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Abstract

This paper presents an overview of automatic program
parallelization techniques. It covers dependence analysis
techniques, followed by a discussion of program trans-
formations, including straight-line code parallelization,
do loop transformations, and parallelization of recursive
routines. The last section of the paper surveys several
experimental studies on the effectiveness of parallelizing
compilers.

1 Introduction

The last decade has seen the coming of age of paral-
lel computing. Many different classes of multiprocessors
have been designed and built in industry and academia,
and new designs appear with increasing frequency. De-
spite all this activity, however, the future direction of
parallel computing is not clearly defined, in part be-
cause of our lack of understanding of what constitutes
effective machine organization and good programming
methodology.

Developing efficient programs for many of today’s par-
allel computers is difficult because of the architectural
complexity of those machines. Furthermore, the wide
variety of machine organizations often makes it more
difficult to port an existing program than to repro-
gram completely. Several strategies to improve this situ-
ation are being developed. One approach uses problem-
solving environments that generate efficient parallel pro-
grams from high-level specifications. Another approach
is based on machine-independent parallel programming
notation, which could take the form of new program-
ming languages, language extensions, or just a collection
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of annotations to an existing programming language.

Whatever the programming approach, it is clear that
powerful translators are necessary to generate effective
code and, in this way, free the user from concerns about
the specific characteristics of the target machine. This
paper presents an overview of techniques for an impor-
tant class of translators whose objective is to transform
sequential programs into equivalent parallel programs.
There are several reasons why the parallelization of se-
quential programs is important. The most frequently
mentioned reason is that there are many sequential pro-
grams that would be convenient to execute on paral-
lel computers. Even if the complete application cannot
be translated automatically, parallelizers should be able
to facilitate the task of the programmer by translating
some sections of the code and by performing transfor-
mations such as those to exploit low level parallelism
and increase memory locality which are cumbersome to
do by hand but may have an important influence on the
overall performance.

There are, however, two other reasons which are
perhaps more important. First, powerful parallelizers
should facilitate programming by allowing the devel-
opment of much of the code in a familiar sequential
programming language such as Fortran or C. Such pro-
grams would also be portable across different classes of
machines if effective compilers were developed for each
class. The second reason is that the problem of paral-
lelizing a traditional language such as Fortran subsumes
many of the translation problems presented by the other
programming approaches, and therefore much of what
is learned about parallelization should be applicable to
the other translation problems.

There are several surveys of automatic parallelization
[1, 2, 3] and several descriptions of experimental systems
[4, 5, 6, T]. However, this paper is, hopefully, a useful
contribution because it presents an up-to-date overview
that includes references to the most recent literature and
discusses both instruction-level and coarse-grain paral-



lelization techniques.

The rest of the paper is organized as follows. Sec-
tion 2 introduces dependence analysis, on which many
of the transformations discussed in this paper are based.
Section 3 discusses the transformations and Section 4
presents a survey of the published evidence concerning
the effectiveness of automatic parallelization.

We discuss transformations from a generic point of
view and make only a few observations on how those
techniques can be used to generate code for particular
machines. Parallelizers should incorporate an economic
model of the target machine [8], which is used to deter-
mine when a particular transformation is profitable or to
select one from a collection of possible transformations.
Except for the techniques discussed in Section 3.2.4 to
manage memory hierarchies and increase data locality,
nothing is said in this paper about memory management
and data allocation. The focus is on techniques to de-
tect parallelism and to map the code to computational
elements. However, memory management and alloca-
tion is a very important topic, especially for distributed-
memory and hierarchical shared-memory machines, and
the reader should keep in mind that memory issues may
have a determinant influence on the translation strategy.

2 Dependence

An ordinary program specifies a certain sequence of ac-
tions to be performed by the computer. A restructuring
compiler tries to find groups of those actions such that
the actions in a group can be executed simultaneously,
two groups can be executed independently of each other,
the executions of two groups can be overlapped, or a
combination of these execution schemes can take place.
Any scrambling or grouping of the original sequence of
actions is permissible as long as the meaning of the pro-
gram remains intact. To ensure the latter, the compiler
must discover the underlying “dependence structure” of
the program. This structure is determined by the way
the different actions in the program reference (read or
write) memory and by the control structure of the code.
The influence of the control structure of the program
on the dependence structure is represented by means
of the control dependence relation which is discussed in
Section 2.4. The influence of the memory references on
the dependence structure is represented by the data de-
pendence relation. The analysis of the latter, which is
discussed next, consists of finding out the details of the
pattern in which memory locations are accessed by the
different actions. The data dependence structure thus
discovered at compile time is usually only an approxi-
mation to the true data dependence structure, but the
discovered structure must always be conservative in the
sense that it includes all the constraints of the true struc-
ture.

We will restrict the discussion to single and double
loops. Most of the dependence definitions given for a
single loop can be trivially generalized to more compli-
cated programs. A few concepts are meaningful only in
the case of multiple loops and they are defined for dou-
ble loops. Further generalizations are straightforward.
Similarly, in the area of dependence computation there
is a jump from single to double loops, while it is rela-
tively easy (conceptually) to move from a double to a
multiple loop. An imperfectly-nested loop can be han-
dled much the same way as a perfectly-nested loop. A
piece of code that is not within a loop can also be accom-
modated without any difficulty. Most of the variables in
our examples are array elements. However, scalars can
be covered by pretending that they are single-element
arrays.

2.1 Data Dependence in a Single Loop

The whole subsection is devoted to one simple, albeit ar-
tificial, example involving a single loop containing three
assignment statements. The statements are chosen so
that several aspects of data dependence analysis can be
illustrated. An assignment statement has the form

S: z=F

where z 1s a variable and £ is an expression. The output
variable of S is z, and the input variables of S are the
variables in E.

