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Abstract

Over the past two decades tremendous progress has been made in both the design of parallel architectures
and the compilers needed for exploiting parallelism on such architectures. In this paper we summarize the
advances in compilation techniques for uncovering and effectively exploiting parallelism at various levels of
granularity. We begin by describing the program analysis techniques through which parallelism is detected
and expressed in form of a program representation. Next compilation techniques for scheduling instruction
level parallelism are discussed along with the relationship between the nature of compiler support and type
of processor architecture. Compilation techniques for exploiting loop and task level parallelism on shared
memory multiprocessors are summarized. Locality optimizations that must be used in conjunction with par-
allelization techniques for achieving high performance on machines with complex memory hierarchies are also
discussed. Finally we provide an overview of compilation techniques for distributed memory machines that
must perform partitioning of both code and data for parallel execution. Communication optimization and
code generation issues that are unique to such compilers are also briefly discussed.

Keywords: parallelism, dependence testing, instruction level parallelism, shared memory systems, dis-
tributed memory systems.



1 Introduction

Driven by the need to deliver high levels of performance for a wide array of applications, researchers have
been developing parallel architectures and compiler based parallelization techniques for the past two decades.
Parallelism at different levels of granularity, including instruction level parallelism, loop and task level parallelism,
and data level parallelism has been considered by these techniques. In this paper we summarize the past
developments in compilation technology and open issues that are being currently addressed by researchers.

The basis for the automatic detection of parallelism is dependence analysis. The results of the analysis
enables the compiler to identify code fragments that can be executed in parallel. Thus, a great deal of effort has
been spent on developing dependence tests of varying complexity and precision. The dependence tests used by
compilers are conservative in nature, that is, if a test cannot prove the absence of a dependence it reports that
a dependence is present. Since scientific applications have been a major focus of automatic parallelization, most
of the work has considered programs involving array references within loops. The results of dependence testing
for non-scientific programs involving pointer intensive computations have been far less encouraging.

Instruction level parallelism is exploited by modern day superscalars and long instruction word machines.
These architectures depend greatly upon the compiler for uncovering parallelism. Studies have shown that
although significant levels of instruction level parallelism is present in both scientific and non-scientific codes, its
detection and exploitation requires two significant problems to be addressed. First it is essential to aggressively
perform code reordering over long code sequences that extend across branches to uncover and schedule instruction
level parallelism. Second aggressive memory disambiguation techniques must be employed to expose this form
of parallelism. Often effective exploitation of instruction level parallelism requires a combination of architectural
features and compiler support.

Shared-memory multiprocessors exploit parallelism by executing multiple threads of control that execute on
independent processors and communicate via shared-memory. The global name space supported by such systems
provides a uniform view of memory to all processors and simplify the task of writing or automatically generating
parallel programs. Dependence analysis techniques are used to detect and schedule loop level parallelism on
shared-memory machines. Experience with parallelization of non-numeric codes for shared-memory machines is
quite limited. To achieve high levels of performance on such systems, in addition to the task of parallelization,
it is important that the compiler pay attention be paid to data locality and placement. This is because of the
multilevel memory hierarchies supported by such systems.

In an effort to scale multiprocessors to a large number of processors, distributed-memory systems have been
developed. The task of the compiler for mapping programs written based upon the shared-memory model
on to such machines is a complicated task. Not only is it necessary to detect parallelism and partition the
computation for parallel execution, the shared data must also be partitioned and mapped to memories associated
with individual processors. The complexity of the above tasks has led to the introduction of new constructs for
data distribution in languages which shift some of the complexity from the compiler to the user. Since the cost of
interprocessor communication is significant, the compiler must also employ a variety of optimization techniques
to tolerate communication delays. Furthermore the distribution of arrays across memories requires new address
generation techniques to be used.

The remainder of the paper is organized as follows. In section 2 dependence analysis techniques are surveyed.
The combination of compiler support and accompanying architectural support required to exploit instruction
level parallelism is described in section 3. The techniques for exploiting loop and task level parallelism on
shared-memory multiprocessors are discussed in section 4. In section 5 the unique issues that the compiler faces

in taking advantage of distributed memory machines is discussed. Concluding remarks are given in section 6.



2 Program Analysis and Representation

In a multiple processor system, traditional sequential computer programs must be redesigned to efficiently co-
ordinate the parallel processors. In this way, a substantial gain in computational performance may be achieved.
Since the tasks of redesigning a sequential program by hand or designing explicitly parallel programs can prove
to be very difficult, one major approach is the automatic detection and incorporation of parallelism into the
original sequential program. Optimizing compilers actually exploit limited forms of parallelism in sequential
programs. By extending their capabilities, parallelizing compilers were designed to automatically restructure
programs for execution on parallel architectures. Automatic detection of parallelism requires thorough, yet effi-
cient, program analysis and optimization to identify independent tasks in a program that can be candidates for
parallel execution.

Since early programming languages were developed for single processor machines, their semantics naturally
reflected the underlying architecture that imposes an explicit order in which program statements are executed.
This total ordering, however, is more restrictive than is necessary to preserve the semantics of a program. In fact it
can be shown, using the concept of dependence, that only portions of the original ordering are absolutely necessary.
Dependence is a partial order relation among the statements of a program. Statement S; is said to depend on
So if 1 must be executed before S5 in order to preserve the semantics of the original program. Statements in a
program that are not dependent may be executed in any order and, therefore, in parallel. Dependence constraints
within a program can arise from data considerations as well as from control considerations. In particular, two
statements are data dependent if they both access the same memory location and at least one of them writes on
it; whereas, two statements are control dependent whenever the execution of one statement is conditional on the
results of the other.

In this section we discuss the program analysis techniques employed by compilers to detect dependences in
sequential programs. We first provide some background about dependence analysis and intermediate program
representation. Next we review the proposed data dependence analysis tests and techniques. Finally, we discuss

current trends and future directions in dependence analysis.

2.1 Dependence Analysis

Three types of data dependence constraints are usually defined:

e Flow dependence. When a variable is assigned in one statement and used in a subsequently executed

statement.

o Anti-dependence. When a variable is used in one statement and reassigned in a subsequently executed

statement.

e Qutput dependence. When a variable is assigned in one statement and reassigned in a subsequently executed

statement.

In the three cases above, the order of execution in the original program needs to be preserved. However,
anti-dependence and output dependence arise from reassignment of variables and can be eliminated by variable
renaming [177]. Flow dependence is inherent in the computation and can not be eliminated. Control dependences
are derived from the usual control flow graph [4]. For scalar variables, traditional data-flow analysis [4] can find
the exact data dependence relations. For arrays, the problem is more complicated and the compiler must examine

the subscript expressions, as discussed later in this section.



An abstraction that compilers use to represent data dependence information is the data dependence graph.
The nodes in the graph correspond to statements in the program and the edges correspond to data dependence
constraints among the statements. A unified framework for data and control dependence representation is also
introduced in the form of the program dependence graph (PDG) [51]. The PDG allows transformations such as
vectorization, without special treatment of control dependence, to be performed in a manner that is uniform for
both control and data dependences. A couple of other intermediate program representations used to represent
both control and data dependences are proposed in [60, 133].

In loops, each statement can be executed many times. Data dependences can flow from any instance of
execution of a statement to any other statement instance, and even back to the same statement. A data
dependence relation between two statement instances in two different iterations of a loop is called cross-iteration
dependence. A data dependence relation between two statement instances in the same iteration of a loop is
called intra-iteration dependence. Since a compiler can not represent the repeated instance of each statement
individually, an extended abstraction is needed. The data dependence graph is still constructed with one node
for each statement. However in this case, each node may represent many instances of that statement. Similarly,
the edges in the graph may represent many instance-to-instance data dependence constraints. Data dependence
relations are annotated with information about the relative iterations in which the related (dependent) instances
occur. Such information is stored in distance or direction vectors [177].

A major focus of automatic detection of parallelism has been at the loop level. This situation arose from the
many important scientific computing applications that rely heavily on loop computations. In general a sequential
loop can be transformed into a parallel one if it does not contain any cross-iteration dependences. Loop parallelism
depends in part on the resolution of array aliases. The underlying problem is that of detecting multiple references
to the same array element within a nest of loops. Data dependence analysis techniques compare every pair of
references to the same array and attempt to determine if their subscript expressions, across different iterations,
could possibly evaluate to the same value (i.e., same memory location). Existing techniques make the assumption
that array subscripts are linear functions of the loop index variables. Computation of data dependences for arrays
with non-linear subscripts is an extremely difficult problem.

Data dependence testing for multidimensional arrays reduces to determining if a system of linear equations
(one equation for each dimension) has an integer solution that satisfies a set of linear inequality constraints. The
variables of the linear equations are loop index variables and the inequality constraints arise from loop limits
and direction vector relationships. For single dimensional arrays there is only one equation to be tested. When
testing multidimensional arrays, we say that a subscript position is separable [61] if its loop indices do not occur
in the other subscripts. If two different subscripts contain the same loop index, we say they are coupled [112].
When all subscripts are separable we can test each subscript separately, since the linear equations in the system
are independent. This is known as subscript-by-subscript testing and results in testing, one at a time, a single
linear equation for integer solutions that satisfy a set of linear inequality constraints. However, this method

introduces a conservative approximation in the case of multidimensional arrays with coupled subscripts.

2.2 Data Dependence Tests

The data dependence problem is equivalent to integer linear programming, and thus, it can not be efficiently
solved in general. A number of data dependence tests are proposed in the literature. In each test there are dif-
ferent tradeoffs between accuracy and efficiency. Data dependence tests always approximate on the conservative
side; i.e., a dependence is assumed if independence cannot be proved. In this way, no unsafe parallel program is

produced.



GCD Test [18]. The GCD test is arguably the most basic of the dependence tests, and is often incorporated
into other dependence tests as an initial screen for dependences. It is based on a theorem of elementary number
theory, which states that a linear equation has an integer solution if and only if the greatest common divisor of
the coefficients on the left hand side (LHS) of the equation evenly divides the constant term on the right hand
side. The test simply checks for this integer divisibility. If this condition does not hold, there can be no integer
solutions to the linear equation, and hence, no dependence exists. However, if the condition does apply then a
dependence does not necessarily exist. In the later case the GCD test returns a maybe answer.

