
SPARK : A High-Level Synthesis Framework For Applying
Parallelizing Compiler Transformations∗†

Sumit Gupta Nikil Dutt Rajesh Gupta Alex Nicolau

Center for Embedded Computer Systems
University of California at Irvine
http://www.cecs.uci.edu/∼spark

E-mail: {sumitg,dutt,rgupta,nicolau}@cecs.uci.edu

Abstract
This paper presents a modular and extensible high-level

synthesis research system, called SPARK, that takes a be-
havioral description in ANSI-C as input and produces syn-
thesizable register-transfer level VHDL. SPARK uses par-
allelizing compiler technology developed previously to en-
hance instruction-level parallelism and re-instruments it for
high-level synthesis by incorporating ideas of mutual ex-
clusivity of operations, resource sharing and hardware cost
models. In this paper, we present the design flow through
the SPARK system, a set of transformations that include
speculative code motions and dynamic transformations and
show how these transformations and other optimizing syn-
thesis and compiler techniques are employed by a schedul-
ing heuristic. Experiments are performed on two moder-
ately complex industrial applications, namely, MPEG-1 and
the GIMP image processing tool. The results show that the
various code transformations lead to up to 70 % improve-
ments in performance without any increase in the overall
area and critical path of the final synthesized design.

1 Introduction
Recent years have seen the widespread acceptance and

use of language-level modeling of digital designs. Increas-
ingly, the typical design process starts with design entry in a
hardware description language at the register-transfer level
(RTL), followed by logic synthesis. This and the increased
use of high level languages for behavioral modeling has led
to a renewed interest in high level synthesis from behavioral
descriptions,both in the industry and in academia [1, 2, 3, 4].

However, current synthesis efforts have several limita-
tions: synthesizability is guaranteed on a small, constrained
sub-set of the input language and the language level opti-
mizations are few and their effects on final circuit area and
speed are not well understood. Also, for designs with mod-
erately complex control flow, the quality of synthesis results
is poor due to the presence of conditionals and loops.

These factors have led to a need for high-level and com-
piler transformations that improve the quality of synthesis
results in the presence of control flow. To develop these
transformations, we have developed a high-level synthesis
framework, called SPARK. SPARK has been designed to fa-
cilitate experimentation of the application of both coarse-

∗This work is supported by SRC grant 781.001
†This paper won the Best Paper Award at the International Conference

on VLSI Design, January 2003

grain and fine-grain code optimizations and view the effects
of these transformations on the resultant VHDL code. The
SPARK framework provides a toolbox of code transforma-
tions and supporting compiler transformations. The toolbox
approach enables the designer to apply heuristics to drive
selection and control of individual transformations under
realistic cost models for high-level synthesis. The synthesis
framework is a complete high-level synthesis system that
provides a path from an unrestricted input behavioral de-
scription down to synthesizable RTL VHDL code.

Using the SPARK framework, we have developed a
set of speculative code motion transformations that enable
movement of operations through, beyond, and into condi-
tionals with the objective of maximizing performance [5, 6].
We have also developed dynamic transformations, such as
dynamic CSE and dynamic copy propagation, that operate
during scheduling to take advantage of change in the rela-
tive control flow between operations caused by the specula-
tive code motions employed during scheduling [7].

Whereas we have presented the speculative code motions
and the dynamic CSE transformation earlier [5, 6, 7], in this
paper we present the SPARK system in which these trans-
formations have been implemented. The contributions of
this paper include: (a) an overview of the SPARK system
and the design flow through the system, (b) the internal rep-
resentation model used for capturing the control-intensive
designs targeted by our system, (c) the percolation and trail-
blazing code motion techniques and the dynamic variable
renaming technique implemented in the system, and (d) a
scheduling heuristic that incorporates the previously pre-
sented code motion and dynamic CSE techniques.

The rest of this paper is organized as follows: in the next
section, we review previous work. Section 3 presents the
SPARK framework followed by the internal representation
model, the code motion techniques and dynamic variable
renaming techniques. We then present the speculative code
motions, followed by CSE and dynamic CSE. Section 9
presents the list scheduling heuristic followed by synthesis
results that demonstrate the effectiveness of these transfor-
mations. We conclude the paper with a discussion.

