166 I[EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

Automatic Extraction of Functional
Parallelism from Ordinary Programs

Milind Girkar and Constantine D. Polychronopoulos, Member, IEEE

Abstract— Thus far, parallelism at the loop level (or data-
parallelism) has been almost exclusively the main target of paral-
lelizing compilers. The variety of new parallel architectures and
recent progress in interprocedural dependence analysis, suggest
new directions for the exploitation of parallelism across loop
and procedure boundaries (or functional-parallelism). This paper
presents the Hierarchical Task Graph (HTG) as an intermediate
parallel program representation which encapsulates minimal data
and control dependences, and which can be used for the ex-
traction and exploitation of functional, or task-level parallelism.
The hierarchical nature of the HTG facilitates efficient task-
granularity control during code generation, and thus applicability
to a variety of parallel architectures. We focus on the construction
of the HTG at a given hierarchy level, the derivation of the execu-
tion conditions of tasks which maximizes task-level parallelism,
and the optimization of these conditions which results in reducing
synchronization overhead imposed by data and control depen-
dences. We present algorithms for the formation of tasks and
their execution conditions based on data and control dependence
constraints. Subsequently, we discuss the issue of optimization
of such conditions and propose optimization algorithms. The
HTG, which is being implemented in the Parafrase-2 compiler, is
used as the intermediate representation of parallel Fortran and
C programs for generating parallel source as well as parallel
machine code.

Index Terms—Code generation, control and data dependence,
intermediate program representation, parallel languages, paral-
lelizing compilers, synchronization.

1. INTRODUCTION

HE familiar task graph, a directed acyclic graph, has

become synonymous with a parallel program. Task graphs
have been used as a convenient abstraction of parallel compu-
tations and programs in virtually all areas of parallel process-
ing. In as many cases task graphs take the form of a partial
ordering imposed on a set of nodes representing computations.
Before the recent proliferation of parallel computers and
parallel programming, the task graph abstraction (although
hardly relevant to the structure of real computations), was
a sufficiently powerful model for the theoretical work that
characterized early research in parallel processing [8]. Even
at present, and several years after the introduction of the
first MIMD computers, the task graph remains essentially the

Manuscript received October 5, 1990; revised May 13, 1991. This work
was supported in part by the National Science Foundation under Grant
NSE-CCR-89-57310, the U.S. Department of Energy under Grant DOE-
DE-FG02-85ER25001, Control Data Corporation, and a grant from Texas
Instruments, Inc.

The authors are with the Center for Supercomputing Research and Devel-
opment, University of Illinois at Urbana—Champaign, Urbana, IL 61801.

IEEE Log Number 9103972.

only widely used model (for the analysis, scheduling, and
simulation) of parallel programs. This is the case because
most present-day parallel architectures and computations are
structured around the cascaded fork—join or more familiarly,
loop-level parallelism (at least in scientific applications). Loop-
level parallelism, including the automatic detection of paral-
lelism [4], [17], [24] and the generation of synchronization
instructions [19], has been a well studied area.

However, with the shift of attention to nonloop parallelism,
suggested by a variety of parallel architectures and made
possible by interprocedural analysis, the task graph abstraction
becomes quite obsolete in modeling parallel computations.
Some of the inherent limitations of task graphs include their
deterministic nature (all nodes of the graph are guaranteed to
execute), lack of node and edge context (mapping instruction
sequences of a given computation to the nodes of such a
graph and the lack of a realizable notion of precedence
constraints), and overall, their unsuitability to be targeted by
parallelizing compilers as a powerful intermediate represen-
tation for programs with nonloop-level paralielism. Nonloop
parallelism refers, for instance, to executing a number of
different subroutine calls (or serial and/or parallel loops)
concurrently. Task-level parallelism and high-level spreading
have also been used as synonyms for nonloop parallelism.

This paper tackles the problem of automatic extraction of
task-level parallelism from serial programs through a paral-
lelizing compiler. Using the notion of loop hierarchies, and
data and control dependence, we develop a new representation
for parallel programs called the Hierarchical Task Graph or
HTG. The HTG represents a powerful intermediate repre-
sentation which encapsulates program parallelism of different
types and scope levels, and is used for the generation and
optimization of both parallel source and parallel machine code
[13], [21]. The HTG is the intermediate representation used in
the Parafrase-2 parallelizing compiler [22]. At present, only a
handful of parallelizing compilers employ similar mechanisms
for task-level parallelism [2], [11], [22].

This paper focuses on the derivation of the HTG based
on data and control dependences, its fundamental properties,
and optimizations. The HTG is built at the basic block
level and augmented with data and control dependences,
computed using approaches similar to those described in [4],
[5), [7], [10], {12], [15], and [16). Although the construction
of the hierarchical task graph is briefly outlined, this paper
emphasizes the fundamental techniques and optimizations used
in the derivation of the HTG at a specific hierarchy level,
namely that of the basic block.

1045-9219/92$03.00 © 1992 IEEE

GIRKAR AND POLYCHRONOPOULOS: AUTOMATIC EXTRACTION OF FUNCTIONAL PARALLELISM FROM ORDINARY PROGRAMS 167

Section II describes the motivations for our work and points
out differences from existing methods. Section III discusses
briefly the hierarchical task graph, and Section IV gives basic
definitions and states a number of useful properties of control
dependence graphs (CDG). Section V proposes a parallel ex-
ecution model of such a graph. The augmentation of the CDG
with data dependences is considered in Section VL. Section VII
develops a platform for the computation of the execution
conditions of tasks based on data and control dependences.
Section VIII presenis a technique for the optimization of
control conditions in detail. Finally, Section IX covers parallel
source code generation issues.

II. OUR APPROACH AND RELATED WORK

The motivations and goals for this work were set forward in
[20] where the need for a hierarchical program representation
and its use in generating auto-scheduling code were outlined.
This paper presents new research results focusing on fun-
damental compiling aspects, while architectural implications
are discussed in [21] which gives a refined description of
auto-scheduling, in relation with the work discussed in this
paper.

The goals of our work can be outlined as follows: Given
any serial or parallel source program (written in C, Fortran,
or other imperative languages) we wish to compile it into an
intermediate representation which will encompass parallelism
at all levels, and will serve as the structure upon which all
optimizations will be performed; this structure will also be the
starting point for emanating both, parallel source, and parallel
machine code. Since loop-level parallelism is a subject well
studied up to now, the thrust of our work is on other types
of unstructured parallelism, including parallelism at the basic
block level and within a single loop iteration, parallelism
across procedures and loops, and in general all types of
unstructured parallelism. It provides the means necessary for
parallelism extraction and it is orthogonal to other known ap-
proaches for loop-level parallelism. Moreover, emphasis was
put on the hierarchical aspect of the task graph. The reasons
were twofold: control over task granularity, and the ability to
generate highly parallel code for different architectures and
execution models. By preserving or exposing the hierarchi-
cal nature of computations and programs in an intermediate
representation, one can control the granularity of generated
tasks [21]. In addition, this hierarchy greatly facilitates other
optimizations and memory allocation. However, quantitative
measures regarding the amount of parallelism or the perfor-
mance improvement that would result from extracting and
exploiting parallelism at that level are out of the scope of
this paper, and are the current focus of our work.

