
Abstract
Method speculation of object-oriented programs attempts

to exploit method-level parallelism (MLP) by executing sequen-
tial method invocations in parallel, while still maintaining cor-
rect sequential ordering of data dependencies and memory ac-
cesses. In this paper, we show why the Java virtual machine is an
effective environment for exploiting method-level parallelism, and
demonstrate how method speculation can potentially speed up
single-threaded, general purpose Java programs. Results from
our study show that significant speedups can be achieved on
data-parallel applications with minimal programmer and com-
piler effort.  On control-flow dependent programs, moderate speed-
ups have been achieved, suggesting more significant performance
improvements on these types of programs may come from more
careful analysis or re-coding of the application.  For both classes
of applications, we discover performance debugging drastically
improves speedups by eliminating or minimizing dependencies
that limit the effectiveness of method speculation.

1 Introduction

In this paper, we investigate the effectiveness of using method
speculation running on a chip multiprocessor [12] to exploit method-
level parallelism (MLP) in single-threaded, general purpose Java
programs.  Method speculation might be thought of as the next
logical step beyond current superscalar processors that exploit
instruction-level parallelism (ILP).  As depicted in Figure 1, methods
correspond to blocks of many instructions.  Coarse grain parallelism
found between method blocks can potentially lead to speedups
not available to superscalar processors.  Studies [18] [9] have
shown that instruction level parallelism (ILP) in superscalar
processors is ultimately bounded by the limited size of the instruction
window and control-flow dependencies.  The lack of hardware for
effective memory disambiguation also limits the parallelism
available to these processors.  Even with large instruction windows,
current superscalar processors are architecturally designed to
resolve dependencies between registers, not memory locations.
Likewise, bus-based multiprocessors may be good at exploiting
thread-level parallelism, but they are ineffective on loop-level and
method-level parallel tasks because of the relatively high cost of
communication.  With a low-latency communication network and
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method speculation support, a speculative chip multiprocessor
configuration can exploit levels of parallelism not available to
superscalar processors or traditional bus-based multiprocessors
[12].

Current microprocessors [5] exploit instruction level parallelism
using out-of-order execution.  The processor selects instructions
from a large instruction window, speculatively executes these
instructions out-of-order, and buffers the results in a reorder buffer.
The instructions are then committed to the permanent architectural
state in the original program order.  In the case of instructions that
are incorrectly executed due to branch mispredictions or the use of
stale values, the processor must back up and restart execution.

Whereas the granularity of an entry in the reorder buffer of a
superscalar machine corresponds to a single instruction, such an
entry for a speculative multiprocessor analogously corresponds
to a single speculative task.  In method speculation, sequential
method invocations are mapped to speculative tasks that are
executed in parallel with the in-order thread.  When execution
reaches a method marked as speculative, the in-order thread
continues to execute that method, but forks off a new speculative
task that executes in parallel starting from the method return
(continuation).  Speculative memory stores and register file writes
encountered during execution are buffered with each speculative
task.  These changes are committed to the head, in-order thread
when sequential execution reaches the point at which the
speculative task would have executed normally without speculation

Figure 1 - A single chip multiprocessor can exploit levels of
parallelism not available to traditional superscalar

processors or bus-based multiprocessors.
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support.
To guarantee correct parallel execution of these speculative

tasks, our hardware ensures stores from earlier tasks are forwarded
to reads by later tasks.  Because this special hardware guarantees
correct sequential ordering of memory references, we can forgo
any explicit synchronization that is usually required for correct
parallel execution on traditional parallel architectures.   If a memory
read-after-write (RAW) violation occurs (caused by a preemptive
load by a later speculative task to a shared memory location written
late by an earlier speculative task), the speculative task is aborted
and restarted so that it can load the correct value from this memory
location.  To restart a speculative task, buffered stores from the
aborted speculative task are discarded, and the register file and
program counter (PC) are restored to their state prior to the start of
speculative execution.

Franklin and Sohi first proposed the basis of hardware
speculation in the context of the Wisconsin Multiscalar project
[16] [3].  Their architecture is tailored more to speculating on
relatively fine-grained tasks.  Our work is based on a speculation
model proposed for a chip multiprocessor, a design targeted to
speculate on coarser-grained tasks [4].  Details of this design and
more careful analysis of assumptions are discussed in [4] and [14].

