expression trees, the assignment of a macro opcode to each of the
converted expression trees, and expression tree construction for the side-effects of
the opcodes. As in IR lowering, macro code generation maintains and propagates
dependence information. It also generates dependence information for the side
effects so that they can be handled in a uniform manner. The target-level backend
optimizer operates on the IUIR, and eventually all macro opcodes are replaced
by actual opcodes of the target. The target system information is automatically

or manually generated from the target architecture description, which is common
to the compiler and the simulator.!

Fig. 2(c) shows the IUIR of Fig. 2(b) for a pseudo instruction set architecture.
During the macro code generation process, dependences to/from side effects and
the transformed main expressions are generated and updated, respectively. The
first instruction in Fig. 2(c) corresponds to the first statement in Fig. 2(b). The
instruction is still an assignment statement representing R1 = &a. However, the
HTG node is changed from AssignStmt to SESEOper (Single-Entry Single-Exit
operator) in order to attach an opcode LEA and side-effects (in this case, none).
The third instruction ADD has side effects, of which the zero-flag (ZF) assignment
is presented. ZF is assigned based on the result of the addition. Therefore there
is a data dependence (within the instruction, shown as a dashed line) from the
assignment to R3 and the use of its value. In this example, there are dependence
arcs from R3 and ZF to elsewhere, indicating that the values are used later.

3.4 Support for Symbolic Analysis

As will be shown in the next section, symbolic analysis plays a dominant role
within PROMIS. To increase the efficiency of the symbolic interpreter the IR
has been extended in two ways.

First, variable versioning has been implemented directly into the IR. Scalar
variables and scalar fields of a structure can be versioned. Second, conditional
algebra operators have been included in the IR. The conditional operator 7(e)
returns 1 if e # 0 and 0 otherwise. With this simple operator, control sensitive
information can be encoded into the expressions of the IR. For example, encoding
the situation where X3 is dependent on the outcome of a branch with condition
C1 would yield: X3 = X37(C1) + Xo7(!Cy1). In this expression X3 gets the value
X; if C; is true, else it gets the value Xs.

3.5 IR Extensibility

The core IR is designed to provide the basic functionality that is required by
the majority of passes in the compiler. In addition to this core functionality
many additional data structures are used during the compilation process (e.g.
connectivity matrix, dominator tree, etc). Although these data structures are
useful in many compiler passes, they are transient and not a necessary part
of the IR; rather they are data structures built upon the core IR. Allowing
these transient data structures to be placed within the IR would clutter the IR
unnecessarily. Another problem is maintaining them across multiple passes. It
may not be possible (or extremely difficult) to maintain them across passes that
were developed before the addition of such transient data structures, and thus
not aware of them. Development of a new pass would also be difficult if the pass
has to maintain transient data structures it does not use.

! A VLIW simulator developed at UCI is used to quantitatively evaluate various trans-
formations and optimizations during the development phase.

To alleviate both these problems PROMIS provides an API called External
Data Structure Interface (EDSI). EDSI allows compiler developers to register
data with each HTG node (e.g. each node can contain the immediate predecessor
and successors of a dominator tree). In addition, a data structure can register
a call back function to be called during certain IR events (e.g. control flow arc
removal/insertion, node addition/removal, etc). These call back functions allow
the data structures to perform the necessary tasks to maintain their consistency
with the IR.

4 Analysis and Optimization

4.1 Symbolic Analysis

Ever since the benefits of symbolic analysis were first demonstrated for com-
pilers[13], many commercial and research compilers have adopted the use of
symbolic analysis. The number of analysis and transformation techniques using
symbolic analysis has increased greatly, due to the symbolic analysis capabilities
of modern compilers. In light of this, support for symbolic analysis has been inte-
grated within the internal representation of PROMIS. This integration provides
a mechanism for extending the symbolic analysis framework, thus allowing new
analysis/transformation techniques to be easily added into the framework.

The symbolic analysis framework uses a symbolic kernel that allows sym-
bolic expressions to be handled in a manner similar to numeric values. Symbolic
expressions consist of either scalar variables, scalar fields of structures, and/or
arrays. Symbolic expression types include integers, floating point, and complex.
Because the values a variable can possess may be dependent on the control
flow of the program, control sensitive values of a variable are encoded within a
symbolic expression. Control sensitive value extraction and symbolic expression
simplification are also performed by the symbolic kernel.