The loop structure of a compiled program is used to con-
struct the hierarchical task graph, thus capturing the hierarchy
at the loop level. Each level of the hierarchy is processed sep-
arately in deriving control and data dependences, constructing
the HTG as a layered graph with layers corresponding to loop
or subroutine bodies. Parallelism at the loop level is assumed
to be extracted using existing schemes [4], [9], [16], [24].
Therefore, in what follows, we ignore issues pertaining to

parallelism across loop iterations. This implies that whenever
data dependences are considered in the rest of the paper, they
are assumed to be nonloop carried dependences.

Our work builds on the notion of control dependence as
defined in [3] and [6] (for the purpose of masked vector
instructions), and its generalization as defined in [11] and [12].
The program dependence graph and its versions, as defined
in [11] and [12], have proven to be powerful intermediate
representations for optimization and source code generation.
Our work differs from that in [10] and [11] in the following
ways: Unlike in [10] where the (implicit) hierarchy is based
on intervals 1], our hiearchy is based on loop structures; this
would yield different context for each level of the hierarchy.
Another major difference is the inclusion of data dependences;
[11] consider the use of synchronization to enforce data
dependences only for identically control dependent tasks. Our
approach is general in that synchronization is not restricted
between identically control dependent tasks. The result is
(potentially) more parallelism. Hence, the similarity of our
approach and that of [11] lies only in the common use of
control dependences as defined in [12]; however, our approach
differs in all other aspects, including the way source code is
generated.

We proceed by formalizing the notion of execution condi-
tions based on data and control dependences (similar to {15]),
and by tackling the problem of optimizing such conditions.
In this paper we propose efficient algorithms for optimizing
execution conditions, and consider implementation issues.
Finally, the HTG and the execution conditions associated with
task nodes are used as the basis for implementing an auto-
scheduling environment, under which a program schedules and
manages its tasks during its execution [21].

In [10] static partitioning is used whereby tasks in the
program dependence graph can be merged to reflect execution
costs on various architectures, Our approach is quite opposite
in that determination of task granularity is performed dynami-
cally, accommodating thus not only different architectures, but
also potential reconfigurations of the same machine which may
happen during program execution (e.g., due to multiprogram-
ming). This is achieved by instrumenting the HTG with special
code during the auto-scheduling phase; the details of source
code generation for different architectures are given in [13],
while intermediate code generation for granularity control is
discussed in [18] and [21].

[II. THE HIERARCHICAL TASK GRAPH

The hierarchical task graph is a directed acyclic graph
HT@ = (HV,HE) with unique nodes START and STOP
belonging to HV such that there exists a path from START
to every node in HV and a path from every node to STOP;
START has no incoming arcs, and STOP has no outgoing
arcs. Each node in HV can be of one of the following types:

1) simple node representing a task that has no subtasks,

2) compound node representing a task that consists of other

tasks in an HTG, or

3) loop node representing a task that is a loop whose

iteration body is an HTG.

168 [EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

Reducible programs [1] can be easily mapped into a hierar-
chical structure based on loops by taking care of the following
objections: :

1) Loops that are not contained in each other and are not
disjoint—In this case it can be shown that the loops must
have a common header and we combine the loops into
a common loop. This is done by creating an extra node
and having all back arcs go to the new node instead of
back to the header. We now add a single back arc from
the new node to the header [Fig. 1(a)].

2) Loops with many exits—This violates the constraint that
there can be at most one STOP node for the iteration
body of a loop. This is solved by creating an extra node
and forcing all exits out of a loop to go through this node
[Fig. 1(b)]. This can be done by the addition of extra
variables to “remember” which exit to follow from the
new node.

The loop hierarchy is different from [10], where the hi-
erarchical structure of a program is generated from intervals
[1]. Fig. 2 illustrates a simple example where the loop and
interval hierarchies are different.

Fig. 3(b) illustrates the hierarchical task graph of the
program fragment in Fig. 3(a). At the top level of the hierarchy
the graph consists of four nodes, of which A and B are
loop nodes and D is a compound node corresponding to the
control flow graphs of higher level structures such as loops
and subroutines. At the next hierarchy level node B consists of
three nodes, one of which (C) corresponds to a loop structure.
Thus, the flow graph of Fig. 3(b) is a three-level hierarchical
flow graph; at the third and lowest hierarchy it consists of 16
tasks corresponding to basic blocks. Each node is a single-
entry/single-exit task at its own hierarchy level. Given the
definition of the hierarchical loop structure of a program, the
remainder of this paper focuses on the construction of the
HTQG at a particular hierarchy level through data and control
dependence analysis. This process would be repeated for each
level of the hierarchy.

IV. THE CONTROL DEPENDENCE GRAPH (CDG)

A control flow graph is a directed graph CFG = (V, E)
with unique nodes START, STOP € V such that there exists
a path from START to every node in V and a path from
every node to STOP; START has no incoming arcs, and
STOP has no outgoing arcs. The HTG is an acyclic control
flow graph at any level, where each node represents either a
simple node, compound node, or a loop. Although we shall
be dealing mainly with acyclic control flow graphs, we relax
this restriction in this section to state more general properties
of the control dependence graph, explicitly mentioning CFG
to be acyclic whenever needed.

Node x dominates node y, denoted by £Ayy, iff every path
from START to y contains z [1]. A node always dominates
itself. We use x4y to denote z does not dominate y.

Node y post-dominates node z, denoted by yA,z, iff every
path from z to STOP (not including z) contains y [12]. A
node never post-dominates itself. We use yX,z to denote y
does not post-dominate x. The reflexive closure of the post-

| ®
% @
X — 30
R0
(@)
M-
(b)

Fig. 1. Solving problems with loops to get a hierarchy.

1 Interval 1 1

Interval 2

Loop 2

@ Interval 3

(€Y ®)

Fig. 2. Building hierarchies with intervals and loops.

dominance relation will be denoted by A, yA,z iff yApz or
y = z. The following is well known [12].

Lemma 1: Let y and z be distinct nodes. For any z, if YA,z
and zA,z then-either yA,z or zA,y.

Lemma 1 suffices to show that the set of post-dominators
of a node z form a chain. The least element in the chain is
called the immediate post-dominator of z. The set of post-
dominators of a node x is nonempty (except when z is the
STOP node) as STOPA,z. Hence, all nodes except STOP
have a unique immediate post-dominator. If we draw an arc

GIRKAR AND POLYCHRONOPOULOS: AUTOMATIC EXTRACTION OF FUNCTIONAL PARALLELISM FROM ORDINARY PROGRAMS 169

@ Basic block with unconditional jump START

® Basic block with conditional jump

Do loop

begin
BB_1
if Cl then
DO i=1, n
BB 2
endo
else
do i=1l, m
BB_3
do 3=1, k
if C2 then BB_4
else BB 5 endif
BB_6
endo
endo
endif
call Subroutine X
end

subroutine X D

if C3 then BB 7
else BB_8 endif
BB_9

(@

from z to y whenever Z is an immediate post-dominator of y,
the resulting graph is a tree rooted at STOP and called the
post-dominator tree.