The GCD test is limited in several major respects: Firstly, as noted above, it is an inexact test. It is a
necessary but not sufficient condition for data dependence; i.e., it is incapable of proving dependences, only
disproving them. Furthermore, it can only consider a single subscript of a multidimensional array reference at a
time. Secondly, it is very likely that at least one of the terms in the LHS of the linear equation has a coefficient
with an absolute value of 1. In such a case, the gcd of the coefficients of the LHS is 1 and, thus, the integer
divisibility condition will always be met. Lastly, since inequality constraints are not taken into consideration,
the test cannot provide any information regarding dependence distances or directions. In spite of these limita-

tions, the speed and simplicity of the GCD test make it one of the most widely used tests in parallelizing compilers.

Extreme Value Test [18]. The extreme value test, often referred to as the Banerjee bounds test, is based on the
Intermediate Value Theorem. It is another widely used test that calculates the possible minimum and maximum
values an expression on the LHS of a linear equation can achieve, given bounds on each of the variables involved.
Once the minimum and maximum of the expression is known, the test checks whether the constant on the RHS
of the equation falls between these extreme values. If it does not, then no dependence exists. If it does fall
in the range, we know only that a real solution to the linear equation exits. However, we cannot conclude
that a dependence exists, since there may not in fact be an integer solution to the equation. This inability to
distinguish between real and integer solutions makes the extreme value test, though highly efficient, an inexact
test. In addition to providing a no or maybe answer to a dependence test, the extreme value test can be used to
generate direction vector information.

Like the GCD test, the extreme value test is an inexact test that considers a single subscript of a multidi-
mensional array reference at a time. It further requires that loop limit information be known at compile time.
However, its efficiency and usefulness at disproving dependences make it one of the most common tests used
in parallelizing compilers. In subsequent research [134, 135] it is shown that under certain conditions satisfied
by the coefficients of the linear equation, the extreme value test becomes an exact test; i.e., a necessary and

sufficient condition, for single dependence equations.

[-Test [105, 137]. The I-Test is based on and enhances the extreme value test. Whereas the extreme value test
is unable to distinguish real from integer solutions, the I-Test can conclusively prove or disprove the existence
of integer solutions (and hence dependences) in a large percentage of cases missed by the extreme value test.
The I-Test arose from an observation that most real solutions predicted by the extreme value test are in fact
integer solutions. This insight led to the development of a set of conditions, which if met, meant that a given
linear expression actually achieved every integer value between the minimum and maximum values calculated
by the extreme value test. These accuracy conditions state the necessary and sufficient relationship between the
coefficients of loop iteration variables to the range of values they can assume in order to guarantee that every

integer value between the extreme values is achievable. In practice [136], these conditions are met so frequently



that the I-Test is in most cases a linear time exact test for single dimensional array references.

The I-Test can be thought of as performing the extreme value test one variable at a time. As each variable
is considered, the accuracy conditions are tested. If they are met, the test continues. If all variables pass the
test, as is most often the case, the I-Test will have conclusively disproved or proved a dependence. On the other
hand, if one of the variables does not meet the conditions, the test simply reverts to the extreme value test,
meaning that it can only disprove dependences, not prove them. The I-Test can be applied on a subscript by
subscript basis in the case of multidimensional array references. If dependence is disproved when considering
any of the subscripts then there can be no dependence. However, if all the individual tests produce yes answers,
a dependence is known to exist only if the subscripts are separable. The I-Test cannot prove the existence of
simultaneous integer solutions in the case of coupled subscripts, and thus returns a maybe answer. The I-Test
inherits all of the benefits of the extreme value test, including efficiency and ability to provide direction vector
information. It is always at least as accurate as a combination of the extreme value and GCD tests, and is almost
always more accurate. However, it is not without its weaknesses; particularly, its inability to precisely handle
multidimensional array references involving coupled subscripts, as well as its reliance on information known at

compile time.

Lambda Test [112]. The Lambda test addresses coupled, multidimensional array references. It determines whether
the intersection of the hyperplanes (that represent the individual subscripts within the array references) intersects
the convex region formed by the loop limits and direction vector constraints. The test proceeds by examining
a set of linear combinations of the intersection of these subscript hyperplanes, called “canonical solutions”. For
each such hyperplane combination, the intersection with the convex region is determined using the extreme
value test. If any one of these canonical solutions is found not to intersect the region, a no answer is returned.
Otherwise, if all canonical solutions do intersect the region, the Lambda test returns a maybe answer. This is
because the Lambda test, like the extreme value test, does not distinguish between real and integer solutions.
The Lambda test is an efficient test. If no direction vectors are considered, it examines at most one canonical
solution for every variable involved in the array reference. At most 3n/2 canonical solutions are examined if
both loop bounds and direction vectors are present, where n is the number of variables in the array reference.

The same reliance on compile-time information exists for the Lambda test as for the I-Test and extreme value test.

Generalized GCD Test [18]. The Generalized GCD test applies the ideas behind Euclid’s GCD algorithm to deter-
mine if there are simultaneous integer solutions to a system of linear equations. Using linear algebra properties,
the test begins by constructing a (n x m) coefficient matrix A and a (1 x m) coefficient matrix C, where n is
the number of variables in the system and m is the number of equations. Next, an unimodular transformation
matrix U is found that converts A into an upper triangular matrix D by a series of elementary row operations
(as in Gaussian elimination). If there is an integer solution t such that tD = C, then integer solutions exist and
dependence is assumed. Since D is an upper triangular matrix, simple back substitution can be used to easily
determine if a solution t exists. Because of the echelon form of D, some of the coefficients of t will have zeros in
them. These are referred to as “free variables”. Taking the matrix product tU allows the calculation of additional
information, such as constant dependence distances. Although the generalized GCD test considers only integer
solutions to a set of linear equations, it does not take constraints such as loop limits into consideration. Thus,

it is not useful for proving the existence of dependences, only disproving them.

Fourier-Motzkin Variable Elimination (FMVE) [45]. FMVE is a technique used in several dependence analysis tests,



most notably the Omega and Power tests that are discussed later in this section. It is used to determine the
existence of any real solutions to a system of linear inequalities, and simply treats constraints such as dependence
vectors and loop limits as additional inequalities. FMVE proceeds by systematically eliminating variables from
the system of linear inequalities. For example, once a variable x is selected for elimination, all inequalities in the
system are rewritten in terms of upper and lower bounds on x. Next, each lower bound on x is compared to each
upper bound on x, and a new inequality is derived that does not involve x. All the inequalities involving x are
deleted, and the remaining inequalities are in terms of one less variable. This process continues until all variables
have been eliminated, or until a contradiction is reached. If a contradiction is detected, FMVE announces that
no dependence exists. Otherwise, a maybe answer is returned, indicating that the test is unsure if the solution is
integer or not. In the worst case, the number of inequalities in the system could grow exponentially as variables
are eliminated. However, in practice, many of the inequalities produced are redundant, and exponential growth

usually does not occur.

Omega Test [138]. The Omega test is based on a combination of the least remainder algorithm and FMVE. It
always produces exact yes/no answers, but has worst case exponential time complexity. The Omega test begins
by employing a derivation of Knuth’s [106] least remainder algorithm to convert a system of linear equalities and
inequalities into a system involving only linear inequalities. During this initial conversion, bound normalization
and the GCD test are employed to detect if the system is inconsistent. If so, the test reports that no dependences
exist. Otherwise, an extension to standard FMVE is used to determine if the resulting system of linear inequalities
has integer solutions (recall that FMVE can only prove or disprove the existence of real solutions). Intuitively,
the elimination of a variable may be viewed as projecting an n- dimensional polyhedron onto an n-1 dimensional
surface. If the resulting “real” shadow contains no integers, then the original object contains no integers, and
the test reports that no solutions exist. The converse, however, is not necessarily true: the "real” shadow may
contain integers, whereas, the original object actually contains no integers. The refinement added by the Omega
Test consists in calculating a subset of this real shadow, called the “dark” shadow that corresponds to the
area under the original object where integer solutions definitely exist. If this dark shadow is non-empty (i.e.
contains integers), then the Omega Test reports that dependences exist. If the real shadow is non-empty, but the
dark shadow is empty, the Omega Test begins an essentially exhaustive search of the solution space, recursively
generating and solving integer programming problems until integer solutions are either found or disproved.

In addition, the Omega Test can be used to simplify integer programming problems via symbolic projec-
tion. Given an integer programming problem P and a set of protected variables V, P is reduced to one or more
sub-problems involving only the variables in V. These sub- problems describe the values of the variables in V
that produce integer solutions to P. Using this technique, the Omega Test can produce data dependence distance
vectors that describe the relationship between loop iterations in which the data dependence occurs. Furthermore,

the Omega test can handle certain cases in which loop bounds are unknown at compile time.

Power Test [179]. The Power test combines the Generalized GCD test with FMVE, producing a test that takes
loop limits and direction vector constraints into consideration. Initially, the Generalized GCD algorithm is used
to produce the transformation matrix U and upper triangular matrix D as described earlier and the integer
matrix t is produced by back substitution. Loop limits and direction vector information is used to add upper
and lower limits on the free variables of the t matrix to the system. Given this system of inequalities that
describe upper and lower bounds, the Power test then performs FMVE on the free variables.

The Power test is applicable in many cases in which information is unknown at compile time; in particular,



for those involving unknown loop limits. Since the Power test utilizes FMVE, it shares its exponential worst-
case execution time; however, this is in terms of the number of free variables after the generalized GCD test
has terminated. Additionally, in cases where the integer solutions occur near loop limits, or in cases where an
imprecision is introduced through floor and ceiling calculations, the test can return a conservative yes answer

when in fact no integer solutions exist.

Interprocedural Analysis. The presence of procedure calls raises some important practical issues in relation to data
dependence analysis across interprocedural boundaries. A simple solution is to expand (inline) the procedure
and then perform dependence analysis on the resulting program. The major technical difficulty in this case is
that it is necessary to reflect in the resulting code the effect of aliasing between formal and actual parameters.
The main drawback to this practice is that the size of the resulting code could become unmanageably large if all
procedures are expanded. For this reason, several techniques for interprocedural data dependence analysis have
been developed [31, 41, 111].