We believe the Java language and virtual machine environment
can serve as a vehicle to explore capabilities of speculation in a real
system.  Java will enable us to examine speculation performance
for object-oriented programs (OOP), create a clean execution model
for method speculation, and develop a realistic runtime system to
dynamically manage method speculation.

Results from our study show that significant speedups can
be achieved through method speculation on data-parallel
applications with minimal programmer and compiler effort.  On
control-flow dependent programs, moderate speedups have been
achieved, suggesting more significant performance improvements
on these types of programs may come from more careful analysis
or re-coding of the application.  For both classes of applications,
we discovered performance debugging drastically improves
speedups by eliminating or minimizing dependencies that limit the
effectiveness of method speculation.

In Section 2, we describe our motivation for studying method
speculation under Java.  The assumptions about the target
architecture and simulation methodology used to evaluate
speculation are discussed in Section 3. In Section 4, we describe
our benchmark suite, with the results of our study given in Section
5.  Closing remarks are made in Section 6, and future plans are
presented in Section 7.

2 Method Speculation of Java Programs

While this paper concentrates on using Java for method
speculation, it is important to briefly discuss why we believe a chip
multiprocessor architecture is an ideal platform for general, high-
performance Java computing. A chip multiprocessor architecture
supports low latency communication between processors [12].

Such a parallel architecture is ideal for supporting many features of
the Java language and Java virtual machine:
• Explicit thread model and synchronization primitives in the Java

language allow the programmer to easily write programs to
exploit the underlying multiprocessor hardware.

• Low latency inter-processor communication can reduce the
overhead for accessing locks in the virtual machine.  Our evalu-
ations confirm Hölzle et al.’s findings that show such overheads
can represent a significant fraction of overall execution time [7].

• Virtual machine data structures shared between application
threads can be cached in the shared L2 cache, reducing access
latency to these system resources.

• The overheads of many coarse-grained virtual machine opera-
tions like class loading, bytecode verification, garbage collec-
tion and just-in-time (JIT) compilation could be hidden by ex-
ecuting them concurrently with actual application execution.

Many obvious levels of parallelism exist in the virtual machine.
Unfortunately, most of the coarse-grained parallelism present in
the virtual machine only represents single event parallelization
opportunities.  As Amdahl’s Law tells us, the effects of speeding
up these phases of execution will have a smaller performance impact
on long running applications because most of the execution time
will be spent executing application code.  While multithreaded
Java applications will clearly benefit from a multiprocessor, method
speculation can provide the following additional advantages:
• Facilitates easy and straightforward parallelization.  Modern

parallelizing compilers have been most successful with scien-
tific applications.  For many classes of general applications,
though, these compilers fail because they cannot analyze non-
uniform memory accesses patterns and cannot resolve memory
pointer ambiguities.  Without a compiler, significant program-
mer effort is required to explicitly hand-parallelize applications
using Java thread and synchronization primitives.  Worst of all,
parallelization results in programs that are difficult to under-
stand.  Method speculation is a simpler programming model
that can expose loop-level and method-level parallelism in the
application so that it can be exploited by the underlying hard-
ware.  As we shall see, most programs can use method specu-
lation with little or no modification to the original application.

• Reduces parallelization overheads.  Thread and synchroniza-
tion primitives generally introduce significant overheads into
the execution time not present in the sequential version of a
program. Method speculation can guarantee that dynamic ex-
ecution dependencies will always be correct, with smaller
overheads then those introduced by locks and barriers.   With-
out these costly synchronization overheads, we can also ex-
pect to see speedups on finer grains of parallelism that would
not be possible using traditional parallelization methods.

• Can speed up control-flow limited programs that have very little
obvious parallelism.  Programmers should be able to benefit
from the multiprocessor architecture even when running single-
threaded applications with very little fine- or coarse-grained
parallelism.



Java will enable us to examine method speculation performance
for object-oriented programs (OOP), create a clean execution model
for method speculation, and develop a realistic runtime system to
dynamically manage method speculation.