2 Related Work
High-level synthesis (HLS) has been a subject for re-

search for almost two decades now [8]. Early work pre-
sented scheduling heuristics for purely data flow designs.
Recent work has presented speculative code motions for

1

Operation/
Variable Binding

FSM Generation
and Optimization

Heuristics Transformations Toolbox

Percolation/Trailblazing
Loop Transformations

Scheduling and Allocation

Dynamic CSE

Loop Transformations
Scheduling

Speculative Code Motions
CSE/IVA/Folding/Inlining

Operation Chaining

Code Generation BackEnd

Logic Synthesis and Functional Verification

Parser Front End

Control Synthesis/Optimization

Constraints
& Resource

Library

C Input

Synthesizable RTL VHDL
Behavioral VHDL and C

Graph
Viewer

SPARK IR

(HTGs +

Data Flow
Graph)

Figure 1. The SPARK High-Level Synthesis System

mixed control-data flow designs and demonstrated their ef-
fects on schedule lengths [5]. CVLS [1] uses condition
vectors to improve resource sharing among mutually exclu-
sive operations. Radivojevic et al [2] present an exact sym-
bolic formulation which generates an ensemble schedule of
valid, scheduled traces. The “Waveschedule” approach [3]
minimizes the expected number of cycles by using specu-
lative execution. Santos et al [4] and Rim et al [9] support
generalized code motions for scheduling in HLS. Similar
code transformation techniques that have been presented in
for software (parallelizing) compilers [10] need to be re-
instrumented for synthesis to use hardware cost models for
operations and resources.

An important limitation of earlier work is the restrictions
on the input description that can be synthesized. Also, sev-
eral systems do not provide a complete design flow from
architectural description to final synthesized netlist and
present only scheduling results for small, synthetic bench-
marks. The SPARK system has been designed to overcome
these limitations as explained over the next few sections.

3 The SPARK High Level Synthesis System
The SPARK synthesis framework is a modular and ex-

tensible high-level synthesis system that provides a num-
ber of code transformation techniques. SPARK has been
designed to aid in experimenting with new transformations
and heuristics that enhance the quality of synthesis results.
Figure 1 provides an overview of the SPARK system. The
input language for design descriptions is ANSI-C, currently
with the restrictions of no pointers and no function recur-
sion. This input description is parsed into a hierarchical
intermediate representation described in Section 4.

The core of the synthesis system has a transforma-
tions toolbox that consists of a set of information gathering
passes, basic code motion techniques and several compiler
transformations. Passes from the toolbox are called by a set

of heuristics that guide how the code refinement takes place.
Since the heuristics and the underlying transformations that
they use are completely independent, heuristics can be eas-
ily tuned by calling different passes in the toolbox.

As shown in Figure 1, the transformations toolbox con-
tains a data dependency extraction pass, parallelizing code
motion techniques [11, 12], dynamic renaming of variables,
the basic operations of loop (or software) pipelining and
some supporting compiler passes such as copy and con-
stant propagation and dead code elimination [13]. The vari-
ous passes and transformations can be controlled by the de-
signer using scripts, hence, allowing experimentation with
different transformations and heuristics.

After scheduling, the system then does control synthesis
and optimization. Control synthesis generates a finite state
machine controller and also does resource binding [5]. The
back-end of the SPARK system then generates synthesiz-
able RTL VHDL and hence, the SPARK system integrates
into the standard synthesis design flow. In the next few sec-
tions, we examine the SPARK system in more detail, start-
ing with the internal intermediate representation it uses.
4 HTG: A Model for Control Intensive De-

signs
The SPARK system stores the behavioral description in

an intermediate representation (IR) that retains all the in-
formation given in the input description. This is critical for
enabling source-level transformations, making global deci-
sions about code motion and enabling the visualization of
intermediate results to improve user-interaction.

The intermediate representation used in SPARK consists
of basic blocks encapsulated in Hierarchical Task Graphs
(HTGs) [12, 14]. An HTG is a directed acyclic graph that
has three types of nodes: single nodes (non-hierarchical
nodes), compound nodes (nodes that have sub-nodes), and
loop nodes. Operations that execute concurrently are aggre-
gated together in single nodes called statements. Statements
that have no control flow between them are aggregated to-
gether into basic blocks. Basic blocks are encapsulated into
compound HTG nodes to form hierarchical structures such
as if-then-else blocks, switch-case blocks, loop nodes or a
series of HTG nodes. Expressions are stored as abstract
syntax trees [13] and each operation expression is initially
encapsulated in a statement node of its own.