Node y is control dependent on node z with label © —a
[(z,a) is an arc in CFG}, denoted by z6.y, iff

1) y&,z, and

2) 3 a nonnull path P =<uz,a,-,y >, such that for any

2 € P (excluding x and y) yApz.
Our definition of control dependence differs only slightly
from [12] where nodes were restricted to have at most two
outgoing arcs; we relax this restriction. An immediate conse-
quence of the definition is that if z6.y with label z — a, then
yBga.
The control dependence graph CDG, of a control flow
graph CFG, is defined as the directed graph with labeled arcs,
CDG = (CV,CE) such that
1) CV =V and
2) (z,y) € CE with label z —a iff z6.y with label — a.
CDG can be built from CFG using the post-dominance tree
[12] as follows. If (x,y) is any branch in CFG, then it can
be shown that
1) Let z be the immediate ancestor of z in the post-
dominator tree. Then the least common ancestor of z
and y in the post-dominator tree, LCA(=,y), is either
T or z.

2) All nodes on the path from y to z (not including z) in
the post-dominator tree are control dependent on x with
label z — y.

mmmwmmﬂwmw

<

®)
Fig. 3 Hierarchical task graph. (a) Program fragment. (b) The hierarchical task graph of (a).

The transitive closure of 6. will be denoted by 62, zby iff
there exists a nonnull path from z to y in CDG. The reflexive
closure of §* will be denoted by 5r, zbry iff x8iyorz =y

The remaining part of this section states a number of
useful properties of the CDG which are directly or indirectly
used in later optimization phases. However, the reader can
safely skip the remaining of this section without loss of
algorithmic/procedural details. Proofs are omitted for brevity
and can be found in [14]. Some of the proofs have appeared
elsewhere before, we cite a reference wherever appropriate.
Lemma 2 characterizes the relation §; in terms of paths in
CFG, §* corresponds to the notion of the range of a branch
given in [23].

Lemma 2: z6%y iff there exists a nonnull path, P, in CFG
from z to y such that for any 2 in P, 24p7.

Lemma 2 is useful in proving various properties of the
CDG. Lemma 3 [11] states that if node = post-dominates
node y, then z also post-dominates any descendant of y in
the CDG.

Lemma 3: If zApy and y6:z, then zApz.

Lemma 4: If 26y, 20py, then either zA,z or z6;2.

Lemma 2 and Lemma 4 can be used to derive the following
important theorem.

Theorem 1: CDG is cyclic iff CFG is cyclic.

Lemma 5 [11] determines when two nodes in the CDG may
not share common descendants when CFG is acyclic.

Lemma 5: Let CFG be acyclic. If zApy (or yApx), then
there is no node z such that both 872 and y6;z hold.

170 |EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

Lemma 6 characterizes the paths in CFG when CFG is
acyclic.

Lemma 6: Let CFG be acyclic. If there is a path from z to
y in CFG, then there exists a unique node z such that zﬁpx
and z8*y.

Lemma 7 characterizes nodes which post-dominate START
in CFG.

Lemma 7: xA,START iff for all o such that ad.z, zAqa.

When CFG is acyclic, Lemma 7 yields Corollary 1.

Corollary 1: Let CFG be acyclic. Then zA,START iff z
has no incoming arcs in the CDG.

V. PARALLEL EXECUTION OF AcYcLIC CFG

In the absence of data dependences, the parallel execution
of CFG is based on CDG [11] where identically control
dependent nodes are executed in parallel:

1) Initially, only nodes that do not have any incoming arcs

in the CDG begin execution in parallel.

2) After executing a node, say z, if label z—a is true (i.e.,
the branch z—a would have been taken in the sequential
execution of CFG), then all nodes y such that 6.y with
label z—a start execution in parallel.

The execution terminates when all nodes finish execution. By

Theorem 1, CDG is acyclic and hence it is obvious that the"

paralle]l execution will terminate.

Let S and P denote the sequential and parallel execution of
CFG, respectively. S specifies a single path P in CFG from
START to STOP. The parallel execution of CFG specifies
a tree in the CDG [11].

A node is executed in S if it lies on P. A label x—y will
be true in P if the arc z—y lies on P. According to the above
model, a node z is executed in P when there is a path in
the CDG, < ag,a1, --,a, = x > such that ag is a node
with no incoming arcs and a;6.a;+1 (0 < j < n) with some
true label a;j~b;. Lemma 8 states a property of nodes which
execute in P, which is used repeatedly herein. If a and b
execute, then either b will lie on the path in the CDG that led
to the execution of a or vice versa; if neither is the case, then
a and b cannot share a common descendant in the CDG.

Lemma 8: Let CFG be acyclic and let nodes a and b
both execute in P with corresponding paths in the CDG,
< ag,a1, -+ ,an, = a > and < bg,by,---,by, = b > such
that ag (b) is a node with no incoming arcs and a;0.0;41
(bj0cbjv1) for 0 < j < n (0 < j < m) with true label a; —¢;
(b; — d;). Then one of the following statements is true.

1) n < m and the paths agree on the first n elements; i.e.,

a; = b; for 0 < i < n.
2) m < n and the paths agree on the first m elements; i.e.,
b, =a; for 0 < ¢ < m.
3) a and b have no common descendant in CDG; ie., A
z such that a8}z and b3 z.
Proof: Assume that the first two statements are false.
Then there exists a j such that

1) 0 < j < min(m,n),

2) a; # b; and

Na=bfor0<I<j-1

If j = 0, since ap and by have no incoming arcs, it follows
from Corollary 1 that agA,START and boA,START. By
Lemma 1 either agApbo, or boApap. If j # 0, then a1 =
bj—1 and a;_16.a; and a;-16:b;. Further, they must have the
same label as only one label can be true from a;_;, and both a;
and b; were executed in P. Hence, a1 —¢j—1 = bj_1—d;-1.
By definition of control dependence, a;Apcj_y and bjApci—1
and by Lemma 1 either a;Apb; or bjApa;. Thus, we have
proved that either a;A,b; or b;Aya;. Clearly, a;6%a and
bjS;b. If the third statement is also false, then there exists
a z such that a8*z and b8} z. Using transitivity we get ;672
and ;8 2. This contradicts Lemma 5. O

The following theorem states the correctness of the parallel
execution.

Theorem 2: Let CFG be acyclic. The parallel execution of
CFG executes the same nodes as the sequential execution. (A
proof is given in [14].)

VI. THE DATA DEPENDENCE GRAPH (DDG)

Node y conflicts with node if either z or y share access to a
common variable, at least one of which is a “write” operation.
Conflicts induce a data dependence [3], [4], [7], [17], [24]
relation among nodes. Exactly one of the following can occur
between two distinct nodes = and y.

1) y is reachable from z.

2) z is reachable from y.

3) =z is not reachable from y, and y is not reachable from .
If 2 and y conflict with each other, then we say that y is data
dependent on z in Case 1 (denoted by zéyy) and z is data
dependent on y in Case 2 (yé4z). In Case 3 the conflict does
not matter as z and y will not be executed together in any
execution instance of CFG and can be ignored. If CFG is
the iteration body of a loop, we are restricting ourselves to
loop-independent dependences [3], [4], [24].