Using procedure or function calls as a framework to parallelize
programs was first mentioned by Knight in the context of Lisp [8].
Oplinger et al. has also examined loop and procedural speculation
through a limit analysis based on C programs using an ideal
environment with many simplifying assumptions [13].  The focus
of their study was to show that general applications exhibit
significant amounts of loop- and procedural-level parallelism.  Since
this paper is more concerned with implementing a real system, our
analysis will rely on more realistic assumptions given in Section 3.

2.1 Method Speculation on Object-Oriented
Programs

Object-oriented programs represent a class of applications
that may behave differently from general C programs under method
(procedure) speculation.  A study by Calder et al. shows the
characteristics of C and C++ programs to be significantly different
[2].  They show the dynamic function size of C programs to be four
times that of C++ programs, and the frequency of procedure calls
and returns in C++ to be three times that of C programs.  These
findings support our understanding of how object-oriented
programs are written.  The encapsulation model increases the
frequency of small method calls, reducing the dynamic function
size and increasing the number of method calls and returns.

These characteristics suggest that method invocations can
efficiently expose loop- and method-level parallelism in object-
oriented programs.  Method speculation uses the notion of
speculative tasks.  When a method marked as speculative is
encountered, the current processor executes the method and a
forked speculative task executes in parallel starting from the method
return (continuation).  This mapping of methods to speculative
tasks is depicted in Figure 2.  If the method call returns a value, the
speculative task executes assuming a predicted return value based
on previous executions of that method.  If this predicted return
value turns out to be incorrect or there is a RAW violation in the
heap due to the ordering of field loads and stores between tasks
executing in parallel, then the speculative task must be terminated
and restarted.

Method speculation is most effective for frequently executed
methods that return void or a predictable return value.  These
types of return values are frequently found in methods returning
boolean values that check for infrequent cases, but are not
crucial to the flow of program execution.  A method call like
isValid()  might do checks to make sure certain conditions are
met, returning true 95% of the time.  Another example is a method
isEOF()  that signals the presence of another value in the data
stream.  This method will almost always return true when iterating
through a large data structure.

Method speculation can permit sequences of read only or
write only methods to execute in parallel without worrying about

RAW violations.  Traditional loop-level parallelism can even be
exploited within our method speculation framework with minimal
programmer effort or with modern parallelizing compilers, as we
shall show later.

2.2 Mapping Speculation to Method
Invocations

Using method calls as the granularity of speculative tasks
conveniently allows us to exploit characteristics of the Java virtual
machine specification so that no transformations to the source
classfiles are required for speculative execution.  In Oplinger et al.’s
study, static analysis of the C source programs was required to
convert a normal program into a single-program-multiple-data
program suitable for running on a speculative machine [13] [14].
This analysis can be simplified considerably in Java. The Java
Virtual Machine Specification [10] states:
• A method can only access its private Java stack and locals, or

heap allocated objects.  A callee method shares values from the
caller only through explicitly passed arguments using a copy-
ing, pass-by-value convention and a single return value.  Argu-
ments and return values may include references to heap allo-
cated objects shared between the caller and callee.

• Specific Java bytecodes (getfield , putfield , getstatic ,
putstatic , arrayload , and arraystore ) make object (heap)
accesses explicit and distinct from Java stack and local opera-
tions (load , store , push , pop, etc.).

These restrictions allow us to simplify our simulator by
eliminating Java stack and local accesses from our dependency
analysis.  Since caller and callee methods work with their own
private Java stack and locals, RAW violations can only occur
between speculative tasks through objects dynamically allocated
in the heap.  This simplified analysis is not possible with C programs
since the ability to manipulate pointers makes it impossible to
guarantee that heap and execution stack accesses are well-behaved.

Figure 2 - Mapping of methods to speculative methods.
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2.3 Dynamic Management of Method
Speculation

Previous performance results for speculation [13] assumed
optimally chosen method granularities taken from the dynamic
execution profile.  Our simulations suggest that choosing the
appropriate methods for method speculation can dramatically affect
performance gains.  The Java virtual machine serves as an ideal
platform for investigation of a runtime profiling system that can
dynamically identify methods for method speculation from Java
bytecodes using some set of heuristics.

Our system would be similar to the runtime system of the
HotSpot Java virtual machine that uses dynamic method call
frequencies to identify methods to compile just-in-time [7] [17].
Relevant statistics collected during runtime would be fed back to
mark or unmark methods to speculate on so that our system can
dynamically adapt to new data sets, or converge on an optimum
runtime configuration. Profile information collected during execution
could also be returned to the programmer and/or user to help
increase the effectiveness of speculation.