(a) (b)

HTG Node
Compound

HTG Node
Compound

i < N

i = 0

i = i + 1

Empty BB

Empty BB

Condition
True False

Compound
HTG Node

(Loop Body)

False

True

For Loop HTG Node

Loop Exit

If HTG Node

Figure 2. The hierarchical task graph (HTG) representa-
tion of (a) an if-block, (b) a For-Loop.

2

b = e − f

cond

x = a + b a = c − d
x = a − b

If Node

BB 2Op: y = e + f
z = y + x

cond = a < b

z = y + x

x = a − b
a = c − dx = a + b

cond

b = e − f

If Node

Op: y = e + f

cond = a < b

BB 2

BB 1 BB 1

(a) (b)

Figure 3. Trailblazing: Operation op1 is moved from basic
block BB2 to basic block BB1 across the if-then-else HTG
node without visiting each basic block inside the node.

Figure 2(a) illustrates the HTG for a if-then-else condi-
tional block (the dashed edges indicate control flow). It con-
sists of a basic block each for the condition and for the join
and compound HTG nodes for the true and false branches.
Similarly, the conceptual representation of a For-loop HTG
is shown in Figure 2(b). A for-loop HTG consists of ba-
sic blocks for the initialization, the conditional check and
the loop index increment (optional) and a compound HTG
node for the loop body.

An important feature of HTGs is that they are strongly
connected components [14]; i.e., they have a single entry
and a single exit point. This property enables HTGs to be
used to encapsulate complex loops and irregular regions of
code, to regularize code motion techniques and reduce the
amount of patch-up code inserted as explained next.

5 Code Motion Techniques in SPARK
The code motion techniques implemented in the toolbox

of the SPARK system are percolation scheduling and trail-
blazing. Percolation Scheduling (PS) was developed as a
technique to target code to parallel architectures such as
VLIWs and vector processors [11]. Percolation schedul-
ing compiles programs into parallel code by systematically
applying semantic preserving transformations. These trans-
formations have been proven to be complete with respect to
the set of all possible local, dependency-preserving trans-
formations on program trees.

However, to move an operation from a node A to node
B, percolation requires a visit to each node on every con-
trol path from A to B. The incremental nature of these lin-
ear operation moves cause code explosion by unnecessarily
duplicating operations and inserting copy operations. Trail-
blazing was proposed to circumvent these problems.

Trailblazing is a code motion technique that exploits the
hierarchical structuring of the input description’s operations
and global information in HTGs to make non-incremental
operation moves without visiting every operation that is by-
passed [12]. At the lowest level, trailblazing is able to per-
form the same fine-grained transformations as percolation.
However, at a higher level, trailblazing is able to move op-
erations across large blocks of code.

While an operation is being moved using trailblazing,

y=z+1

x=y+1

x=z+1

x=y+1 x=y+1

x=x’

(b)

x’=z+1

x=y

z=y+1

x=y

(c)

z=x+1

x=y+1

y=y’

y’=z+1

(a)
Figure 4. Moving one operation across another operation
while eliminating (a) an anti dependency (b) an output de-
pendency and (c) a flow dependency.
the algorithm moves the operation across HTG nodes that
it comes across if the moving operation has no dependen-
cies with the HTG node. Hence, in the example in Figure
3, the operation Op : y = e + f can be moved from basic
block BB2 to BB1, across the if-then-else HTG node, since
it has no data dependencies with any of the operations in
this if-node. The resultant code is shown in Figure 3(b).
To perform the same code motion, percolation would have
duplicated Op into both the branches of the if-block and
visited each node in the if-block before finally unifying the
copies at the conditional check.
6 Dynamic Renaming

There are four types of data dependencies [15]: flow
(variable read after write), anti (write after read), output
(write after write) and input (read after read). Several previ-
ous high-level synthesis works maintain only flow depen-
dencies in control-data flow graphs (CDFGs). The vari-
able names from the original source are discarded. How-
ever, this hinders the visualization of intermediate results
of transformations applied to the input description. Hence,
the SPARK system retains the complete information about
variables used in the input description in data dependency
graphs that maintain all the data dependency types.