Example 1 Consider the single loop
L: dolI=2,200

S A(I)=B(I)+ ()

T: B(I+2)=AI-1)+CI—1)

U: A{l+1)=B(2+«I+3)+1

enddo

The index variable of loop L is I, and the index values
are the 199 integers 2,3,...,200 that I can take as its
value. If H(I) denotes the body of the loop, then each
index value ¢ defines an instance H (¢) of the body, which
is an iteration of L. In the sequential execution of L,
the 199 iterations are executed in the increasing order
of the index values: T = 2,3,...,200. In each iteration,
the corresponding instances of statements S,7T,U are
executed in that order. The first four iterations of the
loop, corresponding to the values 2,3,4,5 of the index

variable I, are shown below:!
S(2): A(2) = B(2)+CO(2)
T(2): B(4)= A1)+ C(1)
U@2): A(3)=B(7)+1

5(3): A(3)= B(3)+C(3)
T(3): B(5)= A(2) + C(2)
U3): A(4)= B(9)+1

S(4): A(4)=B(4)+ C(4)
): B(6) = A(3)+ C(3)
): A(5)=B(11)+1

1. The notation S(z) denotes the instance of the statement S for
the index value I = 1.



Figure 1: Statement Dependence Graph of Loop in Ex-
ample 1.

some contexts (e.g., memory management), but
will not be considered further in this paper. We
just mention that there is an input dependence
of statement 7' on statement S because S(7) and
T(:+ 1) both read C(i). O
By data dependence we will mean any one of the three
particular types of dependences: flow dependence, anti-
dependence, and output dependence. These are denoted
by the symbols 6, 62, and 6°, respectively. The sym-
bol delta stands for any type of dependence. In Exam-
ple 1, we have: S6" T, T'6°S, U627, U 6°S. The rela-
tion S 677" is read “T" is flow-dependent on S”, and the
other relations are read similarly. These relations are
represented? by the statement dependence graph of the
loop L in Fig. 2.1. The statements forming a cycle in a
statement dependence graph are said to constitute a re-
currence. Note that there is a recurrence in our example
formed by the statements S and T

2.2 Data Dependence in a Double Loop

The basic data dependence concepts were introduced in
the previous section in terms of a single loop. Those
same concepts can be extended to a general loop nest,
but while some of them have obvious generalizations,
others do not. In this subsection, we focus on the lat-
ter and show how certain things will change as we move
from a single to a double loop. The extension to a more
general nest of loops then becomes routine.

Example 2 Consider the double loop (L1, La):

2. For quick recognition, we sometimes cross an anti-dependence
edge and put a small circle on an output dependence edge.



Figure 3: Statement dependence graph of loop in Exam-
ple 2.

the two statements S and T are flow-dependent on
each other. To see the dependence of T on S, we need
only look at the instance pair (S(0,1),7(1,0)). Both in-
stances reference the location A(1,1), and T'(1,0) reads
the value written by S(0,1). There are more instance
pairs with this property: An instance of T of the form
T(i1+1,1i3—1) always depends on an instance of S of the
form S(i1,142). The (dependence) distance in this case is
a constant vector, namely (1, —1), and the dependence
is uniform.

Consider now the dependence of S on 7T'. If (i1, i2) and
(41,42 + 1) are index values of the double loop, then the
instance T'(i1,2) of T and the instance S(¢1,iz+1) of S
both reference the location B(i1,iz+1), and S(i;, iz+1)
reads the value written by T'(i1,42). Again, we have a
case of uniform dependence with a distance vector (0, 1).

The dependence of T" on S is carried by the outer loop
L1 in the sense that whenever an instance of T' depends
on an instance of S, they must belong to two different
iterations of Ly (e.g., S(0,1) and 7'(1,0), S(2,2) and
T(3,1)). Another way of saying this is that T depends
on S at level 1. This is reflected in the dependence dis-
tance (1,—1) in that its first component is positive. In
contrast, the dependence of S on 7T is carried by the in-
ner loop Ly (and we say that it is a level-2 dependence),
since an instance of S will depend on an instance of T’
only if they belong to the same iteration of L;, but two
different iterations of Ls. This information is contained
in the distance vector (0, 1): Its first component is zero
and the second component is positive.

Fig. 3 shows two statement dependence graphs for the
double loop (L1, L2). The first graph has dependences
at all levels; the second does not have the level-1 depen-
dence. There is a recurrence in the first graph, but none
in the second graph, that is, the recurrence disappears
when we focus on the loop nest for a fixed iteration of
the outer loop.

We may define the relation of dependence between
iterations in an obvious way. Let H(I1, I2) denote the



body of the double loop. Then, the iteration H(1,0)
depends on the iteration H(0, 1), since the statement
instance 7'(1,0) depends on the statement instance
S(0,1). The complete iteration dependence graph is
shown in Fig. 2. a

Dependence distance vectors may be difficult to com-
pute in some cases, and some loop transformations do
not need the complete knowledge of distance vectors.
The direction vector of a distance vector is the vector
of signs of the components. For example, the direction
vector® of the distance vector (2,—5) is (1,—1), since
1 = sign(2) and —1 = sign(—>5); and the direction vec-
tor of (0,2)is (0,1). In Example 2, the direction vectors
corresponding to the two distances, (1,—1) and (0, 1),
are the distances themselves.

For each loop shown in this paper, we have assumed
a stride of 1. Because the stride is positive, a distance
vector (and hence a direction vector) is always (lexi-
cographically) nonnegative. For single loops, a distance
is greater than or equal to zero in the usual sense. If
(d1,ds) is a distance vector for a double loop, then one
of the three conditions holds: (a) d; > 0, (b) dy = 0 and
dy > 0, (¢) dp = d2 = 0. This set of conditions can be
extended to more complicated loops in an obvious way.
For dependence between iterations, the distances (and
directions) are strictly (lexicographically) positive, since
any dependence within a given iteration is then ignored.

Now, suppose that a loop L has a stride d where d is
any nonzero integer. Define a new variable r by r = (I —
p)/d where p is the lower limit of L. Then, the iterations
of L, which are labeled by the index values p,p+d,p+
2d, ..., can also be identified by the values 0,1,2,... of
r. If we change the index variable of the loop to r, and
replace each occurrence of I in it with the expression
p + rd, then we would get a loop with stride 1. This
is the transformation of Loop Normalization; it used to
be popular in the early days of vectorization, but has
fallen out of favor in recent years. However, we do not
need full-scale loop normalization. By using the variable
r instead of the index variable I in dependence analysis,
we can keep the same methods that are applicable to
the stride-1 loops, and maintain the requirement that
distance vectors be nonnegative. Whenever needed, the
results would have to be translated back in terms of 1.