In PROMIS, symbolic analysis is performed via symbolic interpretation. Val-
ues (or ranges of values) for each variable are maintained by the interpreter
in environments. These environments are propagated to each statement. Each
statement is interpreted, and its side effects are computed. These side effects are
applied to the incoming environment of a statement, resulting in new versions for
the affected variables. Successive application of these side effects simulates the
execution of the program. Pointer analysis is performed during interpretation.
This tight integration between symbolic and pointer analysis allows for efficient
information flow to occur between the two passes.

Fig. 3 shows a section of code along with the corresponding interpreted HTG.
Interpretation begins with a new environment initialized with the formal param-
eters. The first node assigns 10 to the variable x. Since x is yet to be versioned,
the new version 1 is assigned to x, and x; is added to the symbolic environment.
For the next node, y = a, the interpreter searches for the current version of the
variable a in the current environment and finds a;. The variable y in this node
also needs a version, and it becomes y1, just like the variable x in the previous
node. The variable y; is added to the symbolic environment.

The next node is a branch statement. The conditional expression of the
branch is evaluated and then two child environments are created (corresponding
to the true and false paths of the branch). Variable lookup requests, when they
cannot be satisfied by these child environments, are forwarded to their parent
environments. In addition, control flow tags are assigned for each child environ-
ment. A control flow tag corresponds to the condition that must be satisfied in
order for a section of code to execute.

The true and false portions of the IF-THEN-ELSE structure are evaluated. As
control flow converges, the two incoming environments into the RETURN statement
must be merged. In this example, the variables z; and z2 are merged into the
new variable z3. Finally, the expression to be returned gets versioned to zs.

Start Node

int foo(int a, int b) { a by
int X,y,z;
xq=10
x = 10;
y=4a l al,bl,Xl
if (y == b+10) { T
Z=2a;
} else {b a3,b1Xq V1
z=b;
};eturn z: T(y; == by +10) IF (y; == bq+10) 1(y; '= by +10)
} / \
Zl = al 22 = bl
HTG Node 21 2

Zg = Zl'l'(yl == b1+10) + 22T(y1 I= b1+10)
Symbolic Environment

a1.b1.x1.y1.21.22.23

Control Flow Arc RETURN z3
—>
Control Flow Tag ¢

e Stop Node

Fig. 3. Symbolic Interpretation Example

Interprocedural analysis seamlessly integrates into the symbolic analysis frame-
work. When a function call is encountered by the interpreter, its side effects are

calculated and applied to the incoming environment, like any other expression.
Once calculated, the side effects of a function call can be saved for subsequent
interpretations or discarded to alleviate the memory footprint of the compiler.
This method of handling function calls eliminates the need for special case func-
tion call handling in many analysis and transformation techniques. The only
caveat is that function calls are interpreted for a specific alias pattern. Aliasing
between parameters and global variables, which are used within the function
call, must be properly identified and handled.

Alias information improves the accuracy of other analysis techniques, the ef-
fectiveness of optimizations, and the compilation time. Alias information is first
gathered during IR construction. Static aliases (e.g. Fortran EQUIVALENCE
and C/C++ unions) are analyzed, and their alias patterns are saved. Formal
parameter aliases are then analyzed iteratively before symbolic interpretation.
Although not exact, this iterative process eliminates many possible alias pat-
terns. Symbolic interpretation is then applied to the program. The interpreter
utilizes this alias information and points-to information collected during inter-
pretation.

4.2 High-Level Parallelization and Optimization

Similar to most parallelizing compilers, PROMIS will include a number of clas-
sical analysis and transformation techniques. In PROMIS however, these tech-
niques will be implemented within the symbolic analysis framework. This allows
classical optimizations to exploit the full power of symbolic analysis. Several
optimizations have been reengineered within the symbolic analysis framework,
such as strength reduction, static performance analysis, induction variable elim-
ination[9], symbolic dependence analysis[4], and array privatization[15]. Other
techniques need not be reengineered to benefit from symbolic analysis. These
optimizations, which include constant propagation, dead code elimination, and
available expression analysis, benefit from the control sensitive information pro-
vided by symbolic analysis. The application of these techniques can be controlled
by an integrated symbolic optimizer, which determines the ordering of the anal-
ysis and optimization techniques for each segment of code.