The data dependence graph DDG = (DV, DE) is defined
as the directed graph with labeled arcs such that

1) DV =V and

2) (z,y) € DE if zbay.

Note that since zdyy implies a path from z to y in CFG,
the graph containing the arcs of both CFG and DDG is also
acyclic owing to the acyclicity of CFG. Similarly, the graph
containing the arcs of both CDG and DDG is also acyclic.

VII. CONDITIONS FOR EXECUTION OF TASK NODES

With the addition of data dependences, when a node is to be
executed, it must be verified whether the nodes on which it is
data dependent have completed execution or are not going to
be executed; in both cases the data dependences are satisfied.
This can be done by defining conditions for each node so that
the condition evaluates to true only when the node is ready;
i.e., it must be executed and the data dependences, if any, be
satisfied.

Conditions contain l/iterals representing nodes (z) or arcs
(z-y) in CFG. The condition (z) will be true when node =
has finished execution. The condition (z—y) will be true when

GIRKAR AND POLYCHRONOPOULOS: AUTOMATIC EXTRACTION OF FUNCTIONAL PARALLELISM FROM ORDINARY PROGRAMS 171

®
O DO~~~ @

S0P

(b): PT (Post-Dominator trec)

(c): CDG (Control Dependence Graph)

Fig. 4. An example. (a) CGF (Control Flow Graph). (b) PT (Post-Dominator iree). (c) CDG (Control Dependence Graph). (d) DDG (Data Dependence Graph).

node z finishes execution and in addition control follows the
arc z—y in CFG. A node z will be ready to execute when:

1) The control conditions which force the execution of =

are true.

2) If yé4z, then either y has finished execution or it is

known that y will not be executed.

An example will make this clear. Consider the control flow
graph shown in Fig. 4(a). Its post dominator tree and control
dependence graph are shown in Fig. 4(b) and (c). Let the data
dependence graph be as shown in Fig. 4(d). Since we will be
dealing with acyclic graphs, we will assume from now on that
the nodes are numbered in such a way that if there is an arc
(z,y) in the CFG, z < y.

The conditions for node 5 to be executed are that the
branch from node 3 to node 4 is taken (the necessary control
condition), and either node 4 has finished execution or it is
determined that it will not be executed at all (the necessary
data dependence condition). Node 4 will not be executed when
the branch 3-9 or 1-8 is taken. Thus, the condition for the
execution of node 5 can be compactly represented by 3—4 A
(4 v 3-9 v 1-8). When nodes 3 and 4 finish execution, they
will try to update the condition of node 5 (provided it has not
been executed yet), and if the update causes the condition to
be true, node 5 can be executed. We now formally define the
procedure for deriving the conditions for a node.

A. Control Dependence Conditions

The control conditions for a node z are easily derived
from the CDG. Let z in the CDG be control dependent on
a1,as, 0y With labels a1-b1,as—ba, -, an—bn, respec-

tively. Then the condition for x is

a1-by Vag—-baV---V Gn—bn.

B. Data Dependence Conditions

For data dependence conditions we need to know when
a node will not be executed. It is easier to do the reverse
computation; that is find the nodes that will not be executed if
a branch is taken in the flow graph. We first define REAC(x)
to be the set of nodes reachable from a node z in the CDG.

REAC(z) = {ylzbZy}-

This can be done by a simple depth-first traversal of the
CDG. The sets REAC(z)" were also defined and used in
{11]. Thus, for the example control dependence graph shown
in Fig. 4(c), we have REAC(3) = {4,5,6,7,8}, REAC(1) =
{2,3,4,5,6,7,8}, REAC(5) = {6,7} and for all other
nodes, z, REAC(z) = ©. Similarly, we define the set of
nodes reachable from a branch in the CDG, denoted by
REAC(z-y).

REAC(z—y) = {a|3z such that x6.2with
label z—y and z8%a}.

Obviously, REAC(z—y) C REAC(z),Vz. In our example
we get REAC(1-2) = {2,3,4,5,6,7,8}, REAC(1-8 = {8},
REAC(3-4) ={4,5,6,7,8}, REAC(3-9) = @, REAC(5-6)
= {6} and REAC(5-T7) ={T7}. Based on these definitions we
can define BranNeg(z—y) for a branch z—y in the CFG.

BranNeg(z—y) = REAC(z) — REAC(z-y).
In [11] REAC((z) included also.

172 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

In the process we also define the set Neg(x) for each node z.
Neg(x) is the set of all branches in CFG whose traversal
bypasses the execution of z (a formal proof is given in
Lemmas 9 and 10).

Neg(z) = {y—z|r € BranNeg(y—-z)}.
or equivalently,

Neg(z) = {y—z|z € REAC(y) and = € REAC(y-2)}.

In the example we have BranNeg(1-2) = BranNeg(3—4)
&, BranNeg(1-8) = {2,3,4,5,6,7}, BranNeg(3-9)
{4,5,6,7,8}, BranNeg(5-6) = {7} and BranNeg(5-7) =
{6}. From these we can compute Neg(START) = Neg(1) =
Neg(9) = Neg(STOP) = &, Neg(2) = Neg(3) = {1-8},
Neg(4) = Neg(5)= {1-8, 3-9}, Neg(6)= {1-8, 3-9, 5-7},
Neg(7) = {1-8, 3-9, 5-6} and Neg(8) = {3-9}.

We now prove some of the properties of the Neg sets.

Lemma 9: Let p—q € Neg(r). If label p—q is true then r
will not be executed.

Proof: If r executes, then there exists a path, P, =
(ag,"**,an, = r) in the CDG such that ag has no incoming
arcs and a;6.a;41 with true label a;—¢; for 0 < ¢ < n.
Since label p—q is true, p has executed and there exists a
path P, = (by,-,bym, = p) in the CDG such that bo
has no incoming arcs and b;6.b;+1 with true label b;—d; for
0 < i < m. We now apply Lemma 8 (substitute a = 7, b = p)
and get that one of the following is true.

1) n<manda; =b; for 0 <: < n.

2) m<nand b =aqa; for 0 <7 <m.

3) A a z such that r6*z and pd*z.
Since p — g € Neg(r), r € REAC(p) and r ¢ REAC(p—q).
r € REAC(p) implies p6*r and since r&r, clearly statement
3 is false as we can choose z = r. Statement 1 cannot be
true because that would imply r8*p (r would lie on P,)
contradicting the acyclicity of CFG as we know that p§jr.
If statement 2 is true, then p = a,, (p would lie on P;) and
since the label p—gq is true, pé.a4+1 With label p—g. Since
am116:7T, 1 € REAC(p—q) giving a contradiction. Hence,
none of the three statements is true proving that r will not be
executed. 0

Lemma 10: If r is not executed then exactly one of the
labels in Neg(r) will be true.