2.3 Data Dependence Computation

For data dependence computation in actual programs,
the most common situation occurs when we are compar-
ing two variables in a single loop and those variables are
elements of a one-dimensional array, with subscripts lin-
ear (affine) in the loop index variable, as in the following
model:

L do I =yp,q

3. Many authors use the symbols <, >, and = to denote the
positive, negative, and zero signs, respectively.

S: X(axI+ao)=...
T: ...=..X(0b*I+b)...
enddo

Here, X is a one-dimensional array; p, q, a, ag, b, and bg
are integer constants known at compile time; and a,b
are not both zero. We want to find out if the output
variable of statement S and the input variable of state-
ment 7" cause a flow-dependence of 7" on S, or an anti-
dependence of S on T, or both.*

The instance of the variable X (al + ag) for an index
value I = 7 is X(ai4ap), and the instance of the variable
X (bI +bg) for an index value I = j is X (bj + bg). These
two instances will represent the same memory location
if and only if

ai—bj:bo—ao. (1)
Since 7 and j are values of the index variable I, they
must be integers and lie in the range:

p <t < g

p < J < q } @)
Suppose (%, j) is an integer solution to equation (1) that
also satisfies equation (2). If i < j, then the instance S(%)
of S is executed before the instance 7'(j) of T' in the
sequential execution of the program. Hence, S(i) first
puts a value in the memory location defined by both
X(at + ag) and X(bj + bg), and then T(j) uses that
value. This makes the instance T'(j) flow-dependent on
the instance S(i), and the statement T flow-dependent
on the statement S. Similarly, if ¢ > j, then S(i) is
anti-dependent on T'(j) and S is anti-dependent on 7.
If : = j, then we get a flow dependence of T on S| since
S(7) is executed before T'(¢) for each index value i.

The problem then is to find the set of all (integer)
solutions (¢, j) to equation (1) satisfying (2), and then
partition the solution-set based on whether 7 < j, ¢ > 7,
or i = j. Equation (1) is a linear diophantine equation
in two variables. The method for solving such equations
is well known and is based on the Extended Euclid’s
Algorithm [9]. Let g denote the greatest common divisor
(ged) of @ and b. Then (1) has a solution if and only if
g (evenly) divides by — ag. Assume that g does divide
by — ag. (Otherwise, there is no dependence of T on S,
nor of S on T'.) Then, there are infinitely many solutions
(4, J) to equation (1), all given by a formula (the general
solution) of the form:

(1,5) = ((b/9)t + i1, (a/g)t + 51) (3)

where

(11,71) = ((bo — a0)io/g, (bo — a0)jo/g),

10, jo are any two integers such that aig—bjy = ¢, and ¢ is
an arbitrary integer. The Extended Euclid’s Algorithm
finds the ged g and such a set of integers g, jo.

4. The types of the data dependences or the fact that the state-
ments are shown to be distinct are not important for this analysis.



Figure 4: Graphs of functions i(t) and j(t).

Note that the functions i(t) = (b/g)t + i1 and j(¢) =
(a/g)t+ j1 represent straight lines (Fig. 4). If a = b # 0,
then the two lines are parallel (Fig. 4a). In this case, the
two components of any solution (¢, j) are related in the
same way, that is, for all solutions (%, j), exactly one of
the following holds:

i
i
i

J (when i <ji)
J (when i > ji)
J (when 4 =j;).

v A

Thus, the two variables X (al 4+ ag) and X (b1 4+ bg) of S
and 7" can cause a dependence between S and 7 in only
one direction. Also, if a dependence exists, it is uniform
and the dependence distance is |j; — #1|. To decide if
there is a dependence in any direction, we must test to
see if there is an integer ¢ such that ¢, j, as given by (3),
satisfy (2).

Suppose now that a # b. The straight lines i(t) =
(b/g)t + i1 and j(t) = (a/g)t + j1 now intersect. For
definiteness, we will consider only the case a > b > 0
as shown in Fig. 4b. Let ¢ denote the value of ¢ at the
point of intersection. If ¢ is an integer, then there is an
integer solution (i, j) to equation (1) such that ¢ = j.
For all integer values of ¢ less than £, we get solutions
(4,J) such that ¢ > j, and the solutions for which i < j
are obtained for values of ¢ greater than £. So far, we
have ignored the constraints of equation (2). They will
define a range for ¢. If that range contains an integer
t greater than ¢, then the instance T(j(¢)) depends on
the instance S(i(¢)) and therefore statement 7" depends
on statement S. Each integer ¢ greater than £ will give
such a pair of statement instances. Similarly, an integer
less than ¢ in the range of ¢ indicates that S depends on
T.If € is an integer and is in the range of ¢, then T'(¢)
depends on S(€). The dependence (in either direction)
in this case is not uniform, since the value of |j — ] is
not fixed.

We will illustrate the above process by a simple ex-
ample:

Example 3 Consider the single loop
L: dolI=2,200
S: X(3+I—5)=B(I)+1
T: C(I)=X2+I+6)+D(I—1)
enddo
and compare the two elements of the array X. The dio-
phantine equation here is

3i—2j=11
and the constraints are
2 <1<200,2 <35 <200.

The ged of 3 and 2 1s ¢ = 1, and we have 3%x1 —2x1 =1,
so that (1,1) is a choice for (4p, jg). The general solution
to the equation 1is

(i(t), §(t)) = (2t + 11,3t + 11)

where ¢ is any integer. From the inequality 2 < 2t+11 <
200, we get —9/2 <t < 189/2, or —4 <t < 94 since ¢
is an integer. From the inequality 2 < 3t 4+ 11 < 200, we
get —3 <t < 63. Since ¢ must satisfy both inequalities,
we take the intersection of the two ranges: —3 <t < 63.

The point of intersection of the two lines #(t) = 2¢t+11
and j(¢) = 3t+11is given by the value ¢ = 0, which is in
our range. For 1 <t < 63, we have i(t) < j(t), and for
t = —3,-2,—1, we have i(t) > j(t). Thus, statement T
is flow-dependent on statement S, and the correspond-
ing set of instance pairs is

{(S(2t + 11), T(3t +11)) : 0 < t < 63}

={(S(11), T(11)),...,(S(137),7(200))}



The dependence distances are {t : 0 < ¢ < 63}. Also,
statement S is anti-dependent on statement 7" and the
corresponding set of instance pairs are

(T3t +11),S@2t+11)) : =3 < t < —1}
={(7(2),5()), (T(5), 5(7)), (T'(8), 5(9))}

The dependence distances are {—t : —3 <t < —1} or
(3,2,1}. 0

Dependence information in a multiple loop situation
can often be computed by repeated applications of the

technique explained in the above example.