2.3 Future Directions

The limitation of program analysis is the inability to cope with statically unknown information. The existing
dependence tests can not handle loop bounds or array subscripts that are symbolic or nonlinear expressions. In
the presence of symbolic or nonlinear expressions, dependence is usually assumed. In certain cases, symbolic
program analysis techniques [28, 73] can help to overcome this problem and enable the effective parallelization
of a larger class of applications. But even symbolic analysis has its limitations, simply because the necessary
information can not be obtained or inferred at compile time. In order to realize the full potential of automatic
detection of parallelism, static program analysis techniques may be complemented by run-time dependence

analysis and parallelization [144].

3 Instruction Level Parallelism

Parallelism studies have shown that both scientific and non-scientific codes contain high amounts of instruction
level parallelism (ILP). Studies have shown that it is possible to achieve average instruction issue rates of as
high as 100 instructions per cycle for some of the Spec95 benchmarks [79]. Uncovering high levels of ILP
requires examination of instructions over a large instruction window containing hundreds and even thousands
of instructions. In [124] it was shown that the relationship between extracted parallelism and the instruction
window size is a quadratic one. In other words, in order to double the degree of ILP detected, the size of
the instruction window must be quadrupled. A compiler constructs a large instruction window by examining
instructions along program paths that extend across branches in acyclic code as well as cyclic code (i.e., across
loop iterations). By reordering the instructions, and placing independent instructions in proximity of each other,
the compiler enables generation of parallel schedules. In the context of statically scheduled very long instruction
word (VLIW) machines, code reordering is performed so that independent operations can be explicitly scheduled
to execute in parallel by their assignment to the same long instruction by the compiler. In the case of superscalar
processors the actual schedule is determined dynamically. Instructions from within a small hardware instruction
window, which is typically less than 100 instructions, are issued out-of-order to exploit ILP. However, the code
reordering performed by the compiler over a large instruction window causes additional parallelism to become

accessible within the small hardware instruction window of a superscalar processor.



In this section we first summarize the innovations in compiler technology that deal with global scheduling of
acyclic program regions. We discuss the role of speculation and briefly outline the challenges posed by predicated
ezecution supported by modern processors. The relationship of instruction scheduling to the task of register
allocation is also briefly discussed. Next we discuss the innovations in the area of cyclic scheduling which is
achieved by software pipelining algorithms. Various formulations to the cyclic scheduling problem are briefly
discussed. The degree of ILP that can be uncovered statically by the compiler, or dynamically by the hardware,
is greatly influenced by the effectiveness of the memory disambiguation techniques employed. We discuss some
recent innovations in this area. Finally some current trends in processor design and their impact on compiler

technology is discussed.

3.1 Acyclic Schedulers

In order to uncover significant levels of ILP the instruction window employed by the compiler must extend across
branches. Acyclic schedulers employ an instruction window that extends across branches within an acyclic code
segment. A variety of global scheduling algorithms continue to be developed to handle the task of scheduling
acyclic code segments in a program. Some of the well known global scheduling techniques include trace scheduling
[52], percolation scheduling [5], region scheduling [67], superblock scheduling [88], and critical path reduction
[157]. These techniques can be characterized by the scope of the instruction window they employ, the program
representation upon which they rely, and the nature of code reordering transformations that they incorporate.

Each of these techniques is able to perform code motion across branches, including speculative code motion.

1. Trace Scheduling [52]: This is the earliest and the best known global instruction scheduling technique that
was pioneered by Fisher. In this technique the instruction window is limited to a trace which is a sequence
of consecutive basic blocks along a path in the program control flow graph. A trace cannot extend across
loop boundaries. The data dependence graph for the trace is constructed and a scheduler (e.g., a list
scheduler) is used to generate the instruction schedule. In the course of scheduling, instructions may be
propagated across merge points and spilt points in the control flow graph. In this technique it is critical
that the traces representing more frequently executed paths are constructed and scheduled prior to those
that are executed less frequently. Doing so ensures that when speculative code motion is performed in
order to generate a good schedule for the trace being processed, the paths that suffer from speculative code
motion are less frequently executed than the current trace. Trace construction can be driven either by
profile data or compiler time heuristics for identifying biased conditional branches. While the remainder
of the scheduling techniques discussed here offer some improvements over trace scheduling, they also rely

upon the core transformations first introduced by trace scheduling.

=

2. Percolation Scheduling [5]: This is a program transformation system that has certain advantages over a
trace scheduler. A trace scheduler divides program transformation into two stages. The first stage reorders
code along the trace while the second bookkeeping stage modifies the rest of the program to preserve
program semantics. This separation of transformation process into two steps can lead to the generation of
redundant code during the bookkeeping stage. By applying semantics preserving transformations in one

step, percolation scheduling avoids this problem.

3. Region Scheduling [67]: This is also a program transformation system that operates upon the program de-
pendence graph [51] representation of the program. Instruction scheduling is carried out by first reordering

code within a control dependence region and then by performing code motions across control dependent



regions. Code reordering within a control dependence region is given preference because it results in less
code growth and unlike speculative code motion it does not harm any program paths. Such code reordering,
unlike trace scheduling, also enables instructions to be moved across loop boundaries. Much of the redun-
dant code generated by a trace scheduler during bookkeeping is also avoided. The instruction schedule is
progressively improved through code motion transformations until no more improvements in the schedule
can be identified.

4. Superblock Scheduling [88]: This scheduling technique simplifies the complexity of compensation code
generation associated with trace scheduling. In this technique, before instruction scheduling is carried
out, superblocks are created through tail duplication that eliminates code following merge points in the
program. Since code reordering performed on the resulting superblocks do not result in any code motion
above merge points, the compensation code generation is simpler and the redundant code generated by the

trace scheduler is avoided. However, this simplification comes at the cost of significant code growth.

5. Critical Path Reduction [157]: In this technique the program region being scheduled is a multiple entry
multiple exit acyclic region. The region exits are classified into two categories, frequently taken and
infrequently taken. Even if the paths leading to frequently taken exits does not include any delay slots, an
attempt is made to reduce the schedule length by pushing statements off these paths and to the infrequently
taken exits. This transformation is sometimes possible because a path to a frequently taken exit may contain
statements that are dead along these paths even though they may be live along other paths. Essentially,

this technique integrates the partial dead code elimination optimization into the instruction scheduler.

Predication. Each of the above techniques perform speculative code motion to aggressively reorder code. A
mechanism for enabling additional code reorderings is predicated execution. The TA-64 architecture supports
predicated execution in which an instruction is conditionally executed depending upon the value of its predicate
input [87]. The control flow through an acyclic code fragment that is implemented through branches can be
entirely eliminated by predicating the instructions. The resulting code may be viewed to simultaneously execute
all the paths through the original acyclic code. There are some situations in which the use of predication can be
quite useful. Predication may be used to eliminate unpredictable branches and consequently reduce the harmful
effects of such branches on the execution. If a speculatively issued load frequently causes a cache miss along some
program path then by predicating the load it may be possible to avoid the speculative issue along that path and
hence minimize the cache misses. While in the above limited situations the benefits of predication are clear, its
aggressive application is a far more challenging task. If the lengths of the paths through an acyclic code vary
greatly, predication would extend the execution times of shorter paths [17]. Moreover the demand for register
resources may be increased to a point that predication no longer yields superior instruction schedules. Finally
the data flow analysis techniques used to analyze programs, for such basic tasks as uncovering data dependences
and performing optimizations, is based upon explicit control flow. A new analysis framework must be developed

to accurately handle the implicit control flow expressed in predicated code [95].

Interaction with register allocation. The interaction of instruction scheduling and register allocation is an important
issue for VLIW and superscalar architectures that exploit significant degrees of ILP. Register allocation and
instruction scheduling have somewhat conflicting goals. In order to keep the functional units busy, an instruction
scheduler exploits ILP and thus requires that a large number of operand values be available in registers. On the
other hand, a register allocator attempts to keep the register demand low by holding fewer values in registers so

as to minimize the need for generating spill code.



If register allocation is performed first, it limits the amount of ILP available by introducing additional
dependences between the instructions based on the temporal sharing of registers. If instruction scheduling is
performed first, it can create a schedule demanding more registers than are available, causing more work for
the register allocator. In addition, the spill code that is generated must be incorporated in the schedule by
another scheduling pass, degrading the performance of the schedule. Thus, an effective solution should integrate
register allocation and instruction scheduling. The significance of integration is greatly increased in programs
where the register demands are high since the likelihood of spill code generation is high for such programs. Also,
when compiling programs for wide issue machines, the need for integrating register allocation and instruction
scheduling is the greatest.

A number of approaches have been proposed for integrating together instruction scheduling and register
allocation. These approaches differ in the complexity of the techniques used for detecting excessive resource

demands and the strategies for reducing resource demands.

1. On-the-fly Approach [63]: This approach performs local register allocation within extended basic blocks
during instruction scheduling. It uses the on-the-fly measures of register needs to detect excessive register
demands. The part of the program over which a value is used by the program is referred to as the live range
of the value. In order to reduce register demands this algorithm employs live range spilling which places a
value in memory for the entire duration of the value’s live range. The main weakness of this approach is
that it does not perform live range splitting which places a value in memory for only part of the time and
keeps it in a register for the remaining duration of the live range. Live range splitting is far superior to live

range spilling.

b

Parallel Interference Graph [123]: This approach uses an extended form of register interference graph to
detect excessive register demands and guide schedule sensitive register allocation. The reduction in register

demands is achieved through live range spilling.

3. Unified Resource Allocation [25]: This approach is based upon the measure-and-reduce paradigm for both
registers and functional units. Using the reuse dag representation for registers and functional units, it
identifies excessive sets that represent groups of instructions whose parallel scheduling requires more re-
sources than are available. The excessive sets are used to drive reductions of the excessive demands for
resources. Live range splitting is used to reduce register demands; whereas, serialization of otherwise inde-
pendent instructions is performed to reduce excessive functional unit demands. Once excessive sets have

been eliminated, a simple list scheduler is used to generate the final schedule.

3.2 Software Pipelining

The instruction window from which ILP is extracted by acyclic schedulers consists of paths that cannot extend
across loop iterations. Thus, acyclic schedulers cannot exploit ILP present across code blocks from different loop
iterations. One approach to uncover such parallelism is to unroll the loops to transform parallelism across loop
iterations into parallelism that exists within a single loop iteration of the transformed loop. The transformed
loop can then be scheduled by an acyclic scheduler. However, this approach can result in substantial code growth.
Software pipelining exploits ILP across loop iterations without causing significant code growth.