Proof: We first prove that at least one of the labels in
Neg(r) will be true. Suppose that none of the labels in Neg(r)
is true. We define sets R;, « € R; iff 26 and the maximum
length of a path in CDG from z to r is 7. The sets R;
correspond to ancestors of r in the CDG arranged in layers.
Clearly, there exists an n such that R; = & for ¢ > n and
R, # O. 1t is easy to see the following:

1) Ry = {r},
2) If z € R; for ¢ > 0 then 677 and hence r € REAC(x)
and

3) If € R,, then z has no predecessors in CDG.
We prove that no nodes in R; for 0 < ¢ < n will be executed.
The proof is by induction on i.

Basis (i = 0): Ry = {r} and by hypothesis r is not
executed.

Induction step: Assume that none of the nodes in
Ro,---, Ri_1 is executed. We will show that no node in R;
(¢ > 0) is executed. Suppose that z € R; and 7 is executed.
Then one of the branches from z has label true, let that branch
be z—y. If r ¢ REAC(z-y), then since r € REAC(z),
g~y € Neg(r) which contradicts our supposition that none of
the labels in Neg(r) is true. If r € REAC(z-y), then there
exists a z such that 76,2 with label z—y and 283r and z is
executed as label z—y is true. The maximum length of a path
from z to r is at least one less than 7, hence z € R; for some
4,0 < j < i. This is a contradiction because we assumed that
none of the nodes in R; is executed.

Since R, # @, let z € R,,. We just proved that if 7 is not
executed and none of the labels in Neg(r) is true, then x will
not be executed. However, x has no predecessors in CDG and
hence is always executed. This is a contradiction. Hence, at
least one of the labels in Neg(r) is always true.

Now we show that exactly one of the labels in Neg(r) is
true. Suppose that labels s—t and u—v belonging to Neg(r)
are true. Clearly, s # wu as only one label can be true
from one node. Also, since s—t € Neg(r), r € REAC(s)
and r ¢ REAC(s—t). Similarly, r € REAC(u) and r &
REAC(u—v). If labels s—t and u—v are true then s and u
are executed and there are corresponding paths in the CDG,
< ag,a1,,an = 8 > and < bg,b1, -+, bm = u > such
that ag (bp) is a node with no incoming arcs and a;6.a;+1
(bjbcbjqr) for 0 < 5 < m (0 < j < m) with true label a;—c;
(b;—d;). We apply Lemma 8 (substitute @ = s, b =) and get
that one of the following is true.

1) n <manda; =b; for 0 < i < n.

2) m<nand b =a; for 0 <i<m.

3) A a z such that s6%z and b6’ .

Since r € REAC(s) and r € REAC(u), s6ir and ud;r,
hence statement 3 is false as we can choose z = r. If statement
1 is true, then s = b, and n < m as s # u. Since s—t is the
only true label from s, $6.b,1 with label s—¢. Since bn.HSzu
and uéXr, by418%r. This gives 7 € REAC(s—t) which is a
contradiction. We get a similar contradiction if statement 2 is
true. Hence, exactly one of the labels in Neg(r) is true. I

We can now define the data dependence condition for a
node z when it is dependent on another node y. Let Neg(y)
be {a;-b1, az=b2, -+, an—bn}. Then the data dependence
condition is

yVv al—bl \% ag—bz VooV an—bn.

If z is data dependent on other nodes, then we take a
conjunction of all conditions. The conditions for all the nodes
in the example flow graph of Fig. 4 are shown in Table I. A
blank entry indicates that the condition is always true.

VIII. OPTIMIZATION OF DATA AND CONTROL DEPENDENCES

Since the conditions for a node will be repeatedly updated
and evaluated for satisfaction, it is important that they be as
simple as possible. For example, some of the data dependences
need not be synchronized by way of execution conditions
because they are always satisfied by other control and data
dependences which have been enforced. In such cases the

GIRKAR AND POLYCHRONOPOULOS: AUTOMATIC EXTRACTION OF FUNCTIONAL PARALLELISM FROM ORDINARY PROGRAMS 173

TABLE I
UNOPTIMIZED CONDITIONS FOR ALL NODES IN FIG. 4
Node Condition
START -
1 -
2 1-2
3 1-2A(2V1-8)
4 3-4 A2V 1-8)
5 3-4A(4V1-8V3-9
6 5-6
7 5-7
8 (1-8V3-4)A 2V 1-8 A4V 1-8V3-9 A
(5V1-8V3-9)A(BV5-TV1-8V 3-9) A
(7V5-6V1-8V3-9)
9 -
STOP -

data dependence term in the condition can be omitted. In
this section we show how optimizations can be performed to
simplify the conditions. Optimizations are done in two phases:
Phase I: Elimination of redundant dependences.
Phase II: Simplification of execution conditions.

A. Elimination of Redundant Dependences

Let z < y (z precedes y) denote that = finishes before
y in all parallel executions of the CFG in which both x
and y execute. The following lemma will be useful in the
optimization phase.

Lemma 11: If 6%y then z < y.

Proof: 1f both z and y are executed in an instance, P,
then there are two paths in CDG, P; = (ag, a1, ", 0n = T)
and P, = (bp,b1,--+,bm = y) such that ag and by have no
incoming arcs and a;j6ca;+1 (bjdcbj+1) with true label aj—c;
(bj—d;) forall j =0,---,n—1(j =0,---,m—1). We apply
Lemma 8 and hence one of the following is true.

1) n < mand a; =b; for 0 <2 < .

2) m<nand b =a; for 0 <1 < m.

3) A a z such that z6}z and yé; 2.
Clearly, statement 3 is not true as we can choose z = y
and get z8%y and yb*y. Statement 2 is false as it would
imply y = b = am6:x which along with z6%y contradicts
acyclicity of CFG. Hence, statement 1 is true and we have
£ = a, = bn and z lies on the execution path to y and
therefore finishes execution before y begins execution. 0

It is clear that if we can determine that z < y then the data
dependence zdqy (if present) is satisfied and does not need
explicit synchronization. A general outline of our algorithm is
given in Fig. 5. At any stage, we have information (the set S)
for a subset of nodes determining which nodes precede other
nodes, due to data dependences which have been enforced and
control dependences. Whenever a new node (z} is added, this
information is updated [step 3(a)] by checking if (y,z) can
be added to S for all y < x. When we consider the data
dependences incident on the new node [step 3(b)], we check
if they are implied by previous data and control dependences
or are really necessary. In the former case, we can ignore the
dependence [step 3(b)i]. In the latter case, we must enforce

the dependence (by synchronization), which may result in
determining the execution order of other nodes, and hence
may lead to an update in our information [step 3(b)ii].

We illustrate the method on the example control flow graph
in Fig. 4. The working of the algorithm at various stages
is shown in Fig. 6. The information available in set S is
shown in Fig. 6 by two sets associated with each node z
shown by square (where is the first component) and round
brackets (where x is the second component). Looking at the
sets associated with node 3 in Fig. 6(a), one can see that the
pairs (1,3), (2,3), (3,4), (3,5), (3,6), (3,7), (3,8) belong to
S. Initially, S consists of pairs (z,y) where z6y. The for
loops in Steps 3 and 3(b) imply that data dependence (a,b)
will be considered before (¢, d) if b < dorifb=danda > c.
For our example graph in Fig. 4(d), this order is (2,3), (2,4),
(2,5), (7,8), (6,8), (5,8), (4,8), (2,8).