Example 4 In the double loop

L1Z do 11:1,100
Lz: do 12 = 0, 200
S X(3xI, —5,2%I,+1)=B(I)+1
T CI)=X(2+xL +6,I,—2)+ D(I—-1)
enddo
enddo

if we compare the two elements of X, we will get two
equations (one for each subscript):

3i,— 2, = 11 (4)
%y —jy = -3 (5)
where (i1,142) and (j1, j2) denote values of the index vec-

tor (Il, Iz)

Note that equations (4) and (5) have no variables
in common. The constraints for equation (4), namely
1 <4; <100 and 1 < j; < 100, and the constraints for
equation (5), namely 0 < 43 < 200 and 0 < j; < 200,
also do not have any variables in common. Thus, we
can separately process (4) with its constraints and (5)
with its constraints. We can find the set of all solutions
((41,42), (j1,72)) to the system of equations, and also
the partition of the solution-set into subsets based on
the signs of j; — ¢; and j; — 23. The details are omitted.
O

When subscript functions and/or loop limits are more
complicated, the method described in the above two ex-
amples will also become more complicated. We will now
illustrate an approximate method of data dependence
testing that parallelizing compilers often use.

Example 5 Consider the double loop

L1Z do 11:1,100
L2: do IQ :0,100
S X(2xI +3xI; —12) = B(I) + 1
T CI)=X@BxhL +L+21)+D(I-1)
enddo
enddo

Suppose that we want to find out if statement 7" depends
on statement S at level 1. Comparing the elements of X
we get the equation

201 — 351 + 312 — j2 = 33 (6)

where (i1, i3) and (j1, j2) are two values of (I, I5). Merg-
ing the inequality ¢2; < j; with the constraints derived
from the loop limits, we get the following system of in-
equalities:

I < 4 < 51

2 < 51 £ 100

0 < 3 < 100 (7)
0 < j, < 100.

The extreme values of the left-hand side of (6) under
these constraints are found to be —398 and 296. Since
33 lies between these two values, the Intermediate Value
Theorem of Advanced Calculus guarantees a set of real
numbers i1, i2, j1, jo that satisfy equations (6) and (7).
From this we assume that there is probably a set of in-
tegers satisfying equations (6) and (7). In fact, such a
set is (41,42, 71,J2) = (0,14,1,6), and there are others.
Thus, T does depend on S at level 1. a

The approximate method illustrated above can also
be applied when we are comparing two elements of a
multi-dimensional array. In this case, we treat separately
each equation arising from a corresponding pair of sub-
scripts. This adds another element of approximation in
that we only know whether there are separate real solu-
tions to individual equations satisfying the constraints,
not whether there is a real solution to the system of
equations satisfying the constraints.

As mentioned earlier, a linear diophantine equation
(such as (6)) has an (integer) solution iff the ged of the
coefficients on the left-hand side (evenly) divides the
right hand side. This fact can sometimes be used to set-
tle a data dependence question; it is called the gecd test.
When the ged does divide the right hand side, the test
is inconclusive. In our example above, the gcd of the co-
efficients of equation (6) is 1, and 1 divides 33, so that
we know that (6) has an integer solution. But, it is still
unknown whether or not (6) has a solution satisfying
(7). There is also a generalized ged test that works for
a system of linear diophantine equations [10].

The exact method of data dependence computation
illustrated in examples 3 and 4 is described in [11],
[12] and [10] The approximate method of Example 5
is described in [13], [3], [10] and [14]. The approximate
method described here is a very simple example of a
linear programming problem. We did not have to use
any general algorithm (like the simplex method, for ex-
ample) since the feasible region is so simple that the
corner points are obvious. Using such a general algo-
rithm, however, we can extend this approximate method
to handle the most general linear case, where the array
is multi-dimensional and the loop limits are arbitrary
linear functions of the appropriate index variables. If we
go one step further and use a general integer program-
ming algorithm (Gomory’s cutting plane method, for



example), then the approximate method will become an
exact method. However, it has been argued that such
a general algorithm should not be included as part of
a data dependence test in the compiler, based on the
following empirical facts:

1. The subscripts seen in real programs are usually
very simple.

2. In a typical sequential program, the compiler must
test for data dependence a large number of times.

3. Any known general integer programming method
is time consuming.

A number of data dependence tests have been pro-
posed in recent years with the goal of extending the
scope and/or accuracy of the basic methods illustrated
above, without incurring the complexity of a general
linear/integer programming algorithm. The Fourier-
Motzkin method [15] of elimination has been used in
many of those tests in place of the simplex or the cut-
ting plane method. This method of elimination is sim-
ple to understand, but it is not a polynomial method.
It can be applied by hand to a small system, but can
be quite time consuming for problems in many variables
[15]. For a large system, the simplex method is expected
to be much more efficient. Also, the elimination method
decides if there is a real solution to a system of lin-
ear inequalities; it cannot say whether or not there is
an integer solution. In fact, the technique illustrated in
Example 5 can be derived from elimination.

The A-test [16] is an approximate test that tries to
decide if there is a real solution to the whole system of
data dependence equations satisfying the constraints. It
assumes that no subscript tested can be formed by a
linear combination of other subscripts.

The I-test [17] combines the approximate method of
Example 5 and the ged test. It isolates the case in which
the approximate method is exact, and therefore can de-
cide if there is an integer solution in that case. It is
applicable when the array is one-dimensional, and the
coefficients of the data dependence equation are ‘small’
in a sense (at least one coefficient must be £1).

The Omega test [18] uses an extension of the Fourier-
Motzkin method to integer programming. Although its
worst-case time complexity is exponential, it is claimed
to be a “fast and practical method for performing data
dependence analysis.”

Two recent papers, [19] and [20], describe practical
experiences with sets of data dependence testing algo-
rithms actually used by the authors. Brief descriptions
of several tests and a large number of references on data
dependence analysis can be found in [20].

The presence of subroutine or function invocations
raises some important practical issues in relation to data
dependence analysis. One simple solution is to expand
inline (or integrate) the subroutine or function [21], and
then perform dependence analysis on the resulting pro-

gram. The major technical difficulty in this case is that
it is necessary to reflect in the inlined code the effect
of aliasing between formal and actual parameters. And
the main drawback is that the size of the resulting code
could become unmanageable if all the subroutines are
expanded. For this reason, several other techniques for
interprocedural data dependence analysis have been de-
veloped. For lack of space we cannot describe them in
this paper, but the reader is referred to the papers by
Cooper and Kennedy [22], Triolet et al. [23], Burke and
Cytron [24], and Li and Yew [25] which describe some
of the better known techniques.

2.4 Control Dependences

As mentioned above, the control dependence relation
represents that part of the control structure of the source
program that is important to determine which trans-
formations are valid. The notion of control dependence
has been discussed by several authors including Towle
[26] and Banerjee [11]. The definition that is most fre-
quently used today is that of Ferrante, Ottenstein, and
Warren [27]. They assume control-flow graphs with only
one sink, that is, a node with no outgoing arcs. Clearly,
all control-flow graphs can be represented in this form.
In such a graph, a node Y post dominates a node X
if all paths from X to the sink include Y. A node T
of a control-flow graph is said to be control dependent
on a node S if (a) there is a path from S to T" whose
internal nodes are all post-dominated by T' (a path of
length zero trivially satisfies this requirement), and (b)
T does not post dominate S. Intuitively, the outcome of
S determines whether or not 7" executes.