We have developed a basic profiling system used to help
identify methods to speculate on.  An effective runtime profiling
system preserves a delicate balance between collecting the most
accurate and detailed data, and limiting the overhead data collection
incurs on overall execution time.  Since our goal is to identify large
regions in the application program suitable for method speculation,
we do not insert our profile annotations on small methods, methods
returning unpredictable values (e.g. float , long  and double ),
and methods included in the java .* package.  This reduced our
profile annotations to only methods that we expect could possibly
benefit from speculation.  Data collected from annotations placed
on these methods are shown in Table 1.  Simulations comparing
execution times indicate only minimal impact (< 1%) on the overall
execution time from these profiling annotations.  While we expect
that in the future, profile data would be used in algorithms to
dynamically identify speculative methods, data collected from
profiling is only used as a heuristic in this study to statically identify
methods for speculation prior to execution.

3 Simulation Methodology

We use trace-driven simulations to evaluate the performance
of method speculation for Java programs.  Annotated traces from
sequential execution of Java benchmarks running on a virtual
machine are fed into a simulator that models a speculative
multiprocessor.  Although our trace-driven simulator does not
model low-level details of the speculation hardware and memory
system, it provides accurate estimates of the performance of method
speculation.

3.1 Choosing a Virtual Machine

For a performance critical application like a virtual machine, an
intrusive mechanism to generate traces would have skewed our
results.  SimOS allows us to generate traces with no overhead
because it fully models the operating system and hardware units in
software [15].  SimOS has complete support for the MIPS ISA and
IRIX operating system, so our choice of virtual machines was
narrowed to the two virtual machines available for this platform:
the freely available kaffe (ver. 0.9.2) [19], and the Sun JDK1.1.3 port
to IRIX.  Both of these virtual machines support just-in-time (JIT)
compilation and Sun’s JDK1.1 APIs. We chose kaffe because we
could not obtain the full source code for  Sun’s Java virtual machine
(JVM), and this study and future work require modifications to the
virtual machine.

Only results for method speculation with the JIT compiler
enabled are presented for two reasons.  We believe that speculation
is only useful to further enhance speedups achieved by proven
techniques like JIT compilation.  Furthermore, our analysis has
shown that results from simulations based on interpretive execution
do not accurately reflect the performance of method speculation
with JIT compilation.

3.2 Speculative Hardware Model

Hardware support for speculation makes it possible for the
chip multiprocessor to correctly resolve memory dependencies,
and to back-out of memory violations and restore the memory
system to a previous, known state.  Our evaluation of method
speculation uses the underlying assumptions for a speculative

Table 1 - Profile annotations used to identify suitable methods for speculation.
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chip multiprocessor [4] to define the high-level behavior of
speculative methods:
• The system has four single-issue, in-order MIPS R4000 proces-

sors, permitting up to three speculative tasks to execute in par-
allel with the main thread.  Future designs of the chip multipro-
cessor could potentially use out-of-order processors with higher
issue width, so that the system could exploit both ILP and MLP.

• New speculative tasks are created only from the most specula-
tive task, or from the in-order thread, if no speculative task
exists. Although not discussed here, our hardware can actually
support other models of speculation [4].

• Memory store buffers can hold up to 1kByte (256 words) of
writes to memory for each speculative task.

• A RAW memory violation forces a restart of the speculative
task on which the violation occurred and termination of specu-
lative tasks that occur sequentially after this task. This involves
flushing all the corresponding memory store buffers and restor-
ing the initial register state and PC of the speculative task that
caused the violation.

• The unit of coherency that RAW violations in memory are
detected is one word (4 bytes).  Consequentially, byte accesses
in the same word could potentially cause false violations.

• A simple return value prediction scheme is implemented that
predicts using the last value returned for a given method [11].

• Speculation overheads are incurred for starting new specula-
tive tasks and for restarting tasks due to RAW violations or
return value mispredictions [4].  These overheads are described
in detail in Table 2.