When dependence 2643 is considered in step 3(b) it will
have to be synchronized as 2 A 3. However, after that is
done, (2, 3) will be added to S (step 3(b)ii). When determining
whether 2 < 4 in step 3(2) (y = 2,z = 4), the set A will
evaluate to {3} and since (2,3) € S, (2,4) will also be added
to S (step 3(a)iii). This causes the data dependence 2644 to be
considered redundant in step 3(b)i [see Fig. 6(a)}.

The status of the algorithm when considering the question
whether (2,8) € S (step 3(a), y = 2,7 = 8) is shown in
Fig. 6(b). The unique z is found to be 3 and hence A will
again evaluate to {3}. Note that the set A does not consist of
the predecessors of 8 in the control dependence graph (e.g.,
1 ¢ A); instead it is the set of predecessors of 8 which can
lie on a path from 2 to 8. Thus, (2,8) will be added to S.
Subsequently, this information will be used to eliminate the
dependence 2448.

Fig. 6(c) shows the status when it has been determined
that 7648 needs to be enforced (step 3(b)ii). Enforcing new
dependences may cause updates in current information. In this
case because the dependence 7648 was enforced, the pair (5,8)
will be added to S (step 3(b)iiA). This in turn will cause
(4,8) to be added to S because of the data dependence 4645
(step 3(b)iiB). This propagation of information is shown in
Fig. 7. This information will be used later to show that the
dependences 5648 and 4648 are redundant and need not be
enforced.

For our example graph of Fig. 4 the algorithm will deter-
mine that the dependences 2044, 5848, 4648, and 2648 are
redundant.

B. Further Simplification (Control Dependence “Elimination”)

The algorithm in Section VIII-A will inform us-of the essen-
tial dependences which need to be satisfied before a node can
commence execution. It may still be possible to simplify the
condition further. For example, in a term due to dependence
yb4x, some of the literals in Neg(y) can be omitted if they
also belong to Neg(r) as they will not result in the execution
of z. Under certain conditions the simplification process can
be very powerful yielding consistently “better” conditions
as is illustrated by the following proposition which allows
for the simultaneous removal of terms from the control/data
conditions of z.

174 [EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

Data Dependence Optimization Algorithm
1) Number the nodes of CFG such that if there is an arc (x,y) then x < y.
2) Construct set S to consist of pairs (x,y) such that z < y. Initially, if #6%y then (x,y) € S (see Lemma 11).
3) for each node z in increasing order do
a. for each node y from = — 1 downto 1 do /* check if (y.z) can be added to S */
i. Find unique = such that zAp,y and 33:1 (see Lemma 6).
ii. Let A be the set of nodes a such that ad.z and =8.a.
iii. If (y,a) € S for each a in A, add (y.x) to S.
b. for each data dependence yé,x in decreasing order of y do /* Now consider dependences into and check which are redundant */
i if (y.x) € S then yéyx is redundant.
ii. Otherwise, ydqx needs to be enforced. Add (y.z) to S. Enforcing yésx may cause additional pairs to be added to S. This update of
S is done by repeatedly executing the following two steps until no further updates can be done:
A. If (a.r) € S then add (z.x) to S for all such = such that z67a.
B. For a node = if zé4a, (a.x) € S. and either aA,= or algz, then add (=, x) to S.

Fig. 5. Algorithm to eliminate redundant dependences.

(1.2345)

————p Control dependence

—m—eBgee - Data dependence

(1.2345) { (1.2.3.4.9)

[¥)

©

Fig. 6. Removing redundant data dependences. (a) Just before checking data dependence 2—4 precedes 4 and therefore dependence 2—4 is ignored. (b)
Just before checking whether 2 precedes 8. All paths from 2 to 8 go through 3 and since 2 precedes 3 and 3 precedes 8, (2,8) will be added to S.
(c) Just after enforcing data dependence 7-8. (7,8) is added to S.

GIRKAR AND POLYCHRONOPOULOS: AUTOMATIC EXTRACTION OF FUNCTIONAL PARALLELISM FROM ORDINARY PROGRAMS 175

Proposition 1: Let © be control dependent on c1,-*+,Cm
with labels ¢1—dy, - - - , Cm—dm, Tespectively, and let Neg(y) =
{ay=b1, ", an — b,}. Then the condition for = is (c1—d1 V
e Vem—dm)A(yVar=bi V-V an—by). Whenever £Apy,
this condition can be replaced by the simpler condition y V
ei—f1---V ep—f,,, where each e;—f; is added as a result of
some ar—bx as follows:

1) ej—fj = ar—br wWhen xApax.

2) ej—fj = a;—br when arb.x with label ar—bg.

3) e;—f; = ci—d; for some i€0---m when a6’z and

c; € REAC(ak——bk).

Proof: (=) First, we prove that if the new condition is
true, then x must execute and the dependence due to y is
satisfied. For the condition to be true, one of the literals in the
new condition has to be true. If the literal y is true, then y has
finished execution, and since £A,y, T must execute.

If the literal e;— f; is true for some j, 1 < j < p then e;— f;
is a result of exactly one of the cases mentioned above.

In Cases 1 and 2 the literal e;—f; = ar—by, for some k,
1 < k < n. Since ax—bx € Neg(y), y will not be executed
(by Lemma 10). In Case 1, zApax, and hence z must execute.
In Case 2, z is control dependent on ax with label ay—by and
hence z must execute.

In Case 3 the literal e;—f; = c;—d; for some ¢ € 0---m
where axdix and ¢; € REAC(ay-by). Since ¢;6.x with label
¢;—d;, it is clear that x must execute. It remains to show
that the data dependence due to y is satisfied, this is done by
showing that y will not execute.

Assume that y is executed. Since z is also executed under
the control condition c;—d; there exist two paths in CDG,
P1 = (gg,---,gp = y) and P2 = (ho,"',hq_l = C,’,hq =
x). Clearly z cannot lic on P, as z8'y and zApy would
contradict the acyclicity of CFG. Also, y cannot lie on Ps,
as y6*z contradicts zApy. This implies that there exists an
I such that

1) 0 <! < min(p,q),

————p Control dependence
JROS— s Data dependence

1-2

[5.6.7.8]

(b)
Fig. 7. Propagating information. (a) First step—propagation up to 5. (b) Second step—propagation up to 4.

2) g1 # i, and

3) gr = hy forall 0 <7 <L
Clearly, h,é;x and glg’c‘y. Using a simlar argument as in the
proof of Lemma 8, we can show that either h;Apg; of adphi.

If g1Ayh, then since hlgl’;:c, by Lemma 3, qidpz. Since
qi6*y, we get a path from = 10 y via g; which along with
zApy contradicts the acyclicity of CF G.

If mApgr, then since g;6%y, by Lemma 3, hApy. If z
and h; are distinct, then since zApy, by Lemma 3, either
zAphi, contradicting h; 87, or hjA,x which along with 6%z
contradicts the acyclicity of CFG. Hence, v = h;. This
gives ¢; = hio1 = gi—10*y. Since ¢; € REAC(ax—b),
y € REAC (ay—by). This contradicts y € BranNeg(ax—bx).