A quantitative measure of the synergetic effect of the combination of sym-
bolic and pointer analysis is a major goal of the PROMIS project. Symbolic
analysis will benefit from the disambiguation power of pointer analysis. Like-
wise, pointer analysis will benefit from the control sensitive value information of
pointer expressions provided to it by symbolic analysis.

4.3 Instruction-Level Parallelization and Optimization

The PROMIS backend is divided into machine independent and machine depen-
dent phases. The former works on the LUIR, while the latter works on the TUIR.

As in the frontend, symbolic information plays an important role throughout the
backend.

The machine independent phase includes classical optimizations, such as,
common subexpression elimination, copy propagation, and strength reduction.
The conversion from the LUIR to IUIR involves instruction selection and prelimi-
nary code scheduling. The mutation scheduler[12] performs instruction mutation,
instruction scheduling, register allocation, loop unrolling, and code compaction
on the TUIR. The machine dependent phase derives target specific information
from the target machine description, and therefore the optimizer code itself is
target independent. The PROMIS backend can also be guided by the results of
an architectural simulator, which shares the target machine description with the
compiler.

Unlike other backend compilers, PROMIS does not perform memory disam-
biguation because data dependence information from the frontend is available
in the backend.

5 Graphical User Interface

Graphical user interfaces (GUIs) have become a necessity for developers and
users of any compiler. The PROMIS GUT aids in compiler development and user
program optimization; both of these tasks benefit greatly from the graphical
representation of information.

For compiler development, PROMIS provides both textual and graphical
views of the IR (Fig. 4). Since the PROMIS IR is hierarchical, both views (textual
and graphical) are also hierarchical. Users can expand or collapse a compound
node to display more or less information of the node. This is useful to prevent
unnecessary information from drowning out the needed information that the
compiler developer is seeking.

The IR can be viewed in two modes: online and offline. An offline view
take a simplified snapshot of the IR, and save it in a separate data structure.
This allows compilation to continue while the compiler developer explores the
IR. Offline views are particularly useful to compare the IR before and after an
operation. Online views require the compilation of a program to stop (or pause).
While the compilation is paused, the IR can be inspected and modified (e.g.
removal of superfluous data dependence arcs). Compilation continues when the
view is closed. The offline view can be saved to disk and retrieved for comparison
to later compiler runs.

The GUI also provides a mechanism to set breakpoints at specific points in
the compilation of a program. This functionality allows compiler developers to
dynamically pause compilation and perform an offline or online view of the IR.

The PROMIS status bar informs the compiler user of the current phase of the
compiler. It also gives feedback to the compiler developer as to the time spent in
each module of the compiler. The compiler developer can use this information
to identify performance bottlenecks in the compiler.

External data structures can be added to the compiler to implement new
analysis and transformation techniques. It would be helpful if these external
data structures used the GUI in a similar manner as the IR. To promote the use

Stophlode: 96 -
HtgCFATes sources (for 96): 97 [97-0>70;97-1>78]
HtgDDAres scurces (for 96): 108 [108-a>49;108-a)
HtgCFArce sources (for 94): 13 [13->108]
HtgCFAres sinks (For 94): 74[97-0270],15[97-1>78]
HtgDDArcs sources (for 94): 15 [B2-£>108:86-£3108]
HtgDDArcs sinks (for 94): 14 [108-2»49:108-2>49:97-a:
SEMEnode: 74
Starthiode: 75
HtgCFAres sinks (for 75): 70[18-570:97-070]
HtgDDAres sinks [for 75): 70 [12-a>70;54-£>70;62;
hssignStmt: 70 :: &(EDG_6ese20) D-(EDG_6ess20)_0+.
HtgCFAres sources (for 70): 75 [18-570:97-0570]
HtgCFAres sinks (for 70): 107[70->107]
HtgDDAres sources (for 70): 70 [70-£>70:70-0570°