Software pipelining is a technique which overlaps execution of operations from different loop iterations and
thus exploits ILP across loop iteration boundaries. The objective of software pipelining is to generate a sched-

ule which minimizes the interval at which iterations are initiated, that is, the initiation interval. A software
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pipelining algorithm must take into account the instruction latencies and resource availability while scheduling
the operations from the loop. In addition, any increase in register demands must be met to avoid generation
of spill code inside loops. Generally the techniques for software pipelining assume that the loop body of the
pipelined loop contains no branches.

Rau and Glaser [143] introduced modulo scheduling, the most commonly used framework for software schedul-
ing. In this approach a lower bound on the initiation interval is established based upon the data dependences in
the loop and the resource demands of the loop. The modulo scheduler then searches for a schedule with the min-
imum initiation interval. If the search fails, the initiation interval is increased and the search is performed again.
The above process is repeated until a schedule can be found. In the above manner the modulo scheduler finds
a schedule with the minimum initiation interval. Since this technique was first introduced, numerous variants
of modulo scheduling have been developed. The SGI’s MIPSpro compiler employs a form of modulo scheduler.
It sets both and upper and lower limit on the initiation interval and performs a binary search over the interval.
It also employs a branch-and-bound algorithm in order to search for a schedule with a given initiation interval.
Extensive pruning is performed in order to ensure that the search for a schedule is efficient in practice.

The algorithms based upon modulo scheduling are essentially heuristics. Motivated by the search for optimal
algorithms, researchers formulated software pipelining as an integer linear programming problem [8]. The formu-
lations allow for non-pipelined as well as pipelined functional units and arbitrary structural hazards. Although
integer linear programming is an NP-complete problem, a number of standard packages for solving this problem
exist; and therefore, can be employed to compute optimal schedules. In a recent study, when the results of the
optimal algorithms are compared with the SGI’s production compiler based upon a form modulo scheduling, it
was observed that the heuristics for modulo scheduling employed by the SGI compiler are highly effective [148].

The solutions discussed above represent scheduling frameworks that are entirely distinct from those used
by acyclic schedulers. In contrast the circular scheduling technique builds upon existing basic block schedulers
to construct a software pipeliner [92]. Software pipelining is performed by code motions that move selected
instructions from the top of the loop body to the bottom of the loop body. Doing so essentially causes an
instruction from the current iteration to be moved out of the loop body; whereas, the same instruction from the
next iteration is moved up into the loop body. Thus, the loop body is viewed as a circular list of instructions

along which instructions can be moved. This techniques was implemented in a MIPS production compiler.

3.3 Memory Disambiguation

Serialization of memory load and store operations greatly limits the ILP that can be extracted from a program.
In order to uncover significant levels of ILP, effective memory disambiguation techniques must be employed.
Absence of dependences between store and load operations allows early issuing of load operations leading to
better memory latency tolerance. Compile-time disambiguation techniques based upon dependence analysis
were discussed earlier in this paper. Here we discuss two solutions to the memory disambiguation problem that
require hardware support.

The store set mechanism is a highly effective hardware memory disambiguator that was recently proposed
for superscalar processors [39]. The basic idea behind this technique is to initially assume that there are no
dependences between stores and loads. Thus, loads are freely speculated past preceding stores. However, as
mispredictions are observed and dependences are detected, the observed dependences are saved in a hardware
structure. A group of stores that have been observed to reference the same address form a store set and each
load which is dependent upon some store is associated with the store set containing that store. When a load

that is linked to a store set is encountered again, it is not speculated pasts the stores belonging to the store
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set. Thus, in this approach load speculation is only inhibited by dependences that have been observed during
program execution. In contrast, compile-time disambiguators are conservative in nature, that is, if they cannot
prove the absence of a dependence they must assume that one is present.

Since ILP scheduled by statically scheduled long instruction word machines must be extracted at compile-
time, their performance can be significantly limited due to conservative dependence analysis. As we discussed
earlier in this paper, numerous dependence tests have been developed for handling arrays. However, research
into dependence analysis techniques that work in the presence of pointers has not yielded equally positive results.
Thus, extraction of ILP from non-scientific code requires that we look for alternatives to dependence analysis. The
TA-64 architecture overcomes this problem using an innovative solution based upon a combination of hardware
and software support. The instruction set provides a pair of new instructions, the speculative load instruction
and the load verify instruction. If a load instruction is speculatively moved above earlier store instructions by
the compiler, it is so indicated by using a speculative load instruction. When the store instructions are executed
following the speculative load, the result of the load instruction is marked as invalid. Before the result of the
load instruction is used, the load verify instruction is executed. This instruction checks the validity of the value
loaded by the speculative load and if the result is invalid the load is reissued. If the loaded value is valid, the
load speculation performed has successfully managed to hide the latency of the load operation. The candidates

for load speculation may be found through address profiling.

3.4 Future Directions

Although extensive research has been performed on code optimizations, much of this research ignores the factors
that are important in the ILP domain. Developing optimization algorithms that take into account path execution
frequencies and machine characteristics poses a significant challenge.

The number of new processor architectures being developed today continues to increase at a rapid rate. In
particular, new application domains have led the development of a wide array of special purpose embedded pro-
cessors. At the same time general purpose architectures are being developed today to find increasingly effective
means of detecting and exploiting high degrees of ILP present in non-scientific code. The above developments

have also created new challenges for the compiler community.

Code optimizations and ILP. Effective application of code optimizationsin the ILP domain requires two main issues
to be addressed. First a suitable strategy for integrating the code optimizations with instruction scheduling must
be developed. One approach that has been considered by researchers interleaves the application of optimizations
with scheduling actions [74, 68]. Another approach suggests application of optimizations prior to instruction
scheduling using new optimization algorithms that are aware of the effects that an optimization may have on
register and functional unit demands [69, 70]. Second we must develop new optimization algorithms that take
advantage of path execution frequencies and machine characteristics. For example, researchers have developed
algorithms for eliminating redundant code [71, 29] and dead code [72, 30] along frequently executed program
paths. These algorithms take advantage of path execution frequencies and utilize the speculation and predication
features of the IA-64 architecture.

Researchers have also begun to realize that with the information available at run time, the compiler’s ability
to extract ILP and optimize code is greatly increased. Fisher [53] describes the notion of walk-time techniques
which perform code optimizations at compile time as well as run time based upon profile data collected during

program runs.
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General purpose architectures. The design of a processor architecture significantly impacts the demands placed
upon the compiler for exploiting ILP. Next we discuss some current trends in processor design and their impact
on the complexity of the ILP compilers. Interestingly architectures being developed range for those that rely
heavily on sophisticated compiler support to those that perform increasing number of traditional compile time
tasks in hardware.

The TA-64 architecture supports several features for exploiting high degree of ILP and relies on a sophisticated
compiler to exploit these features [48]. It allows the compiler to explicitly express instruction level parallelism
in the machine code. An [A-64 instruction bundle contains three independent operations and a template which
encodes dependence information allowing independent instructions to be placed across multiple bundles. TA-64
also supports full predication and speculation which are both exposed to the compiler. As mentioned earlier, TA-
64 also supports a form of load speculation which can only be exploited through proper compiler support. Thus
the compiler is responsible for exposing ILP using speculation and predication and then encoding the parallelism
into instruction bundles.

Recently architectures have been proposed that on the one hand support instruction sets similar to con-
ventional superscalars while on the other hand employ a long instruction word type ezecute engine internally
[121, 49]. The long instruction word schedules are determined at run time and cached for reuse. This approach
lowers the burden on the compiler and may lead to better instruction schedules as the schedules are based upon
dynamic information. Moreover caching of instructions and repeatedly reusing them suggests that such archi-
tectures may be prime candidates for incorporating low level optimizations that are at present typically left up
to the compiler [55]. Examples of such optimizations include copy propagation and constant propagation.

Architectures that combine characteristics of superscalar processors and long instruction word machines in
creative ways are also being proposed [40]. An illustration of this approach is the recent attempt to incorporate
load value prediction [116] in long instruction word machines [56, 122]. Aggressive speculation through value
prediction has been proposed as an approach to scale the performance of superscalars to high issue widths [116].
A combination of compiler and hardware support is required to allow statically scheduled long instruction ma-
chines to take advantage of value prediction [56]. Value profiling is used to identify loads for which the values
loaded can be accurately predicted. The compiler then schedules as early as possible the execution of instructions
dependent upon these loads based upon values provided by the value predictor at run time. Explicit checks are
also scheduled by the compiler to detect mispredictions. Recovery from mispredictions is achieved by executing
compensation code. Although compensation code can be explicitly generated by the compiler [56], doing so
results in higher misprediction penalty and a significant code growth. In order to avoid these drawbacks an
architecture is proposed in [122] that automatically generates compensation code at run time which is executed

on a dedicated execution unit.

Special purpose architectures. A wide array of products ranging from video games and cellular phones to auto-
mobiles are increasingly relying on specialized processors for embedded control. An embedded processor may
be a simple controller or a very high performance DSP processor. Although the trend in this area is towards
VLIW like processor designs, the issues that compiler must face here are significantly different and the compiler
technology developed for exploiting ILP must be retargeted to handle certain important new complexities. The
compilers must produce compact and efficient code that exploits ILP to meet high levels of real time perfor-
mance. In addition, the compiler must contend with specialized data paths, addressing modes, and instructions
for domain specific needs that are often found on embedded devices.

Although many applications executing on an embedded system may be able to meet the execution speed

13



performance requirements by exploiting ILP, they must be able to deliver this performance under tight memory
requirements. Thus the issue of code density is extremely important in such systems. The code growth that
accompanies existing scheduling techniques may not be acceptable [54, 67, 43]. Jain et al. [93], developed a code
motion framework to exploit ILP on TMS 320C2x. However, this framework is limited only to a basic block.
Also the existing scheduling techniques do not deal with the issue of complex data paths between functional units
that are typically found in DSPs [14] and they must be extended to incorporate instruction selection techniques
that would lead to compact code. Liao et al. [114], have addressed the instruction selection issue for embedded
DSP processors. Their method, based on a binate covering formulation, detects opportunities for combining
neighboring simple instructions. However, limited opportunities exist if one were restricted to combining neigh-
boring simple instructions. One could expose far more opportunities for combining such instructions through
code motion obeying data dependencies.