Example 6 Consider the following statement sequence:
S: if A#0 then

T: C=C+1

U D=C/A
else

V. D=C
end if

W: X=C+D

In this sequence, the statements 7', U, and V are con-
trol dependent on the if statement S, which means that
these assignment statements should not be executed un-
til the outcome of S is known. a

Control dependences can be transformed into data de-
pendences and in this way the same analysis and trans-
formation techniques can be applied to both. The trans-
formation proceeds by first replacing the if statement at
the source of the dependence with an assignment state-
ment to a boolean variable, say b. Next, b is added as
an operand to all the statements that are control depen-
dent on the if as illustrated in the following example.



Figure 5: Dependence graph of statement sequence in
Example 8.

such as loops and sequences of statements. The type
of component on which the translator should operate is
determined by the granularity of the parallelism which
is appropriate for the target architecture. Thus, super-
scalar and VLIW processors can exploit effectively fine-
grain parallelism, and therefore their translators oper-
ate only on simple statements. On the other hand, if
the target architecture is a conventional multiprocessor,
it is better for the translator to operate on compound
statements because of the overhead involved in starting
and coordinating parallel code.

Acyclic code parallelization is done by partitioning
the statements into subsets that can be executed in par-
allel with each other. There is a total order associated
with each subset. Synchronization instructions should
be inserted in such a way that the order implied by
the data and control dependences is guaranteed to be
followed during execution. The parallel code resulting
from acyclic code will be represented below by means of
the cobegin-coend construct [33], and the post and
wait synchronization primitives.

Example 8 Consider the following sequence of state-
ments
Sl : A=1
SZ : B=A + 1
Ss3 : C=B+1
54 : D=A + 1
Ss: E=D+B
From the dependence graph in Fig. 5, it can be seen
that the following is a valid translation of the previous

sequence
Sl cA=1
cobegin
52 : B=A + 1
post (e)

S3:  C=B+1
|

Sy D=A+1
wait (e)
Sy : E=D+B
coend

Notice that the dependences S16S5, 51654, S26S3,
and S36S5 are enforced by the sequentiality of the code



between the || separators, and the dependence S26S5 is
enforced by a synchronization operation. a

Parallel code generation from acyclic code is relatively
simple once the partition or schedule has been chosen.
However, finding a good schedule is in general more dif-
ficult. In fact, it is well known that the general prob-
lem of finding an optimal schedule is NP-hard [34] and,
therefore, compile-time scheduling algorithms are usu-
ally based on heuristics.

3.1.1 Coarse-Grain Parallelization

When the target machine is a conventional multipro-
cessor, one objective of the acyclic code parallelization
techniques is to generate relatively long sequential seg-
ments of code or threads to overcome the overhead. For
this reason, the parallelization techniques usually oper-
ate on compound statements such as loops, basic blocks,
and sequences of these two. Furthermore, it is sometimes
better to leave some of the scheduling decisions to the
run-time system, especially when the statement execu-
tion time cannot be estimated at compile time [35]. In
this case, it may be profitable to generate more parallel
components than processors to enhance the load balance
between processors and, as a consequence, decrease ex-
ecution time.

It is not always convenient to generate a pair of syn-
chronization operations for each dependence relation.
This naive approach usually leads to the generation of
unnecessary operations [36] because two statements may
be ordered by more than one collection of dependences.
Avoiding redundant control and data dependences may
reduce not only the number of synchronization opera-
tions, but also the complexity of the boolean expres-
sions in some of the resulting if statements. Techniques
to avoid redundant dependences in acyclic code have
been studied by Kasahara et al. [37] and Girkar and
Polychronopoulos [38].

3.1.2 Instruction Level Transformations—Code
Compaction

The great importance of the techniques for the extrac-
tion of instruction-level parallelism arises from today’s
widespread use of superscalar and VLIW processors and
from the difficulty associated with the explicit parallel
programming of such machines. Programs for such mul-
tifunctional machines may be conceived as a sequence
of labeled cobegin-coend blocks, called macronodes
henceforth. The macronode may contain any number
of components (including zero), each representing an
arithmetic or logical operation. One of the components
of a macronode is always an if-tree whose leaves are
goto statements and whose outcome determines which
macronode executes next. The arithmetic and logical
operations are represented by assignment statements.
In a well-formed macronode no variable is written by
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more than one assignment statement or written by one
component and read by another. In other words, the
components of a macronode have to be independent
because they are executed in parallel with each other.
Furthermore, only one goto statement is executed per
macronode. The transfer of control caused by the goto
statement takes place only after all the operations inside
the macronode have completed. The rest of this section
discusses transformations on sequences of macronodes
which rearrange operations and if statements to shorten
or compact the program graph and thereby speed up ex-
ecution.

Trace Scheduling

Early instruction-level parallelization techniques con-
fined their activities to basic blocks. Trace scheduling
was developed by Fisher [39] and was the first technique
to operate across conditional jumps and jump targets
enhancing in this way the process of parallelization by
increasing the length of the sequence to be parallelized.
Trace scheduling is discussed in detail by Fisher et al.
[40], Ellis [41], and Colwell et al. [42]. A formal definition
of trace scheduling and discussions of its correctness,
termination, and incremental updating of dependence
information is presented by Nicolau [43].

Trace scheduling uses information on the probability
that the program would follow a given branch of a condi-
tional jump °. The most probable path or trace through
the code is selected and parallelized subject only to the
restrictions imposed by the data dependences. Condi-
tional jumps encountered along the traces are allowed
to move like any other operations. In cases where con-
trol enters or leaves the trace, the motion of operations
across basic-block boundaries may result in incorrect re-
sults. To remedy this situation, “recovery” code is intro-
duced at each entry and exit point whenever such mo-
tion takes place so that all operations that executed in
the original program (on a corresponding path) will also
execute in the compacted program. The process then re-
peats by choosing the next most likely (non-overlapping)
trace and compacting it. This new trace may include
some of the recovery code produced in processing the
previous trace and may in turn generate more recovery
code.

Trace Scheduling is intrinsically designed around the
assumptions that conditional jump directions are stat-
ically predictable most of the time. An early technique
that generalized trace scheduling by enhancing its abil-
ity to deal with conditional jumps, SRDAG Compaction,
is described by Linn [44].