However, non-flow dependencies that prevent code mo-
tions can often be resolved by dynamic renaming and com-
bining [16]. Figures 4(a) to (c) demonstrate how one opera-
tion can be moved past another one while dynamically elim-
inating data dependencies. In Figure 4(a), an anti depen-
dency can be resolved during scheduling by moving only
the right hand side of the operation y = z + 1. The result
is written to a new destination variable y′ and the original
operation is replaced by the copy operation, y = y′. Sim-
ilarly, in Figure 4(b), an output dependency between two
operations that write to the same variable x, can be resolved
in a similar manner by creating a new destination variable
x′. These copy operations introduced by dynamic renaming,
can also be circumvented by a technique known as combin-
ing. Combining replaces the copy in the operation being
moved by the variable being copied. This is demonstrated
in Figure 4(c), where the operation z = x+1 is moved past
the copy operation x = y. The variable x is replaced with the
variable y in the moving operation.

Dynamic renaming and combining can lead to consider-
able easing of the constraints imposed by data dependencies
and enable the set of speculative code motions discussed
next to be more effective.

3

FT

Conditional

Speculation
Reverse

If Node

Blocks

Across
Hierarchical

Speculation

Speculation

Figure 5. The various speculative code motions

7 Speculative Code Motions
An overview of the various speculative code motions

is shown in Figure 5. Operations may be moved out of
conditionals and executed speculatively, or operations be-
fore conditionals may be moved into subsequent conditional
blocks and executed conditionally by reverse speculation,
or an operation from after the conditional block may be
duplicated up into preceding conditional branches and exe-
cuted conditionally by conditional speculation [5, 6]. Oper-
ations can also be moved across entire hierarchical blocks,
such as if-then-else blocks or loops. Reverse speculation
can be coupled with early condition execution that eval-
uates conditional checks as soon as possible. Since these
code motions re-order, speculate and duplicate operations,
they often create new opportunities for dynamically apply-
ing transformations such as common sub-expression elimi-
nation during scheduling as discussed in the next section.
8 Dynamic CSE

Common sub-expression elimination (CSE) is a well-
known transformation that attempts to detect repeating sub-
expressions in a piece of code, stores them in a variable and
reuses the variable wherever the sub-expression occurs sub-
sequently [13]. Hence, for the example in Figure 6(a), the
common sub-expression b+c in operation 2 can be replaced
with the result of operation 1, as shown in Figure 6(b).

Now consider that for the example in Figure 6(a), the
scheduling heuristic decides to schedule operation 3 in BB1

and execute it speculatively as operation 5, as shown in Fig-
ure 6(b). The result of the speculated operation 5 can then
be used to replace the common sub-expression in operation
4 as shown in Figure 6(b). Hence, to exploit these new op-
portunities created by speculative code motions, CSE has
to be applied during scheduling rather than the traditional

BB 2
T F

BB 2

BB 6

BB 5

T F

1: a = b + c

5: h = d + f BB 6

1: a = b + c BB 1

(a) (b)

4: h = g’

5: g’ = d + f

cond cond

BB 4BB 3
2: e = b + c

BB 3
2: e = a

BB 4
3: g =g’

If Node If Node

BB 1

BB 5

3: g = d + f

Speculate

Figure 6. (a) A sample HTG (b) CSE replaces b+ c in op-
eration 2 with the variable a from op. 1. After operation
3 is executed speculatively as operation 5 in BB1, dynamic
CSE eliminates the common sub-expression in op. 4

Algorithm 1: Scheduling Heuristic with Dynamic CSE
Inputs: Unscheduled HT G of design, Resource List R
Output: Scheduled HTG of design

1: Scheduling step step = 0
2: while (step 6= last step of HTG) do
3: foreach (resource res in Resource List R) do
4: Get List of Available Operations A
5: Pick Operation op with lowest cost in A
6: Move op and schedule on res in step
7: ApplyDynamicCSE(op, A)
8: endforeach
9: step = step+1
10:endwhile (a)

Algorithm 2: Get List of Available Operations
Inputs: Resource res, Scheduling step, AllowedCMs
Output: Available Operations List A

1: Candidates A = all unscheduled ops U in HT G
that can be scheduled on resource res

2: foreach (op in A) do
3: if (data dependencies of op cannot be satisfied) OR
4: (op cannot be moved to step using AllowedCMs)
5: Remove op from A
6: Calculate cost of operation op
7: endforeach (b)