3.3 Trace-Driven Simulation

To simulate method speculation, we use kaffe running under
SimOS to generate an execution trace containing data relevant to
method speculation.  Embra, the fastest but least detailed SimOS
CPU model, was used to minimize simulation time.  The execution
trace is fed into a simulator that reconstructs execution under method
speculation, with appropriate detection of RAW violations and
return value mispredictions.  To generate this trace, we utilize the
annotation capabilities of SimOS and modified the native code
generated by the JIT compiler.

As described in Section 2.2, our execution model simplifies
data dependency analysis to heap object and array accesses be-
tween speculative methods. The execution trace only records these
heap accesses, which can be easily distinguished from Java stack
and local access.  This eliminates the need to examine loads and
stores to non-heap allocated memory (e.g. execution stack ac-
cesses, constant loads, and method lookups) in the dynamically

generated code that cannot represent true dependencies between
speculative tasks.

This sparse trace is generated by modifying the JIT compiled
code generated by kaffe.  Illegal instructions, used as markers, are
added to the generated code immediately after loads and stores
associated with field accesses during JIT compilation.  During
execution under SimOS, these marker instructions are trapped within
SimOS.  The trapped instructions call a routine to log to our execu-
tion trace file the addresses of the memory locations accessed by
the real loads and stores. Because SimOS is a full software simula-
tion environment, we can force these marker instructions to disap-
pear from simulated execution.  Thus, the only side effect from our
annotation methodology is mild code expansion of the JIT com-
piled code during simulated execution.

The start and end of speculative methods are marked in a
similar fashion.  Speculative methods are chosen statically prior to
execution using statistics collected from the basic profiling system
described in Section 2.3 and another program that takes dynamic
method calls from the execution trace to generate a readable method
call graph with call frequencies and associated execution times.
Speculative methods are identified to the virtual machine by de-
noting one of the unused method attribute flags as the method
speculation flag.  These attribute flags are normally used to iden-
tify certain characteristics of the method (e.g. private , static ,
synchronized ).  Classfile binaries are modified prior to simula-
tion with the method speculation flag raised on methods that have
been chosen to be speculative.  When our modified JVM encoun-
ters the speculation flag raised during JIT compilation of a given
method, the JIT compiler inserts assembly code to mark the begin-
ning and end of the speculative region.  This code is used to
generate appropriate entries in the execution trace and to deter-
mine if the return value is correctly predicted.  In a real system, the
JIT compiler would insert assembly code at these points to invoke
method speculation on the actual hardware.

Our initial simulation results were difficult to interpret because
we could not associate violation addresses that our simulator gen-
erated with actual variables in the program.  This led us to develop
an extensive non-intrusive symbol facility under SimOS to aid in
performance debugging.  This is more challenging than looking for
symbols in a standard program binary.  Java symbols for method
calls and static fields from a classfile have to be resolved dynami-
cally to the corresponding addresses generated for these struc-
tures at runtime.  Addresses for new objects and arrays created
from program execution also have to be resolved to the corre-
sponding text symbol.  SimOS annotations [6] set on stub func-
tions in kaffe are used to collect symbol and address information
during execution into a symbold file so that these dynamically

Table 2 - Speculation overheads per speculative method.
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allocated objects can be identified. To simplify symbol resolution,
we also disable garbage collection so that objects are not relocated
during runtime.

Virtual machine support functions are eliminated from the
execution traces that we analyzed so that we can focus on the
behavior of the JIT compiled application code under speculation.
In addition to disabling the garbage collector, methods are loaded
and compiled into the virtual machine in advance to avoid pauses
during program execution.  Overheads from small functions to
implement new object allocations, lock operations and symbol
lookups are also removed from the traces.

The execution trace files are analyzed offline using our method
speculation simulator.  The simulator reconstructs execution under
method speculation from the sequential execution trace with marked
speculative regions and object accesses.  This trace-driven simu-
lator correctly handles RAW violations and return value
mispredictions.  It also incorporates assumptions about the be-
havior of the underlying hardware described in Section 3.2.  A
symbol resolver works in conjunction with the simulator, taking
information from the symbol file to associate dynamically allocated
objects with the appropriate text symbol.   Using this system,
textual information can be produced to associate a violation ad-
dress with a specific object, and with the method and call nesting
from which the reference was made.