In either case we get a contradiction, proving that y will
not be executed.

(<) Next we show that when z is ready to execute, the
new condition will become true. When z is ready to execute,
the data dependence due to y is satisfied and hence either
y has finished execution or ¥y will not be executed. If y has
finished execution, then the literal y will become true and
hence the new condition for z will be true. If y is not executed,
then exactly one of the labels, ax—by in Neg(y) will be true
for some k, 1 < k < n by Lemma 10. Since axbry and
zApy, by Lemma 4 rApap or ard*z. If zApay then ap—bk
is in the new condition by Case 1, hence the new condition
for = will become true. Hence, let axd; . Since the label
ar—by, is true, ay is also executed. Let the two paths in CDG
leading to the execution of ax and z be (go,"**»9p = Ok)
and {hg,*++,hg—1 = Cjshg = z) where ¢;6.z with true label
¢j—d; for some j, 1 < j < m. We apply Lemma 8. Then one
of the following is true.

1) p<gqgandg, =hifor 0 <i<p.

2) g<pand h; = gifor 0 <i < ¢

3) A a z such that a8}z and 6}z.

Clearly, Statement 3 is not true as we can choose 2z = z and
we have ap6iz and xg‘:z. Statement 2 is not true because

176

(®)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

Neg(5) = {1-7, 3-8, 4-8}

« Unoptimized condition for 6 is:
(7-6 v3-5 v4-5) A (5 v1-7 v3-8 v4-8)

* Optimized condition for 6
after Proposition 1: (5 v7-6)

— Control Dependence
-3 Data Dependence

©

Fig. 8. Further optimization of execution condition. (a) CFG. (b) CDG + DDG. (c) Optimization of execution condition.

that would imply z = h, = g,6}a) which along with a;6%=
contradicts acyclicity of CFG. Hence, Statement 1 is true.
Since ay and z are distinct, p < ¢ and ax = g, = h, and
arbdchpr1 with label ap—by. If hyy1 = 7, then by Case 2, the
literal az—by, is in the new condition for z forcing it to be true.
Otherwise, hp1167hg—1 = c; and hence ¢; € REAC (ax—by).
But then by Case 3, the literal ¢;—d; is in the new condition
for x forcing it to be true. Thus, we see that when z is ready
to execute, the new condition for x will become true. O

Although the proof of Proposition 1 is intricate, the actual
computation can be done easily, as all that needs to be done
is to find the immediate predecessors of x in CFG which
are also in REAC(a-b) for each a—b € Neg(y) — Neg(z).
Consider the example control flow graph shown in Fig. 8.
Neg(5) is {1-7, 3-8, 4-8} and Neg(6) is {7-8, 3-8, 4-8}.
The condition for 6 is (7-6 V 3-5 V4-5) A5V 1-7V
3-8 V 4-8). Since 6A,5 we can use the above proposition
to simplify the condition. The branch 1-7 falls under Case
3. It is now sufficient to look at predecessors of 6 which are
descendants of 1—7. Thus, due to the arc 1-7 we include only
7—-6 in the condition. Branch 3-8 also falls under Case 3;
however, 6 has no predecessors which are also descendants of
3-8 and hence no literals are added to the condition for 6.
This can also be seen from 3-8 being in Neg(6). Similarly,
no new terms are added due to 4—8, and the final condition
for 6 is evaluated to (5 V 7-6).

The conditions for our example flow graph of Fig. 4 after
elimination of redundant dependences and simplification are
shown in Table II. The condition for 8 can be further simplified
to (6 vV 7 vV 1-8), however, Proposition 1 can be applied to
only a single data dependence at a time and hence this is not
done. The complexity issues of the optimization algorithms
are considered in [14].

IX. PARALLEL SOURCE CODE GENERATION

Let us consider the problem of parallel source code genera-
tion based on the execution conditions derived and optimized
as discussed in the previous sections. We use the cobegin
.-+ coend parallel construct with its ordinary semantics, and

TABLE II

OPTIMIZED CONDITIONS FOR ALL NODES IN FIG. 4
Node Condition
START -
1 —_
2 1-2
3 2
4 3-4
5 4
6 5-6
7 5-7
8 6V5-7V1-8)A(TV5-6V 1-8)
9 -
STOP -

the synchronization primitives wait, post, clear. The synchro-
nization primitives operate on events. The wait(a) statement
induces a wait on the event “a” until a corresponding post(a)
is done by some other task. A clear(a) clears all prior posts.
Multiple posts with no wait or clear operations in between are
equivalent to a single post. Fig. 9 shows the parallel code for
our example. Curly brackets are used to group one or more
program statements separated by semicolons. Such statements
execute sequentially in the obvious lexicographic order.

Assuming all events have been cleared initially, code for
any node has the following appearance.

1) wait (own event).

2) Do own work.

3) Update the conditions which are dependent on it and if

any evaluate to true, then do the corresponding posts.
We assume that the updates to the condition for any node are
done through a critical section as different nodes could be
updating the condition for a node simultaneously.

The starting point for code generation is the CDG, and
identically control dependent nodes are executed in parallel
barring data dependences. There are two kinds of optimizations
which can be done immediately.

1) If it is known at compile time that an update is going

to change a condition to evaluate to true, one can

GIRKAR AND POLYCHRONOPOULOS: AUTOMATIC EXTRACTION OF FUNCT! TONAL PARALLELISM FROM ORDINARY PROGRAMS 177

for all task_semaphore do
clear(sem(task_semaphoren
endfor;
cobegin
{1
if 1-2 then
cobegin
g 2; post(sem(3)) }
#{ wait (sem(3}); 3;
if 3-4 then
cobegin
—{ 4; post(sem(5))

else

7;

g { wait (sem(5)); 5;
if 5 then

update condition for 8;
if condition for 8 is true then
post (sem(8)) endif;

uédate condition for 8;
if condition for i
post (sem(8)) endif;

8 is true then

update condition for 8;
if condition for 8 is true then
post (sem(8)) endif;

update condition for 8;
if condition for 8 is true then

post (sem(8)) endif;

oo @ndif)
—we{ wait (sem(8)); 8
coend
g endif }
coend

Fig. 9.

replace Step 3 above by just the corresponding post.
For instance, in our example, as the condition for 3 is
just 2, node 2 instead of updating the condition for 3
proceeds directly with post(sem(3)).

2) While generating code, the placement of a node in the
program will cause certain conditions to be true at that
point in the program, and hence the condition for a
node can be further simplified. For example, when 8 is
executed under the branch 1-8, 1-8 is true at that point
in the program and hence the condition for 8 is true (both
clauses of the conjunction will be true, see Table IT) and
hence 8 need not wait for any event. However, when 8 is
placed under the 3-4 branch, no such inference can be
made and there must be a synchronization instruction
for 8.

It will be observed that the code for node 8 has been du-
plicated. Duplication of code is a known problem while
generating code from the control dependence graph and can
be avoided, sometimes at the expense of parallelism [11].