Another technique is region scheduling, introduced by
Gupta and Soffa [45]. It uses the program dependence
graph to perform large, non local code motions in a rel-

5. These probabilities may be computed heuristically, or based
on profiling information.



atively inexpensive way once the dependence graph has
been computed. A drawback of this method is that the
region transformations are not defined at the instruc-
tion level, and some of the finer-grain transformations
achievable at that level are difficult to capture within
the region approach. Also, the motion of regions as a
whole may create more code duplication than strictly
necessary.

Patt and Hwu [46] have designed an architecture,
HPS, that attempts to utilize small-scale data-flow tech-
niques (within a window of limited size) to dynam-
ically dispatch operations, while utilizing instruction-
level compiler technology to reorder the code to increase
the number of independent instructions within each win-
dow. More recently, Chang et al. [47] studied means of
improving commercial architectures (e.g., RS6000,i860)
to make better use of instruction-level parallelization
techniques.

Percolation Scheduling

Percolation scheduling was developed by Nicolau from
the work on trace scheduling [48, 49]. It is based on three
elementary transformations which can be combined to
create an effective set of parallelizing transformations.
These transformations are driven by heuristics which
may depend on the target machine and the nature of the
source programs. The three elementary transformations
are move-op, move-c¢j, and unify. Move-op, illustrated
in Fig. 3.1.2, moves an assignment, S;, from a macron-
ode N in the control-flow graph to a predecessor node
M—subject of course to data-dependences. Move-cj, il-
lustrated in Fig. 3.1.2, moves any subtree of the if-tree,
say if-subtree-X, from a macronode N to a predecessor
macronode M. In the transformed code, macronodes Np
and Np are the targets of the true and false descendants
of node if-subtree-X, respectively.

Unify, illustrated in Fig. 3.1.2, deals with the mo-
tion of identical operations that may occur in multi-
ple successors of a macronode M and that could only
be hoisted into M together, and merged into a single
copy of the operation. To understand the need for such
a transformation, consider the operation ¢ := ¢+ 1. If it
is present in several branches, moving a single copy of
it to macronode M from any one of its successor blocks
is illegal, as ¢ could then be incremented twice on one
of the alternate paths through M. However, removing
all copies of the operation from successors of M and
placing a single copy in M achieves the desired motion.
Notice that in the three transformations just described
the transformed versions of the successor macronodes
are renamed and the unmodified version may be left in
the target program. This would be to guarantee correct-
ness in case these macronodes are jump target.

Example 9 Consider the following code sequence:
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S1: if z > n then goto A
else
Sy z2=2%z
Ss: if z > n’ then
Sy: a=-¢ex10
Ss: if y > n” then
Se: y=y—1
end if
else
Sg: a=xz+1
end if
end if
Sz i=i+1
goto B

Labels A and B are in sections of the code not listed
above. Also, a, %, y, and z are alive at the end of this
code segment. Before beginning the transformation, the
preceding sequence is transformed into a sequence of
macronodes. An assignment statement of the forma = e
whose execution successor is S; is replaced by the fol-
lowing macronode:

cobegin
a = e || if true then goto S;

coend

An if statement of the form

S;: if boolexzp then
Sj:

else
Ski

end if

is replaced by the following macronode where noop
stands for no-operation:

cobegin
noop
|
if boolexp then goto S;
else goto Si
coend

This example will be based on a transformation, called
migrate, which can be defined using the three ele-
mentary transformations listed above. Migrate moves
an operation as high as it may go in the control-flow
graph. A driving heuristic attempts to apply migrate
to all the operations and if statements in a particu-
lar order which, for example, could be determined by
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Figure 7: The move-c¢j elementary transformation
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Figure 6: The move-op elementary transformation
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M: cobegin

Sl ... Sn
I
if
... goto N;
... goto N,;,
coend

N;: cobegin
Sl Spr I X

I
if ...
coend

N,,: cobegin
Sl S 1 X

ntt

M: cobegin

St - ]| Sn |l X
I
if
... goto N;
... goto N,,
coend

Ni: cobegin
St S

I
if ...
coend

N,,: cobegin
St Sy

ntt

Figure 8: The unify elementary transformation

the execution probability. Let us assume that the or-
der of operation motions for the code-fragment above
is 57,59,54,(56),(58),(S1),(S3),S5. The parentheses de-
note an attempted motion that fails due to dependence
constraints. In particular, after operation S4 has moved,
operation Sg is not (and should not be) allowed to move.
This also illustrates the need in percolation schedul-
ing, as in trace scheduling, for the incremental updating
of data-flow and dependence information: operation Sg
cannot be allowed to move above S3 because it would
clobber the live value of a exposed by the motion of
operation Si. However, initially either S; or Sg could
have moved; our heuristic happened to pick Ss before
Sg. This transformation yields the following code:

S7 cobegin
z=2*zx|la=ex10|i=i+1
l
if 2 > n then goto A
else if y > n’ then goto Ssr
else goto S3p
coend

Lr: cobegin
noop
|
if z > n’ then goto Sg
else goto Sg
coend

Sip: cobegin
noop
|
if z > n’ then goto B
else goto Sg
coend

Ss:  cobegin
y =y — 1| if true then goto B
coend
Ss:  cobegin
a =z + 1| if true then goto B
coend

O

Formal definitions of the transformations, as well as
proofs of correctness, termination, and completeness of
percolation scheduling are discussed by Aiken [50]. A
slightly different implementation of the transformations
is described by Ebcioglu [51]. It is worth pointing out
that in percolation scheduling and in trace scheduling,
data-dependence information is computed when needed
in the course of the transformations. The flow infor-
mation used (live-dead and reaching definitions) are
initially computed and dynamically updated as part
of the percolation transformations. Also, it is possi-
ble to compose a compaction algorithm based on the
three elementary operations that subsumes the effect of
trace scheduling [50]. It is relatively easy to incorpo-
rate resource constrained heuristics, register allocation,



and pipelined operations as well as other transforma-
tions such as renaming and tree height reduction within
the percolation scheduling framework as discussed by
Ebcioglu and Nicolau [52] and by Potasman [53].

3.2 Parallelization of DO Loops

Because of their importance in the typical supercom-
puter workload, the discussion of do loops dominates
the literature on automatic parallelization. In fact, do
loops are the only construct that most of today’s com-
pilers attempt to parallelize whenever the objective is to
exploit coarse-grain parallelism.