4 Benchmarks

Benchmark selection was largely limited by the availability of
representative Java applications.  In general, Java applications that
represent traditional benchmark-style programs with compute
intensive kernels and critical sections of code were difficult to
locate.  To date, Java has been most successful as a high-level
development language used to implement user-interfaces.
Unfortunately, user-interactive programs are not amenable to
compute intensive benchmarking. We also included some small
kernels in our benchmarks, but we avoided toy benchmarks like
CaffeineMarks  that do not reflect the structure or behavior of
real Java programs.

The results in this paper are based on the benchmarks listed
in Table 3.  StringBuffer  and Hashtable  are frequently
encountered core Java libraries that can be sped up using method
speculation.  IDEA and NeuralNet  are two benchmarks taken
from the jBYTEmark  suite [1], and LinpackApp  is a popular floating-
point kernel.  The remaining programs represent popular, full scale
applications.

5 Performance Results

The results of our simulations of method speculation on a
chip multiprocessor with four single-issue processors are shown
in Table 4.  Speedups are measured relative to one single-issue
MIPS R4000 processor executing the benchmark.  We show re-
sults with and without the speculation overheads (see Table 2)

included in the analyzed traces.  Average utilization is also com-
puted, providing a measure of the occupancy on the available
processors.  As we would expect, applications that frequently
abort large speculative regions due to memory RAW violations or
return value mispredictsion will have significantly higher proces-
sor utilization relative to the actual speedup achieved.

These results represent the best performance that was
achieved by varying which methods to speculate on.  The pool of
suitable candidates for speculation were identified by our call graph
tool discussed in Section 3.3 and basic profiling system described
in Section 2.3.

5.1 Performance Analysis

Speedups appear to be split between the two types of appli-
cations represented in our benchmarks.  Method speculation is
effective for speeding up data-parallel applications like IDEA ,
NeuralNet , RayTrace  and LinpackApp  that have significant
coarse-grained parallelism.  With very few data dependencies be-
tween speculative tasks, almost no memory violations are seen
during execution of these programs.

RayTrace  is the only benchmark of these four that has little
ILP.  Since NeuralNet , IDEA, and LinpackApp  have significant
ILP, it could be argued that similar speedups on these programs
could be achieved on a superscalar processor.  What is important
to note is that method speculation can achieve these speedups
without true compiler support.  Most JIT compilers found in Java
virtual machines only translate bytecodes into native code, sacri-
ficing high-level optimizations that improve code quality in order
to keep compilation times short.  Superscalar processors, unfortu-
nately, must rely on time consuming instruction scheduling and
optimizations from a good compiler to fully exploit ILP.  We believe
this distinction can allow the speculative chip multiprocessor to
outperform a superscalar machine on these types of data-parallel
applications when only a simple JIT compiler is used.

Control-flow based programs, unfortunately, only benefit
modestly from method speculation.  Speedups on these programs
do not exceed 1.4 on our chip multiprocessor with four CPUs.
Compared to data-parallel applications, they have significantly
higher violation and restart rates (see Table 4), reflecting the con-
trol and data dependent nature of these programs.  Low processor
utilization numbers also indicate that speedup is limited due in part

Table 3 – Benchmark programs.

*NOTE: These statistics do not include calls to core JDK methods or classes.
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to the few available opportunities to use method speculation.  A
cursory examination confirms that these applications have propor-
tionally fewer methods with void  and predictable return values
than data-parallel programs.  This suggests that with more time to
understand and modify the source code so that processor utiliza-
tion is increased, it may be possible to see better performance on
control-flow based programs.

We discovered that the size of methods chosen for specula-
tion plays an important role in performance and processor utiliza-
tion.  Small speculative tasks are less likely to cause memory viola-
tions, but only produce small speedups.  Two factors seem to
contribute to this phenomenon.  Since small speculative regions
are short-lived, there is less opportunity to overlap speculative
tasks, resulting in low utilization of the processors.  Secondly, small
speculative regions suffer a larger relative penalty from the fixed
speculation overheads.

In general, we found better results come from speculating on
larger speculative tasks.  Large speculative regions execute longer,
so that there is a greater chance of having numerous speculative
methods executing concurrently.  Unfortunately, large regions have
more memory references, increasing the amount of parallel, over-
lapping loads and stores to the execution heap.  Large speculative
regions also tend to move memory references further apart in time
from their original positions in sequential execution.  Consequently,
speculating on larger methods increases processor utilization, but
places a greater strain on the memory system and speculation
hardware.  As expected, we found that choosing excessively large
speculative regions results in speculation buffer overflows and
unacceptable rates of memory RAW violations.