Figure 7. (a) Priority-based List Scheduling Heuristic (b)
Determining the list of Available operations.
approach of applying it as a pass before scheduling. We
call this new approach of applying CSE while schedul-
ing an operation, Dynamic CSE. Conceptually, dynamic
CSE finds and eliminates operations in the list of remain-
ing ready-to-be-scheduled operations that have a common
sub-expression with the currently scheduled operation. Ap-
plying CSE as a pass after scheduling is not as effective as
dynamic CSE, since the resource freed up by eliminating
an operation during scheduling can potentially be used to
schedule another operation by the scheduler.

Dynamic CSE has been shown to significantly improve
synthesis results when applied with speculative code mo-
tions, particularly code motions such as reverse and condi-
tional speculation that duplicate operations in the HTG [7].

9 Priority-based List Scheduling Heuristic
In this section, we present a scheduling heuristic that

schedules the HTG of the design using the speculative
code motions and the dynamic CSE transformation. This
Priority-based Global List Scheduling heuristic is presented
in Figure 7(a). The inputs to this heuristic are the unsched-
uled HTG of the design and the list of resource constraints.
Additionally, the designer may specify a list of allowed code
motions, AllowedCMs (i.e. speculation, conditional specu-
lation et cetera), whether dynamic variable renaming is al-
lowed, and the code motion technique (percolation or trail-
blazing) for moving the operations. The heuristic starts by
assigning a priority to each operation in the input descrip-
tion based on the length of the dependency chain of opera-
tions that depend on it [6].

Scheduling is done one control or scheduling step at a

4

pred2: 217 Ops, 45 BBs pred0:101 Ops,26 BBs polar:252 Ops,78 BBs tiler: 145 Ops,35 BBs
Transformation

3 ALU,2[],3<<,2==,1* 3 ALU,2[],3<<,2==,1* 2+,3-,1/,2*,2<<,2== 3+,2-,1/,2*,2<<,2==,1[]
Applied

States Long Path # States Long Path # States Long Path # States Long Path
Across hier blocks 98 4877 104 2268 50 50 69 6531
+speculation 76(-22%) 4045(-17%) 79(-24%) 1883(-17%) 46(-8%) 46(-8%) 59(-15%) 5431(-17%)
+early cond exec 67(-12%) 3469(-14%) 70(-13%) 1627(-14%) 43(-6.5%) 43(-6.5%) 58(-2%) 5331(-2%)
+cond speculation 48(-28%) 2260(-35%) 51(-27%) 1051(-35%) 41(-4.7%) 41(-4.7%) 34(-41%) 3031(-43%)

all CMs+CSE only 46(-4.2%) 2188(-3.2%) 49(-3.9%) 987(-6.1%) 41(-0%) 41(-0%) 27(-21%) 2231(-26%)
+ Dyn.CSE only 41(-15%) 1676(-26%) 44(-14%) 731(-30%) 37(-9.8%) 37(-9.8%) 26(-24%) 2131(-30%)
+ CSE+Dyn.CSE 39(-19%) 1676(-26%) 42(-18%) 731(-30%) 37(-9.8%) 37(-9.8%) 26(-24%) 2131(-30%)
Total Reduction -60.2 % -65.6 % -59.6 % -67.8 % -43.3 % -43.3 % -62.3 % -67.4 %

Table 1. Scheduling results for the various code motions and application of CSE and Dynamic CSE for the functions from
the MPEG-1 Prediction block and the GIMP Image Processing Tool

time while traversing the basic blocks in the design’s HTG.
Within a basic block, each scheduling step corresponds to
a statement HTG node (see Section 4). At each scheduling
step in the basic block, for each resource in the resource list,
a list of available operations is collected,

Available operations is a list of operations that can be
scheduled on the given resource at the current scheduling
step. Pseudo-code for collecting the list of available op-
erations is given in Figure 7(b). Initially, all unscheduled
operations in the HTG that can be scheduled on the current
resource type are added to the available operations list. Sub-
sequently, operations whose data dependencies are not sat-
isfied and cannot be satisfied by dynamic variable renaming,
and operations that cannot be moved in the HTG to sched-
ule them onto the current scheduling step using the allowed
code motions, are removed from the available list. The re-
maining operations are assigned a cost based on the length
of the dependency chain leading up to the operation [6].