Many of the do loop transformations presented in this
section are described in terms of the manipulation of it-
eration dependence graphs. To simplify the discussion,
only uniform dependences are used in the examples.
However, some of the techniques described also apply
when the dependences are not uniform. We begin this
section with a discussion of the better known loop paral-
lelization techniques. We classify them into two groups
depending on the type of parallel code generated. In Sec-
tion 3.2.1, we discuss techniques that generate hetero-
geneous parallel code, that is, parallel code whose serial
components are not necessarily identical across threads.
Next, in Sections 3.2.2 and 3.2.3 we discuss techniques
that generate homogeneous parallel code obtained by
assigning the entire loop body to all the processing ele-
ments cooperating in the execution of the loop. In ho-
mogeneous parallelization, the set of iterations is parti-
tioned and each subset is executed by a different process-
ing element. The rest of Section 3.2 is devoted to trans-
formations that help the process of loop parallelization
either by increasing the opportunities to exploit paral-
lelism or by producing more efficient parallel code. In
Section 3.2.4, we discuss several techniques that change
the order in which the iterations in the serial loop are ex-
ecuted. These techniques are useful to increase data lo-
cality, to give more flexibility to the run-time scheduler,
or to decrease the overhead associated with the parallel
execution of the loop. Finally, in Section 3.2.5 we dis-
cuss two transformations - privatization and induction
variable elimination - that often help parallelization by
reducing the number of cross-iteration dependences.

Throughout this section, we use Fortran 90 syntax to
represent vector operations. Concurrent loops are rep-
resented in the notation of the last draft distributed by
the X3H5 ANSI committee on Parallel Processing Con-
structs for High Level Programming Languages. Their
syntax is similar to that of a regular do loop, except
that the keyword parallel do is used in the header.

3.2.1 Techniques that Generate Heterogeneous Parallel
Code

Heterogeneous parallel code can take the form of a par-
allel loop body or of several different do loops executing
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in parallel with each other. We discuss these two cases
next.

Generating a Parallel Loop Body

One way, to parallelize a do loop is to parallelize the
loop body, using for example the techniques discussed
in Section 3.1, as illustrated in the following example.

Example 10 Consider the loop:
dol=0,N
Si: A(I) = F(A(I -1))
Sa: B(I) = F»(C(I),B(I -1))
enddo
In this example and throughout this paper we assume
that functions whose names have the form F; are side-
effect free. Under this assumption, it is easy to see that
in the above loop there are no dependences between the
two statements on any iteration and therefore the loop
can be transformed into

doI=0,N
cobegin
Si: A(I) = (AT -1))
ll
Sa: B(I) = F»(C(I),B(I -1))
coend
enddo

O
In the preceding example and in those presented be-
low, the loop bodies are sequences of assignment state-
ments. However, the reader should keep in mind that the
same techniques could be applied if the bodies contained
sequences of do loops or other compound statements.
The parallelization of the loop body can be helped by
transforming the iteration space to increase the amount
of parallelism per iteration. We will discuss three such
transformation techniques. The first is skewing the iter-
ation dependence graph as illustrated next.

Example 11 Consider the loop:

dol=0,N
Sii A(l) = Fi(A(I — 1))
Sy B(I) = Fy(A(I),C(I - 1))
Ss: C(I) = Fs(C(I — 1), B(I))
Si:  DU) = F(D(D), (1)

The loop body cannot be directly parallelized be-
cause, as shown in Fig. 7a, the statement instances in
the same iteration are linearly connected by dependence
relations. However, the iteration dependence graph can
be skewed as shown in Fig. 7b. The resulting code, minus
the first two and the last two iterations, is:

do K =2,N

Sy: A(K) = Fy(AK — 1))
Sy: B(K —1) = Fy(A(K — 1), C(K — 2))
Ss: C(K —1) = Fs(C(K —2), B(K — 1))



(b)

Figure 9: Iteration dependence graphs of loops in Ex-
ample 11: (a) Original loop; (b) skewed loop.

Sa: D(K —2)= Fy(D(K - 2),C(K —2))
enddo

In this version of the loop there are fewer dependences
between the statement instances in the same loop iter-
ation. This enables the parallelization of the loop body:

do K =2, N
cobegin
St: AK) = 1 (AK - 1))
|
So: B(K —1)=Fy(A(K - 1),C(K —2))
Ss: C(K —1)=F3(C(K —-2),B(K -1))
|
Sy: D(K —2) = Fy(D(K —2),C(K —2))
coend
enddo

Notice that skewing also implies a change in the ex-
pressions involving the loop index. Thus, because the
statements S; and S3 were shifted to the right by one
position, all references to the loop index, I, in these two
statements are replaced by K — 1. Similarly, the refer-
ences to I in statement S, are replaced by K —2. O

Skewing is not valid when any of the dependence
edges points against the lexicographic order in the trans-
formed iteration space. Thus, in the previous example,
the instances of S3 cannot be skewed to the right with
respect to the instances of So in Fig. 7b because of the
edge from Sz to Ss.

The second technique to enhance the loop body par-
allelism is based on the partial unrolling of the loop.
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The objective here is to increase the size of the loop
body in order to improve the opportunities for paral-
lelization. The simplest case arises when there are no
loop-carried dependences, and therefore the amount of
parallelism in the loop body is increased proportionally
to the number of times the loop is unrolled. This pro-
portional increase also happens when the loop-carried
dependence distances are all greater than or equal to a
certain integer d > 1 and the loop is unrolled d times or
less. This is illustrated in the following example.

Example 12 Consider the loop:
dol=0,N
Si: A = Fu(A(T - 3),C(D))
Sa: D(I) = Fa(A(I), D(I —2))
enddo
Because the minimum distance of the loop-carried de-
pendences is 2, we unroll the loop twice and then paral-
lelize the loop body in such a way that there is a thread
for each iteration in the original loop.

dol=0,N,2
cobegin
Sy: Al = 1 (A(I - 3),C(]))

So: D(I) = F2(A(I), D(I —2))
|
1 AT+ 1) = (AT —-2),C(I+1))
Sh: D(I+1)=F(A(I+1),D(I-1))
coend
enddo

O

A generalization of the technique used in this last ex-
ample, which also works for the case of multiple loops,
was developed by Polychronopoulos [54] under the name
of cycle shrinking.

Loop unrolling has also been applied in conjunc-
tion with forward substitution to increase parallelism
of the loop body. Given an assignment statement v =
expression, forward substitution replaces some or all
the occurrences of v on the right-hand sides of assign-
ment statements with expression. Clearly, such a sub-
stitution is only done when it does not change the out-
come of the program. Forward substitution increases the
length of the right-hand side of assignment statements
and usually enhances the opportunities for paralleliza-
tion, especially if tree-height reduction is applied [55].
Tree-height reduction techniques use associativity, com-
mutativity, and distributivity to decrease the height of
an expression tree and therefore decrease the best par-
allel execution time of an expression.