Speedups never approach four, the number of processors in
our system, even for our data-parallel benchmarks.  Our simple
scheduling algorithm bypasses speculative methods and executes
them sequentially when no more free processors are available,
resulting in idle gaps that limit speedup.  This limitation is due to an
inefficiency in our current model for speculative methods in loops

that we believe will be remedied as we continue to develop our
system.

5.2 Modifying Source Code to Improve
Performance

We were disappointed with our initial results on unmodified
source code.  We found low processor utilization numbers for our
data-parallel benchmarks and frequent memory violations on con-
trol-flow based benchmarks that had very regular loops. This led
us to look more closely at the program source code.  With some
experimentation, we found that relatively simple modifications to
the code could significantly boost performance under method
speculation.

For data-parallel applications, we discovered that the original
methods often represented regions that were too large to specu-
late on.  Inspection of the code revealed smaller data-parallel loops
that are closer to granularities of parallelism suitable for our system.
To expose this loop-level parallelism under method speculation,
we encapsulate the loop body that we want to represent a single
task as a nested method call, as shown in Example 1.  IDEA,
NeuralNet  and LinpackApp  show significant improvements by

speculating on these finer-grained parallel tasks.
Our simulator also identified variables that frequently caused

memory violations under speculation for certain control-flow-based
applications.  For Hashtable  and StringBuffer , these viola-
tions corresponded to variables that are written to late in a method,
precluding significant overlap between successive iterations.  As
illustrated in Example 2, moving writes to the dependent variable
to an earlier point and reads to this variable to a later point in the
method can increase overlap. For Raytrace , we eliminated a false
inter-method dependency by moving a write from the loop body
into the body of the method, as shown in Example 3.  By moving
such dependencies between speculative methods in our bench-
marks, violations are either eliminated, or occur earlier in execution,

Table 4 - Performance results.
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private void do_mid_forward(int patt)
{
    for (int neurode = 0; neurode < MID_SIZE; neurode++)
    {
      do_mid_forward_iteration(patt,neurode);
    }
}

 private void do_mid_forward_iteration(int patt, int neurode)
{
  double sum = 0.0;
  for (int i = 0; i < IN_SIZE; i++)
    {
      sum += mid_wts[neurode][i] * in_pats[patt][i];
    }
  
  sum = 1.0 / (1.0 + Math.exp(-sum));
  mid_out[neurode] = sum;
}

resulting in improved speedups.
In future studies, we hope to show that program sites that

may benefit from these types of optimizations can be identified
automatically, with minimal effort from the programmer.

5.3 Limitations of Our Study

Our choice to use the kaffe virtual machine dictated the abso-
lute performance of our system.  Our experiments have shown that
Sun’s JDK with JIT compiler support is about 20-30% faster than
kaffe.  For this study, though, we believe a reasonably implemented
JIT is sufficient for comparing the relative performance of a chip
multiprocessor with method speculation to a conventional single-
issue processor.

The effects of virtual machine support functions were elimi-
nated from the traces used to generate results.  Including these
functions would make it more difficult to interpret the results since
they tend to reflect overheads specific to the kaffe Java virtual
machine implementation.  In a real system, it is also hard to predict
how these support functions will affect performance, since they
could either be hidden by speculation or extend sections of se-
quential execution.

We will examine the effects of optimized JIT compiler code
and inclusion of virtual machine support functions on method
speculation as our system becomes more fully developed.

6 Conclusions

This study describes how the Java virtual machine can be an
effective environment for exploiting method-level speculation. In
our model, method invocations are used as a convenient abstraction
of the tasks that we would like to speculate on.  Not only does this
framework simplify data dependency analysis, but it also results in
a clean execution model.  In conjunction with a JIT compiler, this
system can invoke method speculation with virtually no modification
to the source bytecode program.

We show that speculation based on method invocations can
achieve significant speedups on data-parallel applications with
minimal programmer and compiler effort. For control-flow limited
applications, we show that method speculation can produce modest
speedups.  For both application classes, we find that analysis of
runtime behavior helps to eliminate and minimize dependencies
that limit speedup gains.   Our preliminary experiences suggest that
more study is required to understand how non-data-parallel
applications behave under method speculation so that performance
on these type of applications can be improved.