Many architectures (e.g., the TT TMS320C2x DSP family) provide indirect addressing modes with auto-
increment and auto-decrement arithmetic. By carefully laying out data variables in storage, the address arith-
metic can be subsumed by auto-increment and auto-decrement resulting in faster and denser code. In order
to increase opportunities to use efficient auto-increment and auto-decrement addressing modes, optimizing DSP
compilers, such as the SPAM [161] compiler, delay storage allocation of variables to after the code selection
phase. After code generation, when the sequence of variable accesses is known, storage assignment is performed
as a separate code optimization pass. The storage assignment problem was first studied by Bartley [21] and
Liao et al. [113]. Liao et al., formulated the simple offset assignment problem (SOA) that is a simplified storage
assignment problem with a single address register. They modeled the problem as a graph theoretic optimization
problem similar to Bartley and showed that the SOA problem is equivalent to the mazimum weighted path cov-
ering (MWPC) problem and proved that it is NP-complete. Recently, Rao et al. [147], have derived a sequence
of systematic program transformations when applied solves the problem efficiently for most cases. A number of
approaches [43, 15, 14, 166, 165] based on instruction selection and scheduling have been proposed to improve

code size but they do not address the problem of code compaction in relation to storage assignment.

4 Shared-Memory Parallelism

In this section, we summarize past work, the current state-of-the-art, and future directions in the area of com-
piler technologies for exploiting shared-memory parallelism. Issues related to distributed-memory parallelism
are discussed in a later section. The compiler technologies discussed in the previous section enable exploitation
of instruction-level parallelism in modern processors by grouping together independent instructions that belong
to the same sequential thread of control. Shared-memory parallelism is an additional dimension in which par-
allelism is exploited by executing multiple threads of control on a shared-memory multiprocessor that contains
multiple processors connected to a shared global memory. Over the last two decades, symmetric shared-memory
multiprocessors (SMPs) have evolved from one-of-a-kind experimental machines to widely available commercial
systems. In fact, because of the favorable price-performance characteristics of SMPs, future computer systems
are more likely to be shipped as an SMP configuration rather than a uniprocessor configuration. Recent advances
in VLSI technologies that enable an entire SMP to be integrated within a single chip will further strengthen this
trend of making SMP configurations the default, compared to uniprocessor configurations.

Shared-memory parallelism is an attractive programming model for multiprocessors because it supports a
global address space, that is, it enables any global data to be uniformly accessed by any processor. This greatly

simplifies the task of writing a parallel program. To obtain a correct parallel program, the programmer needs to
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focus only on correct parallelization of the program’s control logic; the global address space in a shared-memory
multiprocessor ensures that all shared data will be uniformly accessible by all threads/tasks in the parallel
program. However, this simplified view of shared-memory parallelism is often inadequate to obtain an efficient
parallel program and it becomes important to also pay attention to data locality and placement for performance
reasons. Many of these performance considerations apply to modern uniprocessors with deep memory hierarchies
as well, so the effort required for tuning the performance of a shared-memory parallel program is mostly covered
by the effort required for tuning the performance of the sequential version of the same program.

There are two ways of exploiting shared-memory parallelism on shared-memory multiprocessors:

1. Explicit parallelism. In this approach, the user writes an explicitly parallel program. Multithreading is the
most common programming model for SMPs (e.g., Posix threads and Java threads). Other programming
models for explicit parallelism build on language constructs at a higher level than threads, such as doall’s
and cobegin-coend’s. The advantage of explicit parallelism is that the programmer can control exactly
where the parallelization occurs. The disadvantage is that writing an explicitly parallel program requires
more effort and is more error-prone than writing a sequential program, because there is the possibility of
introducing errors in concurrent data access (e.g., errors due to data races) and in coordination of parallel
threads (e.g., errors due to deadlocks). In general, explicit parallelism has been moderately successfully on

non-numeric applications, but at the cost of programmer effort.

2. Implicit parallelism. In this approach, the user writes a sequential program and the compiler performs
automatic parallelization, that is, the compiler automatically generates a shared-memory parallel program
from the given sequential program. The advantage of implicit parallelism is that it reduces programming
effort for parallelization. The disadvantage is that technologies for automatic parallelization are limited to
certain classes of programs (typically, scientific programs with well-structured loops and dense matrix data
accesses). In general, implicit parallelism has been a successful approach for shared-memory parallelization

of many engineering and scientific programs written in Fortran and C.

The rest of this section is organized as follows. We first provide a brief summary of the history of loop par-
allelization techniques for shared-memory parallelism. Next the impact of data locality on loop transformations
and shared-memory parallelization is discussed. We also outline approaches to statement-level or task-level par-
allelization for shared-memory multiprocessors, that go beyond loop parallelization. Finally, we discuss future

directions in compiler technologies for shared-memory parallelism.

4.1 Loop Parallelization

Loop parallelization has been the primary focus of much of the past and current research on shared-memory
parallelization. The goal of loop parallelization is to enable multiple iterations of a given loop to execute
concurrently on multiple processors in a shared-memory multiprocessor. For programs in which most of the
execution time is spent in loops, loop parallelization can be sufficient to fully utilize all the processors in the
target multiprocessor. The bulk of past research on loop parallelization has been restricted to parallelization of
counted loops, such as Fortran DO loops with no premature exits.

Perhaps the earliest work on loop parallelization was due to Lamport [108], who introduced the hyperplane
method and the coordinate method for parallel execution of iterations in a set of perfectly nested counted loops.
The framework used in [108] also introduced the notion of dependence vectors, and paved the way for later work

on the use of linear algebra in describing loop transformations and legality conditions for loop parallelization [171,

90, 19, 176).
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Though the framework in [108] provides a solid theoretical foundation for transforming and parallelizing
multiple loops in a loop nest, the supercomputer hardware of that era (late 1970’s and early 1980’s) was geared
to exploiting a very specific form of loop parallelism, namely vector parallelism. Hence, many optimizing compilers
of that era focused their efforts on exposing vector parallelism [6, 46, 156]. The legality rules for vectorization
follows easily from the more general legality rules for loop parallelization. However, the hard problem that
remains is to compute dependence vectors with sufficient precision so as to increase the set of loops that could
be automatically vectorized.

The path to improving the precision of dependence vectors lay in improved data dependence testing. A number
of data dependence tests are introduced [18, 177] that result in more precise sets of dependence vectors, which in
turn leads to improvements in vectorization. In addition, a number of new loop transformations are introduced
(e.g., loop distribution, loop fusion, loop tiling) that went beyond the linear algebra framework introduced in
[108], but are essential for obtaining good performance with vector instructions.

The next major step in the technology evolution from vector computers and vectorizing compilers was to
shared-memory multiprocessors. The Cray architecture evolved into the Cray-XMP, a combination of vector
processing within a processor and multiprocessing across processors. Many other experimental and commercial
SMPs began to appear. Initially, it appeared that the vectorizing compiler technologies could simply be redirected
to accomplish loop parallelization for SMP execution. While this was true for simple loop nests, it became clear
that the coarse grain nature of SMP parallelism led to at least two fundamental requirements that are not
necessary for vectorization. First, it became important to parallelize outer loops that contain conditional control
flow, unlike vectorization in which only the innermost loop was parallelized. Second, it became important to
parallelize loops containing calls. The first problem was addressed by the introduction of the control dependence
relationship [51], and the second problem was addressed by the advent of interprocedural analysis in parallelizing
compilers [31, 42].

Until this stage, the primary metric for evaluating the effectiveness of shared-memory parallelization in a
compiler was the set of loops parallelized and the granularity of the parallelized loops (coarse-grain parallelism is
usually preferable to fine-grain parallelism on shared-memory multiprocessors because of its reduced synchroniza-
tion cost). Many benchmark programs focused on this metric by comparing different vectorizing/parallelizing
compilers based on the number of loops that are vectorized/parallelized. However, it soon became apparent that
a simple count of parallelized loops was an inadequate predictor of performance in real applications, because it did
not take into account the costs of data movement and data locality. Initially, the recognition of the importance
of data locality came about when vectorizing compilers realized the importance of vector register allocation [7].
Later, this awareness crept into parallelizing compilers as they began to target more modern multiprocessors in
which cache efficiency is as significant a performance factor as processor utilization. The next section discusses

the impact of data locality on loop transformations and shared-memory parallelization.

4.2 Locality Optimizations

The early compiler work on shared-memory parallelization focused on speedup measurements rather than on
absolute execution times. Most performance measurements in research publications are presented as speedup
curves. The general belief was that the number of processors in shared-memory multiprocessors would keep
increasing as hardware technology evolved, and thus scalable speedup should be the primary metric for evaluating
the performance of shared-memory parallelization. This line of thinking was similar to the approach taken by
designers of parallel algorithms during the 1980’s, in which complexity analysis focused on analyzing the execution

time of parallel algorithms as an asymptotic function of the number of processors without taking into account
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the cost of data movement.

The advent of processors with caches and deep memory hierarchies in the early 1990’s showed that focusing
solely on speedup was too simplistic a view of performance. The ratio of access time to main memory is ten
times the access time to the first-level cache in these newer machines, and this ratio continues to increase with
the widening performance gap between processor clock speeds and main memory access times. This implies
that the performance difference due to locality optimizations can be a factor of ten or larger; thus, making it
comparable to the performance difference between sequential code and parallelized code on many shared-memory
multiprocessors. Hence, it became essential to consider locality optimization in conjunction with parallelization.

This realization set in as vectorizing and parallelizing compilers moved from targeting multiprocessors without
caches (such as the Cray) to newer multiprocessors that contain caches. A program exhibits good locality when,
for a majority of its memory instructions, the data location accessed is the same as, or in close proximity
to, the data location accessed by a memory instruction executed in the recent past. The locality is said to
be temporal if the data location accessed is the same as the location accessed by the previous instruction;
otherwise, the locality is said to be spatial. To adapt to these locality constraints, vectorizing and parallelizing
compilers built in the 1980’s began extending their transformation heuristics so as to become more effective when
targeting multiprocessors with caches. However, these extensions did not work well when there were conflicts
between the transformations necessary for improving locality and the transformations necessary for improving
parallelization. The next step was to develop approaches that could systematically express optimizations for
locality and parallelism in a common framework [176, 97, 153].