The scheduling heuristic then picks the operation with
the lowest cost from the available operations list as shown
in line 5 of Figure 7(a). The code motion technique (trail-
blazing) is then instructed to schedule this operation at the
current scheduling step. This is repeated for all resources in
each scheduling step in the HTG.

Once the chosen operation has been scheduled, the dy-
namic CSE heuristic finds and eliminates common sub-
expressions in the operations in the available list, if the new
position of the scheduled operation op permits. This heuris-
tic is discussed in detail in [7].
10 Experimental Setup and Results

We have implemented the scheduling heuristic presented
in the previous section in the SPARK framework. In this
section, we present results of experiments performed us-
ing two large and moderately complex real-life applications.
These designs consist of the pred0 1 and pred2 functions
from the Prediction block of the MPEG-1 algorithm [18]
and the calc undistorted coords from the “polarize” trans-
form and tile function (with scale inlined) from the “tiler”
transform from the GIMP image processing tool [19]. The
run time of SPARK for these designs is less than 5 user sec-
onds on a 1.6 Ghz PC running Linux.

The synthesis results for the 4 functions from these
benchmarks are presented in Table 1. These results are in
terms of the number of states in the FSM controller and the

cycles on the longest path. Due to shortage of space, we
are unable to present results for the average case of execu-
tion cycles. The resources are indicated in the tables; all
resources are single cycle except for the multiplier (2 cy-
cles) and the divider (4 cycles).

The first four rows in Table 1 present results with by in-
crementally allowing code motions: in the first row, code
motions are allowed only within basic blocks and across hi-
erarchical blocks. The second row allows speculation, the
third row has reverse speculation and early condition execu-
tion enabled as well and the fourth row has the conditional
speculation also enabled. The percentage reductions of each
row over the previous row are given in parentheses.

The 5th to 7th rows in Table 1 present synthesis results
for when only CSE is applied as a pass before schedul-
ing (5th row), when only dynamic CSE is applied during
scheduling (6th row) and finally, both CSE and dynamic
CSE are applied (7th row). The percentage reductions of
each row over the fourth row (all code motions enabled but
no CSE applied) are also given in parentheses.

The results in this table demonstrate that the various code
transformations lead to a significant improvement in the
performance and controller size of all the designs. Some
transformations are more effective than others; however, it
is clear that CSE alone is not nearly as effective as dynamic
CSE – for all the designs, dynamic CSE is able to eliminate
many more operations than CSE alone.

The total reductions obtained when all the code motions
are enabled and CSE and dynamic CSE are applied are sum-
marized in the last row of Table 1. These improvements
range from 43 to 67 %. These improvements further add up
over the whole design, since several of these design blocks
are called from within loops.

10.1 Logic Synthesis Results
We synthesized the RTL VHDL from the various de-

signs using the Synopsys Design Compiler logic synthesis
tool. The LSI-10K synthesis library was used for technol-
ogy mapping. The results for the various transformations
for the MPEG functions are presented in the graphs in Fig-
ures 8 and 9, in terms of three metrics: the critical path
length (in ns), the unit area and the maximum delay through
the design (longest path cycles ∗ critical path length).

The results in Figure 8 correspond to the first four rows

5

MPEG Pred2 Function

0

0.2

0.4

0.6

0.8

1

1.2

Critical
Path (c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG Pred0 Function

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

d

+ Early Cond ExecAcross Hier. Blocks + Speculation + Cond Speculation

Figure 8. Effects of the various code motions on logic syn-
thesis results for the MPEG Pred2 and Pred0 1 functions

MPEG Pred2 Function

0

0.2

0.4

0.6

0.8

1

Critical
Path (c ns)

Total Delay
(c*l ns)

Unit Area

N
or

m
al

iz
ed

 V
al

ue
s

MPEG Pred0 Function

Critical Path
(c ns)

Total Delay
(c*l ns)

Unit Area

d

No CSE Only Dynamic CSEOnly CSE CSE & Dynamic CSE

Figure 9. Effects of CSE and dynamic CSE on logic syn-
thesis results for the MPEG Pred2 and Pred0 1 functions

from Table 1 with the various code motions enabled. Sim-
ilarly, Figure 9 presents results for CSE and dynamic CSE
and the bars correspond to the 4th to 7th rows in Table 1.
The values are normalized with respect to the first bar.