Although superscalar processors may perform as well as our
system on data-parallel applications that have significant
instruction level parallelism (ILP), instruction scheduling from smart
compilers are usually required to fully exploit ILP on superscalar
processors.  Since JIT compilers generally sacrifice these high-
level optimizations for faster compilation, we believe that a
speculative chip multiprocessor can outperform a superscalar
processor in this configuration.  It should also be noted that
speedups from method-level parallelism (MLP) are largely
orthogonal to those resulting from ILP, so that an implementation
of a speculative chip multiprocessor using superscalar processors
could take advantage of both types of parallelism.

7 Future Work

Continued research on method speculation of Java programs
will progress along two related fronts: improving the performance
of method speculation on Java programs, and implementation of a
virtual machine targeted for a chip multiprocessor architecture that
can dynamically manage method speculation.

Improving the performance of method speculation on Java
applications without obvious data parallelism appears to be the
most interesting and challenging area of further study.  We expect
that additional performance improvements on these programs will
result from combining incremental speedups from several
techniques that we are currently exploring.  These techniques
include using algorithms to reliably identify methods that benefit
from speculation, applying general code transformations, such as
those described in Section 5.2, that improve speculation
performance, and expanding the applicability of speculation to a
larger set of method call sites.

We have also started development on a Java virtual machine
designed specifically for a chip multiprocessor architecture.  An

Example 1 - Loop body of do_mid_forward()do_mid_forward()do_mid_forward()do_mid_forward()do_mid_forward()  transformed
into a nested method call.

Example 2 - Moving a loop carried dependency to improve
method speculation performance.

load rx,[m]

store v,[m]

specTask n

load rx,[m]

store v,[m]

specTask n+1

load rx,[m]

store v,[m]

specTask n+2

load rx,[m]

store v,[m]

specTask n

load rx,[m]

store v,[m]

specTask n+1

load rx,[m]

store v,[m]

specTask n+2

tim
e

tim
e

original code transformed code



Example 3 - Eliminating a false loop carried dependency  (to ab[]ab[]ab[]ab[]ab[] , an array of bytes).

public class RayTrace {
    Point cor;

    void Trace(Point point1, Point point2, int i, byte[] ab, int k) {
        . . .
        cor.x = xValue;
        cor.y = yValue;
        cor.z = zValue;
        ab[k++] = (byte)(cor.x * 255);
        ab[k++] = (byte)(cor.y * 255);
        ab[k++] = (byte)(cor.z * 255);
    }

    public void run() {
        byte ab[] = new byte[601];
        int k = 0;
        for (int j = 0; j < 200; j++)
        {
            for (int i1 = 0; i1 < 200; i1++)
            {
                Trace(point2, point1, 0, ab, k);
                d2 += d1;
            }
            k = 0;
        }
    }
}

original code transformed code

public class RayTrace {
    Point cor;

    void Trace(Point point1, Point point2, int i) {
        . . .
        cor.x = xValue;
        cor.y = yValue;
        cor.z = zValue;
    }

    public void run() {
        byte ab[] = new byte[601];
        int k = 0;
        for (int j = 0; j < 200; j++)
        {
            for (int i1 = 0; i1 < 200; i1++)
            {
                Trace(point2, point1, 0);
                ab[k++] = (byte)(cor.x * 255);
                ab[k++] = (byte)(cor.y * 255);
                ab[k++] = (byte)(cor.z * 255);
                d2 += d1;
            }
            k = 0;
        }
    }
}

integrated low overhead profiling and feedback system with a new
JIT compiler will dynamically manage method speculation.  The
new compiler will addresses performance limitations of our current
JIT [7] [17], and will allow us to study the effectiveness of speculation
on optimized JIT code.  This virtual machine will also look beyond
explicit Java threads to parallelism within the virtual machine.  By
enabling concurrent execution of explicitly coarse-grain virtual
machine tasks like the JIT compiler, class loader, garbage collector
and bytecode verifier, this virutal machine, together with the chip
multiprocessor, will be able achieve speedups even on single
threaded applications.
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