StmNoae,ls

HtgDDATes sinks (for 70): 70 [70-£>70;70-0x70],7(
AssignStmt: 107 :: &(EDG_6£e120)_0-(EDG_bed9c0) D
HtgCFAres sources (for 107): 70 [70->107]
HtgCFAres sinks (for 107): 77[107->77] .
HtgDDArcs sources (for 107): 75 [54-£107:58-£57

HigDDATes sinks (for 107): 77 [107-£277;107-£3770
BremchStmt: 77 :: (int)((EDG_6fel20)_0)==1
HtgCFAres seurces (for 77): 107 [107->77]
HtgCFares sinks (for 77): 76[77-1>14(b);
HtgDDArcs sources (for 77): 107 [107-F>77;107-
HtgDDAres sinks (for 77): 76 [77-a»49],107 [77-
Stopllode: 76
HtgCFAres seurces (for 76): 77 [7
HtgDDAres sources (for 76): 70 [

-
4(b) :77fU>:

7-121
70-£749:70-0549

HtgCFATce saurces (for 74): 15 [18->7 197-0570]

HtglFhrcs sinks (for 74): 14[77-1)14(-5 14] .

HtgDDArcs sources (for 74): 13 [B4-F>70;54-F>107;58:
HtgDDArcs sinks (For 74): 14 [70-£»49:70-0>49:70-a>4¢ g
SEMEnode: 15 .

Starthiode: 16 .
HtgCFATcs sinks (for 16): 78[97-1>78] .
HrgDDAres sinks (for 16): 62 [108-a>B2],686 [108-¢

AssignStmt: 78 :: &(EDG_6£3720)_0-1
HtgCFArcs sources (for 78): 16 [97-1578]
HtgCFares sinks (for 78): 82[78-»82] .
HtgDDArcs sources (for 78): B2 [B2-a578].18 [1f

-
-
-
-
-

scratchiFORTRANsimple. for

G e .

Fig. 4. Screen Capture of the PROMIS Compiler

of this common interface, an API has been developed for compiler developers. By
defining some functions in the new external data structure, which the GUI can
call, the graphical display for the new data structure will be integrated within
the existing GUIL Also, the API allows new PROMIS developers to quickly use
the power of the GUI without having to spend time learning GUI programming.

Application programmers using PROMIS will be able to give and receive
information about the program under compilation. Programmers will be able to
receive information, such as profiling information, which they can then use to
optimize time consuming portions of the code. Programmers will also be able
to give information to the compiler to aid compilation. This information will
include dependence arc removal, dead code identification, and value (or range of
values) specification for variables.

6 Related Work

PROMIS is the successor of the Parafrase-2 Compiler[13] and the EVE Com-
piler[12]. The PROMIS Proof-Of-Concept (POC) Prototype[6] is the combina-
tion of these two compilers. The POC compiler uses semantics retention asser-
tions to propagate data dependence information from Parafrase-2 (frontend) to

EVE (backend). Experimental results on the POC compiler indicate that prop-
agating high-level data dependence information to the backend leads to higher
performance and underscore the significance of tradeoffs between inter-processor
and intra-processor parallelism[5]. The unified PROMIS IR propagates all depen-
dence information computed at the frontend to the backend, and static/dynamic
granularity control is used to achieve better parallelism tradeoffs.

Another compiler effort aiming at similar goals is the National Compiler In-
frastructure[14]. The infrastructure is based on the intermediate program format
called SUIF[10], and analysis and optimization modules which operate on SUIF.
These modules communicate using intermediate output files. SUIF is based on
the abstract syntax information of the program, and data dependence infor-
mation can be represented in the form of annotations[16]. The SUIF compiler
system aims at independent development of compiler modules while PROMIS
compiler employs an integrated design approach. Zephyr[1] is the other compo-
nent of the National Compiler Infrastructure. Zephyr is a toolkit that generates
a compiler from the input language specification, the target machine description,
and a library of analyses and transformations.

Other compiler research projects includes Polaris[3] (parallelizing frontend),
IMPACT]7], Massively Scalar Compiler Project[8], and Trimaran[2] (optimizing
backend).