Another optimization which can be done is to note that
since 2 is the only node updating the condition for 3, and 3
and 2 are identically control dependent, the synchronization
can be removed by executing 2 and 3 in sequence. The same
applies for nodes 4 and 5. For more details on parallel source
generation, the reader is referred to [13].

X. CONCLUSION

The capacity of a compiler to encapsulate task-level paral-
lelism from a sequential or parallel program is critically depen-
dent on accurate estimation of data and control dependences,

; stmt_n} execute in sequential order.

Parallel code for our example flow graph.

and more importantly on the derivation of minimal execution
constraints for each task in a program. In this paper we
presented a framework for the construction of a program’s task
graph based on data and control dependences, the derivation of
execution conditions for each task node, and the optimization
of these conditions. Moreover, through an example we showed
how HTG, our intermediate representation, can be used to
generate parallel source code from a sequential program.

Brute-force derivation of control and data constraints would
result in little or no parallelism in the resulting code. Finding
the minimal set of such constraints necessary to preserve
program correctness during parallel execution is therefore
instrumental in extracting and exploiting parallelism from
sequential and parallel programs.

ACKNOWLEDGMENT

The authors would like to thank referee B for his many
useful comments and suggestions, which helped improve the
presentation of this work.

REFERENCES

[1} A.V.Abho,R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques
and Tools. Reading, MA: Addison-Wesley, Mar. 1986.

{2] F.E. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante, “An
overview of the PTRAN analysis system for multiprocessing,” J. Par-
allel Distributed Comput., vol. 5, no. 3, pp. 617-640, Oct. 1988.

(3] J.R. Allen, “Dependence analysis for subscripted variables and its
application to program transformations,” Ph.D. dissertation, Dep. Math.
Sci., Rice Univ., Houston, TX, Apr. 1983.

[4] R. Allen and K. Kennedy, «Automatic translation of FORTRAN pro-
grams to vector form,” ACM Trans. Programming Languages Syst., vol.
9, no. 4, Oct. 1987.

178

[5]

6
{7
[8]
19

—

[10]

1]

[12]

[13]

14

[15}

[16]

[17]

[18]
[19]

[20]

EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 2, MARCH 1992

R.A. Ballance, A. B. Maccabe, and K.J. Ottenstein, “The program de-
pendence web: A representation supporting control-, data-, and demand-
driven interpretation of imperative languages,” in Proc. ACM SIG-
PLAN’90 Conf. Programming Language Design and Implementation,
June 1990, pp. 257-271.

U. Banerjee, “Speedup of ordinary programs,” Ph.D. dissertation, Dep.
Comput. Sci., Univ. of Illinois at Urbana—Champaign, Oct. 1979.

, Dependence Analysis for Supercomputing. Norwell, MA:
Kluwer Academic, 1988.

E. Coffman, Jr., Ed., Computer and Job-shop Scheduling Theory. New
York: Wiley, 1976.

R. Cytron, “Compile-time scheduling and optimization for asynchronous
machines,” Ph.D. dissertation, Dep. Comput. Sci., Univ. of Hlinois at
Urbana—Champaign, Urbana, IL, Oct. 1984.

R. Cytron, J. Ferrante, and V. Sarkar, “Experiences using control
dependence in ptran,” Languages and Compilers for Parallel Computing,
D. Gelernter, A. Nicolau, and D. A. Padua, Eds. Cambridge, MA: MIT
Press, 1990, pp. 186-212.

R. Cytron, M. Hind, and W. Hsieh, “Automatic generation of DAG
parallelism,” in Proc. 1989 SIGPLAN Conf. Programming Language
Design and Implementation, July 1989, pp. 54-68.

1. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Programming Languages
Syst., vol. 9, no. 3, pp. 319-349, July 1987.

M. Girkar, “Automatic detection and management of parallelism in pro-
grams,” Ph.D. dissertation, Center for Supercomput. Res. and Develop,
Univ. of Illinois at Urbana—Champaign, Aug. 1991, in preparation.

M. Girkar and C. D. Polychronopoulos, “A universal intermediate repre-
sentation for parallel programs based on control and data dependences,”
Tech. Rep. 1046, Center for Supercomput. Res. and Develop., Univ. of
Illinois at Urbana—Champaign, 1990.

H. Kasahara, H. Honda, M. Iwata, and M. Hirota, “A compilation
scheme for macro-dataflow compuatation on hierarchical multiprocessor
systems,” unpublished manuscript, 1989.

D.J. Kuck, The Structure of Computers and Comp
York: Wiley, 1978.

D.]. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M.J. Wolfe,
“Dependence graphs and compiler optimizations,” in Proc. 8th Annu.
ACM Symp. Principles Programming Languages, ACM, Jan. 1981, pp.
207-218.

C. Lee, “On run-time systems for parallel supercomputers,” Master’s
thesis, Univ. of Illinois at Urbana—Champaign, May 1990.

S.P. Midkiff and D. A. Padua, “Compiler algorithms for synchroniza-
tion,” IEEE Trans. Comput., vol. C-36, pp. 1485-1495, Dec. 1987.
C.D. Polychronopoulos, “Toward auto-scheduling compilers,” J. Super-
comput., pp. 297-330, 1988.

Vol. 1. New

[21]

[22]

[23]

[24]

, “Auto scheduling: Control flow and data flow come together,”
Tech. Rep. 1058, Center for Supercomput. Res. and Develop., Univ. of
Ilinois at Urbana—Champaign, 1990.

C.D. Polychronopoulos, M. Girkar, M. R. Haghighat, C.L. Lee, B.
Leung, and D. Schouten, “Parafrase-2: An environment for parallelizing,
partitioning, synchronizing, and scheduling programs on multiproces-
sors,” in Proc. 1989 Int. Conf. Parallel Processing, St. Charles, IL,
Aug. 1989.

M. Weiser, “Programmers use slices when debugging,” Commun. ACM,
vol. 25, no. 7, pp. 446-452, July 1982.

M.J. Wolfe, “Optimizing supercompilers for supercomputers,” Ph.D.
dissertaton, Dep. Comput. Sci., Univ. of Illinois at Urbana—Champaign,
1982.

Milind Girkar received the B.Tech. degree in com-
puter science and engineering from the Indian Insti-
tute of Technology, Bombay, and the M.S. degree
in computer science from Vanderbilt University,
Nashville, TN.

He is currently a Ph.D. candidate in computer
science at the Center for Supercomputing Research
and Development at the University of Hlinois at
Urbana~Champaign. His research interests are in
parallelizing compilers and program restructuring.

Constantine D. Polychronopoulos (5°85-M’86) re-
ceived the Ph.D. degree in computer science from
the University of Illinois at Urbana—Champaign
He has been a faculty member of the Department
of Electrical and Computer Engineering and the
Center for Supercomputing Research and Develop-
ment of the University of [llinois since 1986. He
serves on the editorial board of the JPDC and the
International Journal on High-Speed Computing,
and is the author of a book and several technical
journal and conference papers. His research interests

are on parallel computer architectures, their compilers, and operating systems.
Dr. Polychronopoulos was a recipient of the Presidential Young Investigator
Award in 1989.