The set of loop transformations that can be used to improve locality fall into two classes — iteration-reordering
and statement-reordering transformations. An iteration-reordering loop transformation changes the order in
which loop iterations are executed (when legal to do so) but leaves the loop body unchanged — each iteration of
the loop is treated as an atomic entity. Some commonly used iteration-reordering loop transformations are loop
interchange and loop tiling. When properly selected, these transformations can improve data locality by bringing
together computations that access the same block of data. A statement-reordering loop transformation rearranges
the statements within and across loop bodies. Some commonly used statement-reordering transformations are
loop distribution, loop fusion, and loop unrolling.

Iteration-reordering and statement-reordering loop transformations are not mutually exclusive, and are often
used in conjunction with each other. These transformations are referred to as “high-level” or “high-order” trans-
formations because they can be performed at the source code level [107, 146] or at the level of an intermediate
language that is close to the source code level [175]. In addition to performing high-level loop transformations
automatically in optimizing compilers, it is also feasible for programmers to perform high level transforma-
tions by hand. In fact, these transformations have been used quite extensively in hand-coded implementations
of computationally-intensive kernels [57, 89]. In contrast, hand-implementation is not a feasible approach for
low level optimizations such as instruction scheduling because the programmer has little knowledge of the ex-
act instruction sequence that would be generated by an optimizing compiler and of the hardware scheduling
characteristics of these instructions.

Unfortunately, past research focused more attention on introducing new loop transformations than on the
problem of automatically selecting combinations of these transformations to optimize locality and parallelism.
Automatic selection of high level transformations is a hard problem because high level transformations are invert-
ible — a poor choice of transformations can degrade performance just as effectively as a good choice can improve
performance! In contrast, many classical compiler optimizations are non-invertible (e.g., in constant propagation,

expressions are replaced by constants but not vice versa) so the difference between a poor optimization choice
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and a good optimization choice lies only in the amount of improvement that they deliver. Therefore, unlike
classical optimizations, it is essential that selection of high level transformations be driven by cost models that
can effectively determine when improvements or degradations in performance will occur. Since the best trans-
formation choices may change as multiprocessors (and their cost models) evolve in the future, it is inadvisable in
the long run to perform high level transformations by hand. Some notable examples of compilers and tools that
perform automatic cost-driven selection of transformations for optimizing locality and parallelism on shared-
memory multiprocessors are the KAP and VAST preprocessors [107, 146], IBM’s XL Fortran compilers [154],
and the Rice University Memoria system [118].

4.3 Statement-level/Task-level Parallelization

As mentioned earlier, the bulk of past compiler research for shared-memory multiprocessors focused on par-
allelization of loops. However, a few research projects also addressed the problem of automatically selecting
“non-loop” (statement-level or task-level) parallelism in programs. Task-level parallelization can be viewed as
an extension of the global instruction scheduling problem. In global instruction scheduling, the goal is to reorder
instructions across multiple basic blocks so that independent instructions come together in close proximity —
the unit of parallelism is a single instruction. In task-level parallelism, the goal is to reorder instructions and
partition the program into independent tasks — the unit of parallelism is a single task which may contain mul-
tiple instructions with general sequential control flow (such as loops and conditionals). The goal of automatic
task-level parallelization is to deliver the performance benefits of shared-memory parallelism to applications that
are not loop-intensive or applications containing significant amounts of computation in non-parallelizable loops.

One of the key issues in task-level parallelization is the desired granularity of parallelism, which is determined
by the task scheduling and synchronization overheads on the target multiprocessor. If these overheads are high,
then it is desirable for tasks to be as large as possible; the primary drawback of large tasks is that the amount
of parallelism may be small or (more generally) the division of work among tasks may not be well balanced.
If the scheduling and synchronization overheads are low, then it is desirable to form smaller tasks that can
exhibit better load balance. Since these considerations depend on the target multiprocessor, it is best if the task
partitioning is performed automatically by the compiler or some other performance-enhancing tool. Examples of
automatic task partitioning can be found in past work on partitioning programs written in functional languages
such as Sisal [151], Id [170], and Haskell [32], and in imperative languages such as Fortran [152].

The data dependence analysis work developed for loop parallelization is also applicable to task-level paral-
lelization. However, a key issue that is unique to task-level parallelization is dealing with global control flow.
Sequential programs are written assuming a sequential flow of control, which lead to control dependences in
addition to data dependences. For example, the decision to execute a region of code can depend on the runtime
predicate values of prior conditional branches. The need to consider both control dependences and data depen-
dences has motivated the use of the program dependence graph [51] and its variant in past work on task-level

parallelization.

4.4 TFuture Directions

The future directions in compiler technologies for shared-memory parallelism are largely motivated by two im-

portant research problems:

1. Exploiting shared-memory parallelism for loops that have traditionally not been amenable to automatic paral-

lelization.
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This problem has been recently growing in importance due to the increased availability of current computer
systems with SMP configurations; this trend will get even stronger when future computer systems are built
out of single-chip SMPs. It is thus imperative to make SMP parallelization as widely applicable in the
future as current optimizations (such as instruction scheduling and register allocation) that are necessary

for exploiting the performance of today’s high-end uniprocessors.

b

Exploiting shared-memory parallelism in new programming languages such as Java [16].

Past work on shared-memory parallelization has largely been targeted to scientific programs written in
procedural languages such as Fortran and C. However, object-oriented programming languages such as
Java and C++ are now gaining in popularity for all programming tasks, including scientific and engineering
applications. Therefore, it is essential for future parallelizing compiler technologies to target these programs

as well.

One trend in expanding the set of loops that are amenable to automatic parallelization is to pursue more
aggressive storage duplication transformations, such as array privatization [9] and construction of Array SSA
form [102]. These transformations enable more parallelization by removing storage-related dependences, that
is, anti and output dependences [177]. However, care is required when performing these data transformations
because the costs of duplicating storage may sometimes outweigh the benefit of parallelization.

Another trend in enabling more loops to be executed in parallel is to perform run-time parallelization. A
simple instance of run-time parallelization is when the compiler generates multi-version code for loops that it is
unable to parallelize at compile-time. A conditional test is evaluated at run-time to choose, e.g., between the
parallel version and the sequential version of the loop. This test includes all the conditions that need verification
at run-time to ensure that the parallel version will be correct if selected. The inspector-ezecutor framework [150]
is a more general instance of run-time parallelization, suitable for sparse matrix computations. More recently,
there are research efforts under way to explore the use of dynamic compilation in supporting even more general
forms of run-time parallelization.

A logical extension to run-time parallelization is speculative parallelization. In run-time parallelization, the
decision-making for loop parallelization is performed first, and then followed by parallel execution of the loop (if
the decision made was to execute the loop in parallel). In speculative parallelization, iterations of the loop are
executed in parallel without prior checking; instead, run-time checking is performed during the parallel execution
to determine if the parallelization was indeed legal or not. If the parallelization is found to be legal, then the
speculation is correct and no further action is needed. If the parallelization is found to be illegal, then some
“fix-up” is necessary to ensure that any updates and side effects performed by iterations that were executed out
of order are not “globally committed”. This idea is analogous to optimistic concurrency control in transaction
processing. Examples of systems that perform speculative loop parallelization can be found in [120, 125, 144].

The second important future research problem outlined above is that of exploiting shared-memory parallelism
in new programming languages such as Java. Though current automatic parallelization techniques can also be
applied to subsets of Java, a more pressing problem is dealing with the explicit parallelism of threads and locks
present in most Java programs due to threads and locks. A Java programmer can explicitly create threads; a
common example is to create a thread that performs some form of “asynchronous wait”. More importantly, a
Java programmer can easily introduce locks into a program by using the synchronized keyword for a method or for
a block of statements. Even though the parallelism in Java is explicit, new compiler technologies are necessary to
enable efficient parallel execution on shared-memory multiprocessors. The challenge for optimizing compilers in

this area is to take a Java program with explicit threads and locks as input, and generate as output an equivalent,
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but more efficient, parallel program that uses fewer thread and locks. One promising direction is to use escape
analysis [27] to identify unnecessary synchronization operations that can be eliminated. Another direction is
optimize the structure of user-defined (virtual) threads in the Java programs so as to preserve the semantics of
the program while using use fewer (physical) threads. This research direction is especially challenging because

it requires the ability to analyze and optimize explicitly parallel programs as illustrated in [109, 155, 162].

5 Distributed Memory Parallelism

Shared memory systems typically do not scale well as the contention for memory increases with the number
of processors. The distinctive characteristic of distributed memory parallel systems is their ability to scale.
Therefore such systems are typically constructed around a scalable topology such as a 3D torus, mesh, or a
hypercube. Each processor has its own local memory and the cost of interprocessor communication is higher
than that of accessing local memories. The desired model supported on such machines is the popular shared
memory model. Thus, the task of generating a parallel program whose threads execute in distributed address
spaces falls on the compiler.

Although the potential for providing scalable shared-memory performance is possible, one main obstacle
to realizing the full potential of distributed memory systems has been the complexity of programming such
systems. The complexity arises from the requirement that not only must the parallelism be detected and
managed effectively, the compiler must also simultaneously manage distributed address spaces. The latter task
entails distribution of data across the local memories and orchestrating communication among the processors
to execute an application. Effectively managing the communication is critical to obtaining high performance
because the cost of interprocessor communication is higher than that of accessing data in local memories.

Spatial parallelism in applications such as fluid flow, weather modeling and image processing is perfectly
decomposable and easy to map on to distributed memory systems. Speedups increase linearly with the number
of processors for such applications because data accesses are mostly limited to local memory. However, due
to the above complexities, for many applications the only practical success has been achieved through hand
parallelization of codes with communication managed through message passing libraries. In spite of a tremendous
amount of research in semiautomatic parallelization, applicability of many of the compiler techniques remains
rather limited [130]. Therefore, in order to simplify the task of the compiler, there has also been significant use
of languages in which the user provides the data distribution. This approach has worked quite well for regular
numeric applications. While the success of automatic parallelization for distributed memory has been limited,
nevertheless it appears that the compiler can play an important role in addressing some fundamental problems
with regard to these machines.

The remainder of the section is organized as follows. We first discuss the language design aspects of com-
piling for distributed memory systems. It is important to discuss these approaches because, from a historical
perspective, most of the compilation techniques have evolved around data parallel languages. We then look
at the crucial issues of data and code partitioning. Many important techniques are examined along with open
research directions. Next the issues relating to communication optimization are discussed. Some code generation
problems that arise specifically in the context of distributed memory systems are discussed. Finally we present

our perspective on potential general problems to be solved and their implication on effective use of these systems.
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5.1 Language Support

In an attempt to reduce the burden of code and data distribution on the compiler, new constructs have been
incorporated into variety of languages. We examine language support introduced to create imperative data par-

allel languages, high performance object-oriented languages, and functional languages.