7 Summary

As computer systems adopt more complex architectures with multiple levels
of parallelism and deep memory hierarchies, code generation and optimization
becomes an even more challenging problem. With the proliferation of paral-
lel architectures, automatic or user-guided parallelization becomes relevant for
high-end PCs to supercomputers. In this paper we presented the PROMIS com-
piler system, which encompasses automatic parallelization and optimization at
all granularity levels, and in particular at the loop and instruction level. Based
on the preliminary results obtained from the Proof-of-Concept prototype, we
believe that our unique approach to full integration of the frontend and the
backend through a common IR, together with aggressive pointer and symbolic
analysis will amount to significant performance improvements over that achieved
by separate parallelizers and ILP code generators using equally powerful algo-
rithms. Moreover, our design approach does not compromise retargetability and
it further facilitates the ability to compile different imperative languages using
the same compiler.

PROMIS is an on-going research project with many parts of its optimizer
and backend still under development. In this paper, we focused on the design
aspects of the compiler. The first performance results on the PROMIS compiler
are anticipated to become available in early 1999.

Ackknowledgements

The authors are grateful to Peter Grun, Ashok Halambi, and Nick Savoiu of
University of California at Irvine for their work on the trailblazing part of the
backend and pointer analysis contribution to PROMIS. We would also like to
thank other members of CSRD who contributed to PROMIS.

References

10.

11.

12.

13.

14.

15.

. Zephyr: Tools for a national compiler infrastructure.

http://www.cs.virginia.edu/zephyr.

. Trimaran: An infrastructure for research in instruction-level parallelism.

http://www.trimaran.org, September 1998.

. William Blume et al. Effective automatic parallelization with polaris. International

Journal of Parallel Programming, May 1995.

. William J. Blume. Symbolic Analysis Techniques for Effective Automatic Paral-

lelization. PhD thesis, University of Illinois at Urbana-Champaign, 1995. Also
available as CSRD Technical Report No.1433.

. Carrie Brownhill, Alex Nicolau, Steve Novack, and Constantine Polychronopou-

los. Achieving multi-level parallelization. In In Proceedings of the International
Symposium on High Performance Computing (ISHPC), 1997.

. Carrie Brownhill, Alex Nicolau, Steve Novack, and Constantine Polychronopoulos.

The PROMIS compiler prototype. In In Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), 1997.

. Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Warter, and Wen mei

Hwu. Impact: An architectural framework for multiple-instruction-issue processors.
In Proceedings of the International Symposium on Computer Architecture, pages
266275, 1991.

. Massively Scalar Compiler Group. Massively scalar compiler group.

http://softlib.rice.edu/MSCP/MSCP.html.

. Mohammad R. Haghighat. Symbolic Analysis for Parallelizing Compilers. PhD

thesis, University of Illinois at Urbana-Champaign, 1994. Also available as a CSRD
Technical Report.

Mary Hall et al. Maximizing multiprocessor performance with the SUIF compiler.
IEEE Computer, December 1996.

Kuck and Inc. Associates. Kuck and Associates, Inc. Home Page.
http://www.kai.com.

Steve Noback. The EVE Mutation Scheduling Compiler: Adaptive Code Generation
for Advanced Microprocessors. PhD thesis, University of California at Irvine, 1997.
Constantine D. Polychronopoulos, Milind Girkar, Mohammad Reza Haghighat,
Chia Ling Lee, Bruce Leung, and Dale Schouten. Parafrase-2: An environment
for parallelizing, partitioning, synchronizing, and scheduling programs on multi-
processors. International Journal of High Speed Computing, 1(1):45-72, 1989.
The National Compiler Infrastructure Project. The national compiler infras-
tructure project. http://www-suif.stanford.edu/suif/NCI, January 1998. Also at
http://www.cs.virginia.edu/nci.

Peng Tu. Automatic Array Privatization and Demand-Driven Symbolic Analysis.
PhD thesis, University of Illinois at Urbana-Champaign, 1995. Also available as
CSRD Technical Report No.1432.

16. Robert Wilson et al. SUIF: An infrastructure for research on parallelizing and
optimizing compilers. Technical report, Computer Systems Laboratory, Stanford
University.