The results in Figure 8 demonstrate that the improve-
ments in performance seen earlier in Table 1 translate over
to the synthesis results of the final netlist. Hence, the total
delay through the circuit reduces by up to 50 % as the code
motions are enabled with negligible impact on critical path
length. However, these aggressive code motions do lead to
an increase in area by about 20 % when all the code motions
are enabled. This area increase is due to the additional steer-
ing and control logic caused by increased resource sharing.

However, the results in Figure 9 demonstrate that dy-
namic CSE leads to lower area due to fewer operations and
the corresponding reductions in interconnect. This ends up
counterbalancing the increases in area seen due to the code
motions. The results from these graphs demonstrate that
enabling all the code motions along with CSE and dynamic
CSE, leads to overall reductions in the total delay through
the circuit by nearly 70 % when compared to only within
basic block code motions, while the design area remains al-
most constant (and sometimes even decreases).

11 Conclusions and Future Directions
In this paper, we presented the SPARK high-level syn-

thesis framework that provides an integrated flow from ar-
chitectural specification in behavioral C to logic synthesis
of the output RTL VHDL. This framework provides a plat-
form for applying a range of coarse-grain and fine-grain
code optimizations aimed at improved synthesis results. We

presented the design flow through the system along with a
description of the various passes in the system. We outlined
a list scheduling heuristic that incorporates transformations
such as speculative code motions and dynamic transforma-
tions such as dynamic CSE. Scheduling results after apply-
ing the code transformations on moderately complex real-
life benchmarks show significant improvements in perfor-
mance and reduction in controller size, while maintaining
design area and critical path lengths almost constant. In on-
going work, we are exploring a set of loop transformations.

References
[1] K. Wakabayashi and H. Tanaka. Global scheduling in-

dependent of control dependencies based on condition
vectors. In Design Automation Conference, 1992.

[2] I. Radivojevic and F. Brewer. A new symbolic tech-
nique for control-dependent scheduling. IEEE Trans-
actions on CAD, January 1996.

[3] G. Lakshminarayana et al. Incorporating speculative
execution into scheduling of control-flow intensive be-
havioral descriptions. In DAC, 1998.

[4] L.C.V. dos Santos and J.A.G. Jess. A reordering tech-
nique for efficient code motion. In DAC., 1999.

[5] S. Gupta et al. Conditional speculation and its effects
on performance and area for HLS. In ISSS, 2001.

[6] S. Gupta et al. Speculation techniques for high level
synthesis of control intensive designs. In DAC, 2001.

[7] S. Gupta et al. Dynamic common sub-expression elim-
ination during scheduling in HLS. In ISSS, 2002

[8] G. De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.

[9] M. Rim et al. Global scheduling with code-motions for
high-level synthesis applications. IEEE Trans. on VLSI
Systems, Sept. 1995.

[10] J. Fisher. Trace scheduling: A technique for global mi-
crocode compaction. Trans. on Computers, July 1981.

[11] A. Nicolau. A development environment for scientific
parallel programs. CS-TR 86-722, Cornell Univ., 1985.

[12] A. Nicolau and S. Novack. Trailblazing: A hierarchi-
cal approach to percolation scheduling. In International
Conference on Parallel Processing, 1993.

[13] A. Aho et al. Compilers: Principles and Techniques
and Tools. Addison-Wesley, 1986.

[14] M. Girkar and C.D. Polychronopoulos. Automatic
extraction of functional parallelism from ordinary pro-
grams. IEEE Trans. on PDS, Mar. 1992.

[15] S. S. Muchnick. Advanced Compiler Design and Im-
plementation. Morgan Kaufmann, 1997.

[16] S.-M. Moon and K. Ebcioglu. An efficient resource-
constrained global scheduling technique for superscalar
and VLIW processors. Intl. Symp. on Microarch., 1992.

[17] V.C. Sreedhar et al. A new framework for exhaus-
tive and incremental data flow analysis using DJ graphs.
SIGPLAN Conf. on PLDI, 1996.

[18] Spark Synthesis Benchmarks FTP site.
ftp://ftp.ics.uci.edu/pub/spark/benchmarks.

[19] GNU Image Manipulation Program.
http://www.gimp.org.

6