Data parallel languages. The data parallel model derives its parallelism from the observation that updates to
individual elements of large arrays are often independent of each other. This observation alone exposes significant
degrees of parallelism in many problems. The data parallel languages require the programmer to specify data
decomposition and allocate computation accordingly. Data parallel programming is one of the most significant
approaches proposed to solve the tough problem of data distribution [80]. Languages of this style typically
provide aggregate array operations to enable data level parallelism to be expressed and additional constructs
for specifying data distributions. A number of research projects and commercial compilers have employed data
parallel programming [82, 110, 59, 77, 149, 101] . The job of the compiler and run-time system for a data
parallel language is to efficiently map programs onto parallel hardware. Typically, the implementation creates a
parallel Single-Program Multiple-Data (SPMD) parallel program using the owner computes rule which assigns
the computation in an assignment statement to the processor that owns the variable on the left-hand side.
Although this approach has been quite successful in the areas such as dense linear algebra codes that can be
nicely mapped, it is unclear what fraction of scalable applications are data parallel. In the 1996 SPDP Workshop
on Compiler Optimizations for Scalable Parallel Computing [132] it was suggested that 15 to 20% of scalable
parallel applications are data parallel. Whether the other applications can be converted in data parallel domain
through program transformations remains an open question. Limited forms of data distribution constructs were
initially supported. New distribution patterns are being considered by researchers to broaden the class of appli-
cations that can be handled. Since with increase in parallelism the data demands go up, attention is being paid

to the need to scale 1/O [80].

Object oriented languages. The object oriented solution for distributed memory systems is mainly centered around
providing library support for parallel programming in distributed memory space. HPC++ is one such important
approach [24, 94]. The mode of program execution is an explicit SPMD model where copies of the same program
are run with different contexts on multiple processors [34]. This programming model is similar to that of Split-C
[44] in that the distribution of data that must be shared between contexts and the synchronization of accesses
to that data must be managed by the programmer. HPC++ differs from Split-C in that the computation on
each context can also be multi-threaded and the synchronization mechanisms for thread groups extends to sets
of thread groups running in multiple contexts. In addition, HPC++ provides a template library [91] to support
synchronization, collective parallel operations such as reductions, and remote memory references. In order to
efficiently exploit parallelism new analysis techniques must be developed and approaches to limit run time over-

head must be considered.

Functional languages. The functional model of computation is one attempt at providing an implicitly parallel
programming paradigm. Because of the lack of state and its functionality, it allows the compiler to extract
all available parallelism, fine and coarse grain, regular and irregular, and generate a partial evaluation order of
the program. Sisal [50] is one of the attempts to provide implicitly parallel programming model. One of the
key aspects of this model is the compiler flexibility to manage the memory binding of values. It leads to some

interesting optimizations that can update arrays ‘in-place’ avoiding the communication that is otherwise needed.
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However, the severe limitation of this model is very high operation counts that are typical of functional programs
and run time overheads. Also, lack of memory binding could be a blessing or a problem. For example, it is
generally not possible for a compiler to perform optimizations such as data layouts since the language semantics
is rather strict and a lot of analysis is needed to ascertain the safety of such optimizations. These issues are

significant since most of communication results due to non-local data accesses.

5.2 Data and Code Distribution

Since the communication overhead has a major impact on the performance, the code and data partitioning deci-
sions are of critical importance. We already discussed language based solutions to partitioning that largely leave
this problem in the hands of the programmer. In this section we discuss automatic techniques for determining
data distribution patterns to minimize the communication overhead. Since code and data partitionings cannot
in general be carried out independently, a tradeoff between increasing parallelism and decreasing interprocessor
communication must be performed. Most of the research we have described assumes that following the data
distribution stage, the compiler generates SPMD code with appropriate message passing operations.

We discuss three static partitioning methods for creating low communication distributions: communication-
free partitioning, alignment and distribution, and tiling. Later we also briefly discuss some dynamic partitioning
techniques. While our discussion is mainly limited to the manner in which automatic distribution techniques
minimize communication overhead, it is worth mentioning that other important transformations for limiting the
need for communication also play an important role. An example of such a transformation is privatization which

leads to the localization of memory references [172].

Communication-free partitioning. This class of methods is based on the assumption that interprocessor commu-
nication always offsets the benefit of parallelization even if the parallelization exploits large amounts of paral-
lelism. Thus, the goal of such techniques is to construct partitionings that completely eliminate interprocessor
communication. Analysis of the relationship between iteration and data spaces of loops is performed to find
communication-free partitionings. The key results based upon this approach are summarized below. In each
of these cases the methods assume affine array references. Also these methods assume that there are no loop
carried dependences since the iteration space then can be partitioned and traversed in any order. The methods

are classified as loop-level or statement-level according to the level at which the partitioning is performed.

1. Loop-level partitioning: Huang and Sadayappan [85] derived the necessary and sufficient conditions for the
feasibility of communication-free iteration space and data space partitioning. Ramanujam and Sadayappan
[139] developed a method for communication-free hyperplane partitioning of data spaces. The computation
partitioning is then achieved according to the owner computes rule. Chen and Sheu [38] proposed two
communication-free data allocation strategies: one allows data duplication where as the other does not

allow any data duplication.

2. Statement-Level partitioning: Shih, Sheu, and Huang [159] derived the necessary and sufficient conditions for
the existence of communication-free statement-iteration space and data space partitionings. Lim and Lam’s
[115] proposed affine processor mappings for communication-free statement-iteration space partitioning and

maximizing parallelism.

The main drawback of communication-free partitioning is that it is applicable to a narrow class of loops. A

more general strategy, such as the ones proposed in [169, 13], must perform tradeoff between parallelism and
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communication.

Alignment and distribution. In order to expand the applicability of data and loop partitioning to a larger class
of loops, another approach has been developed which consists of the two distinct phases of alignment and
distribution. The alignment phase maps data and computations to a set of virtual processors organized as
a Cartesian grid of some dimension. The distribution phase maps the virtual processors into the physical
processors. The reason for separating alignment from distribution is that the alignment is dependent on program
characteristics and independent of underlying architecture; whereas distribution involves balancing computation
and communication for which their relative costs depend on the underlying architectural model.

A number of heuristic solutions have been suggested for the alignment problem. One approach trades paral-
lelism for codes that allow decoupling of the issues of parallelism and communication by relaxing an appropriate
constraint of the problem. Pingali et al. [22], have proposed a systematic three step procedure for determining
alignment. First the constraints on data and computation placement are determined. Next constraints that will
be left unsatisfied are selected. This step relaxes an overconstrained system so that non-trivial solution involving
parallelism can be found. In the final step the remaining system of constraints is solved to determine data and
computation placement. Other alignment heuristics based upon the above approach have also been developed
[13, 36].

The relaxation step upon which the above techniques rely may not be feasible for many important problems
such as image processing. In order to achieve communication-free parallel execution for such applications, one
must replicate the data at all processors. Thus, in such situations, one must resort to a different partitioning
solution based on relative costs of communication and computation. A new approach has been proposed to
partition the iteration space by determining directions that maximally cover the communication and minimally
sacrifice parallelism [129, 131]. The resulting partition of the iteration space is non-affine; and thus, results in
approaches based on hyperplanes or systems of linear inequalities to be nonapplicable. There is no particular
reason to confine solutions to affine partitions of iteration spaces as long as the iteration partitions can be spanned
without much run time overhead. For limited cases, it is shown that the underlying non-affine iteration space
partitions can be spanned by generating integer lattice vectors without much complexity [168].

While the above techniques primarily focus on the volume of communication, it is also important to orches-
trate a structure of communication that utilizes aggregation. M. Dion, C. Randriamaro and Y. Robert [47]
propose an approach in which the communication is minimized by taking advantage of macro communications
such as broadcasts, gathers, scatters and reductions, or by decomposing the general affine communication into
simpler components. Thus it addresses communication aggregation issues effectively. A linear algebraic frame-
work is developed and a heuristic is proposed which first minimizes the non-local communication and then

optimizes the residual affine communication using either macro communication or decomposition.

Tiling. This transformation essentially partitions the iteration space of a loop nest into tile like blocks. It has
been the focus of loop partitioning work in compilers for increasing cache locality through data reuse [178].
Tiling is also very useful for reducing and aggregating communication in distributed memory systems. Agarwal
et al. [2], address the problem of deriving the optimal tiling parameters for minimal communication in loops
with general affine index expressions. They assume tiles to be atomic and only consider DOALL loops factoring
out issues of dependencies and synchronizations that arise from the ordering of iterations of a loop. Ramanujam
and Sadayappan [139] address the problem of compiling perfectly nested loops for multicomputers using tiling.

However, they consider tiles to be atomic and therefore do not allow synchronization during the execution of a
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tile. They present an approach to partitioning the iteration and data space so that communication is minimized.
D’Hollander [84] presents a partitioning algorithm to identify independent iterations in loops with constant
dependence vectors. He also proposes a scheduling scheme for the dependent iterations.

Demands of communication aggregation and inter-tile latency can be conflicting. In order to combine com-
munication, most of the above approaches consider tile execution to be atomic but in order to minimize latency,
it may be better to schedule non-atomic execution within tiles. Rastello et al. [142], consider the non-atomic
execution of tiles to minimize inter-tile latencies. They apply their technique to loops with dependence distances
that are unknown at compile time. They also derive optimal tile sizes given the constraints of dependencies and
inter-tile latencies to minimize loop completion time.

The main focus of tiling work in distributed memory systems has been to minimize communication latency.
Tiling, is, however, a control centric transformation. Pingali et al. [103], in their recent paper, argue about the
usefulness of data centric view in light of locality and propose a concept of data shackles to orient the loop
partitioning around data rather than control. A similar argument could hold for tiling for distributed memory
systems. In fact the concept of data shackles could be very useful to define related references that can be auto-
matically discovered and localized by the compiler. Whether this would lead to more efficient loop partitioning

methods remains to be seen.

Dynamic data partitioning. Static data alignment and distribution typically solves the problem of communication
on a loop nest by loop nest basis but rarely in an intraprocedural scope. Most of the inter-loop nest level and
interprocedural boundaries require dynamic data redistribution. Hudak and Abraham have proposed a method
for selecting redistribution points based on locating significant control flow changes in a program [86]. Chapman,
Fahringer, and Zima describe the design of a distribution tool that makes use of performance prediction methods
when possible but also uses empirical performance data through a pattern matching process [35]. Anderson and
Lam [13] approach the dynamic partitioning problem using a heuristic which combines loop nests (with potentially
different distributions) in such a way that the largest potential communication costs are eliminated first while
still maintaining sufficient parallelism. Bixby, Kennedy and Kremer [26], as well as Garcia, Ayguadé, and
Labarta [58], have formulated the dynamic data partitioning problem in the form of a 0-1 integer programming
problem by selecting a number of candidate distributions for each loop nest and constructing constraints from
the data relations. Also, Sheffler, Schreiber, Gilbert and Pugh [158] have applied graph contraction methods
to the dynamic alignment problem to reduce the size of the problem space that must be examined. The work
by Hall, Hiranandani, Kennedy, and Tseng [81] defined the term reaching decompositions for array sections
which reach a function call site. D. J. Palermo and P. Banerjee [127, 128] develop techniques that can be used
to automatically determine which data partitions are most beneficial over specific sections of the program by
accounting for redistribution overhead. Initially a static data distribution is determined for the entire program
and a communication graph is constructed based upon the static distribution. From this graph, a split point
is determined by computing a maximal cut that splits the program into two parts for which better individual
distributions may exist. The redistribution costs are then estimated for these parts to determine whether

redistribution should be performed between the two parts.

5.3 Communication Optimizations

Since the message communication costs can be significant, and communication startup overheads tend to be very
high on most distributed memory machines [160], compiler must attempt to reduce both the size and number of

messages generated. Furthermore an attempt should be made to maximize the overlapping of computation and
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communication. A variety of communication optimizations, including the ones listed below, have been developed.

1. Message vectorization [82]: This optimization involves grouping together communication of different ele-
ments of the same array together and sending them in one large message. Typically this optimization is
achieved by replacing the sending of shorter messages with a loop by larger messages in an outer loop.

Message vectorization leads to reduction in message start-up costs and in hiding communication latency.

2. Collective communication [64, 110]: Collective communication involves replacing individual point-to-point
messages by a broad-cast or multi-cast in order to achieve a more efficient communication mechanisms. This

is especially beneficial for loops that transpose arrays between different alignments and for reductions.

3. Elimination of redundant communication [10]: This post-pass optimization eliminates redundant communi-
cation arising from alignments and the use of the owner computes rule. Array sections analysis is required

to determine unmodified sections of arrays that need not be repeatedly communicated.

4. Overlapping of communication with computation [82, 100]: This technique involves hoisting communication
at an appropriate point so that communication can be maximally overlapped with computation. By

separating the send and receive points, blocking at the receives is minimized.

Frameworks based upon global array data-flow analysis that allow formulation of the above communication
optimization problems have been proposed [33, 10, 62]. More sophisticated frameworks that handle complex
situations have also been proposed. The Give-N-Take framework can generate communication in the presence
of indirection arrays [76, 75]. This framework has also been extended to exploit information about array sec-
tions [99]. Agrawal’s [3] framework works interprocedurally and also handles irregular communication.

While the above results are encouraging, none of the above techniques consider network properties in or-
chestrating communication. This is a crucial issue since communication-communication interaction can result in
congestion. The SPMD programs generated by compilers typically operate in distinct computation and commu-
nication phases. Thus, the likelihood of congestion in such programs is even higher. Communication staggering
optimizations should be developed to avoid congestion. A problem with current approaches to the important opti-
mization of overlapping computation and communication is that they rely on communication latency information
which cannot always be estimated statically. It may be better to rely on dynamic scheduling of communication
guided by the compiler. Compiler can often determine the criticality of a message relative to other messages.
For example, short, synchronizing messages are critical as their delay may delay all the processors. The compiler
could prioritize the messages for more effective scheduling [164]. Finally more flexible communication models

that exercise control over slack between producers and consumers should be developed [96].

5.4 Code Generation Issues

The final phase of compiling for distributed memory systems involves solving two main code generation problems:
communication generation to satisfy references to non-local data by each processor and address calculation which

maps references to global name space to local memory addresses.

Communication generation. In order to efficiently generate parallel SPMD code, the compiler computes the
following quantities: array sections locally allocated to each processor, the set of iterations to be executed by
each processor, the non-local data accessed from every other processor by each reference, the iterations that

access non-local data, and the iterations that access local data only. The representation of above entities is an



important issue and has been well researched. The following two representations have been proposed to represent

the above entities during communication generation.

1.

8]

Symbolic. In this representation the above quantities are represented as sets of integer tuples or as mappings
between integer tuples. An integer tuple may represent array indices, loop iterations, or processor indices.
To compute the above sets and to generate code using them, the primary approach has been to focus
on common special cases and precompute the iteration and communication sets symbolically for specific
forms of data layouts and computation partitionings [23, 64, 66, 83, 110, 163]. Li and Chen describe
algorithms to classify communication caused by more general reference patterns and generate code to
realize these patterns efficiently on a target machine [110]. Typically the compilers focus on providing
specific optimizations aimed at cases that are considered to be the most common and most important. The
principal benefits of such case-based strategies are that they are conceptually simple, they have predictable

and fast running times, and they can provide excellent performance in cases where they apply.

Linear inequalities. In this approach, each code generation or communication optimization problem is de-
scribed by a collection of linear inequalities representing integer sets or mappings [11, 20]. Fourier-Motzkin
elimination is used to simplify the resulting inequalities, and to compute a range of values for individual
index variables that together enumerate the integer points described by these inequalities. Code generation
then amounts to generating loops to iterate over these index ranges. These representations can be used to
perform certain optimizations such as message aggregation as well as other index set related techniques.
Adve et al. [1], have developed an approach based on integer sets that exploits the speed of case based
approaches as well as preserving generality of inequalities approaches. Consequently more aggressive opti-

mizations can be undertaken.

Address generation. While one important issue of code generation is communication generation, a very important

issue is to map global address space to local address space efficiently. Address calculation mechanisms that work

for different types of data distributions, access patterns (in terms of strides) and subscript expressions must be

developed. In addition, the address calculation must be very efficient. A number of researchers have thoroughly

investigated this problem and their approaches differ in terms of domains they solve (i.e., their applicability) and

the efficacy of their solutions.

1.

Applicability of techniques. A number of researchers have developed techniques which work for certain
combinations of data distributions and strides. Koelbel [104] derived techniques for compile-time address
calculation for BLOCK and CYCLIC distributions with non-unit stride accesses containing a single loop index
variable. MacDonald et al. [117], provided a simple solution for a restricted case where the block sizes and
the number of processors are powers of two. Gupta et al. [66], derived the virtual-block and the virtual-cyclic
schemes. Banerjee et al. [20], discuss code generation for regular and irregular applications. In extending the
applicability of these methods to broader range of distributions and access patterns, a run time mechanism
for address calculations are needed. Chatterjee et al. [37], derived a run time technique that identifies a
repeating access pattern, which is characterized as a finite-state machine. This O(k logk + log min(s, pk))

algorithm involves a solution of k& linear Diophantine equations.

Efficiency of address calculations. Block-cyclic distribution and regular accesses are very common cases in
most HPF programs and some researchers have focused on developing fast address calculation solutions

for them. These techniques rely mostly on integer lattices, linear algebra or use of diophantine equations.
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The solutions based on lattices tend to have closed form and are thus more efficient. Ancourt et al. [12],
use a linear algebra framework to generate code for fully parallel loops in HPF. Midkiff [119] presented a
technique that uses a linear algebra approach to enumerate local accesses on a processor; this technique is
similar to the virtual block approach presented by Gupta et al. [66]. van Reeuwijk et al. [145], presented a
technique which requires the solution of linear Diophantine equations. Kennedy, Nedeljkovic, and Sethi [98]
derived an O(k+log min(s, pk)) algorithm for address generation. Wijshoff [174] describes access sequences
for periodic skewing schemes using lattices and derived closed forms for the lattices. Finally, Ramanujam
et al. [167, 168], present closed form expressions for basis vectors for several cases. Using the closed form
expressions for the basis vectors, they derived a non-unimodular linear transformation. Wang et al. [173],
discuss experiments with several address generation solutions and conclude that the strategy described by

Ramanujam et al. [167], is the best strategy overall in terms of speed of address calculation.

So far most of the approaches have relied upon data distribution; and thus, address calculation problem has
been mainly attempted for array local address calculation. As discussed earlier [131, 129], it is useful to generate
non-affine iteration space partitions in some cases. However, the efficiency is highly dependent on how the
iteration spaces can be spanned using lattice vectors. Code generation techniques could be possibly developed
to address this issue and the efficiency of code generation will determine if non-affine iteration space partitioning

approaches are viable or not.

5.5 Future Directions

The two important deficiencies that limit the use of distributed memory systems are: their applicability to limited
application domains and less than satisfactory overall performance. By supporting a general run-time communi-
cation model, it may be possible to handle application domains beyond those requiring regular communication.
Moreover to obtain superior performance, such a model may help in handling communication more effectively.
The model should enable effective latency hiding by giving sufficient flexibility to the compiler and deferring the
hard decisions to run time. It should still allow static application of other communication optimizations. As
mentioned earlier, by allowing the compiler to communicate the criticality of messages to the run time system,
the problem of statically estimating cost of communication may be avoided.

Probably the best reason to use distributed memory systems is the potential to benefit from their scalability
even though the application domains and performance might be somewhat limited. Thus, research to develop

scalable code generation techniques should not be ignored.

6 Concluding Remarks

In this paper we reviewed the developments in compilation technology for parallel systems and identified fu-
ture directions for research. Since processors being used today and those being designed for future exploit
increasing amounts of ILP, the research into compilation techniques is of great practical significance. Small scale
shared-memory machines are common place and their use is expected to grow rapidly. Therefore the research
into effective techniques for parallelization and memory hierarchy management is extremely important. The
availability of powerful single processor machines connected by high speed networks in also common in today’s
computing environment. Thus, research into compilation techniques for distributed-memory machines is also
highly relevant. The developments in compilation technology will continue to significantly impact the computing

environments of the future.
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