In the first version of Parafrase, forward substitution
and tree-height reduction were used in conjunction with
loop unrolling to parallelize loops with loop-carried de-
pendences [56]. This approach, however, has been aban-
doned, and today forward substitution is used mostly



16

(b)

Figure 10: Iteration dependence graphs for Example 13:
(a) Tteration space after greedy scheduling; (b) instances
of S; reassigned to create pattern.

optimum. In Fig. 8a, it can be seen that the distance be-
tween the instances of statements S; and Sa belonging
to the same iteration of the original loop grow without
bound. By reassigning the instances of S; as shown in
Fig. 8b, the overall execution time of the parallel pro-
gram does not increase with respect to that in Fig. 8a,
and a pattern can now be detected. In fact, if we ig-
nore the first two and the last two macronodes from
the graph of Fig. 8b, we obtain the following compact
parallel code:
do K=1,N-1

cobegin
Si: A(K) = F1(A(K - 1))
l
Ss: C(K —-1)=F3(C(K —2),B(K -1))
coend
cobegin
So: B(K) = F5(A(K),C(K - 1))
l
Sy: D(K — 1) = F4(D(K - 1),C(K - 1))
coend
enddo

Notice that this code is slightly different from the one
obtained by skewing. a
Perfect pipelining [57, 49], when applied to loops
which, like that in Example 13, do not contain condi-
tional statements, has been proven to generate optimal
code. The optimality is subject only to the availabil-



ity of sufficient resources, and limited by the depen-
dences of the initial loop. On the other hand the skew-
ing technique discussed above does not always produce
optimal parallel code. Perfect pipelining produces opti-
mal schedules even when the source loops contain con-
ditional jumps [57], subject to the same conditions, plus
the limitations of the compaction algorithm employed ©

The literature on software pipelining is extensive. This
technique was applied by hand by microprogrammers
for decades [59]. An algorithm based on the first semi-
automatic software pipelining technique [60], was im-
plemented in an FPS compiler [61]. Another early ap-
proach to software pipelining, Modulo Scheduling, was
proposed by Rau and Glaeser [62]. These techniques
were limited to loops without tests. Lam [63, 64] inte-
grates within Modulo Scheduling, heuristics for resource
constraints with a limited form of conditional-handling.
An alternative approach to perfect pipelining due to
Ebcioglu [51] has the potential for faster compilation
time at the expense of optimality. Still another approach
is discussed by Su et.al. [65]; it operates by pipelining
individual paths using a compaction technique similar
to trace scheduling.

Generating Multiple Sequential Loops

The second type of technique that generates heteroge-
neous parallel code transforms serial do loops into two
or more serial loops that execute in parallel with each
other. The technique is based on a transformation called
loop distribution, developed by Muraoka [66], and also
described by Banerjee et al. [67] which partitions the
statements in the loop body into a sequence of sub-
sequences and creates a separate loop for each subse-
quence.

Example 14 Consider the loop of Example 11. We can
partition the statements in the loop body into three sub-

sequences:

do K, =0,N

Sli A(I(l) = Fl(A([{l — 1))
enddo
do K =0, N

521 B(I{Q) :F2(A(I\72),C([{2_ 1))

531 C(I{Q) = F3(C([{2 - 1), B(I{Q))
enddo
do K5 =0,N

541 D([{3) = F4(D(I{3),C([{3))

6. The technique can be used with any compaction algorithm that
satisfies two (minimal) conditions: first, the compaction algorithm
should not move operations from the same iteration more than a
bounded distance away from the rest of the iteration, and second,
that the compaction algorithm is deterministic. These constraints
are necessary for convergencein the presence of conditional jumps,
and are minimal in the sense that better results (i.e., absolute
optimal software pipelining) are impossible to guarantee in general
for such code [58].
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enddo O

We can represent the dependence relation in a dis-
tributed loop as an iteration dependence graph where
the statement instances in the jth loop are shifted to
the right (j — 1) * (N + 1) positions, where N is the up-
per limit of the original, normalized loop. Fig. 9 shows
the iteration dependence graph of the distributed loop
in the previous example.

From this representation of the transformation, it is
clear that a necessary and sufficient condition for a given
loop distribution to be valid is that no edge in the re-
sulting iteration dependence graph point opposite to the
lexicographic order. This is equivalent to saying that any
two statements belonging to a cycle in the statement
dependence graph have to belong to the same subse-
quence, which is the traditional condition presented in
the literature [14, 68]. Loop distribution in the presence
of conditional statements can be done by transforming
the control dependences into data dependences as dis-
cussed in Section 2.4. This was the approach followed by
Parafrase. Another technique to distribute loops with
conditional statements is presented by Kennedy and
McKinley [69].

The last parallelization technique to be described in
this section distributes the original loop and generates
a thread for each resulting loop [70]. Synchronization
instructions are inserted where indicated by the depen-
dences to guarantee correctness.

Example 15 When applied to the loop of Example 11,
this transformation produces the following code

cobegin
do K; =0,N
Sli A([{l) = Fl(A(I\rl — 1))
post(el(Ky))
enddo
|
do Ks =0,N
wait(el(K3))
521 B(I{Q) = FQ(A(I{Q),C([{Q - 1))
531 0(1{2) = FS(C(}{Q - 1), B(]{Q))
post(e2(Ks))
enddo
|
do K3 =0,N
wait(e2(K3))
541 D([{g,) = F4(D([{3), 0(1{3))
enddo
coend

Notice that if we assume that the execution times of
each statement remain constant across iterations and
ignore synchronization time and loop overhead, the re-
sulting schedule is similar to that of the loop produced
by skewing in Example 11. As can be seen in Fig. 10 ,
both schedules produce the same execution time under
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Figure 13: Iteration dependence graph of loop in Exam-
ple 16.

dependences, the loop can be parallelized immediately
into either the form of a vector operation:
A(0:N)=B(0:N)+1
CO0:N)=A0:N)+1
or into the form of a parallel do:
paralleldo I=0,N
Syt A(I)=B(I)+1
Sa: C(hy=A(I)+1
enddo
O

We discuss three strategies for the case when there
are cross-iteration dependences. The first uses distribu-
tion to isolate those statements that are not involved in
cross-iteration dependences and therefore allows their
transformation into parallel form. Loop distribution is
also useful to isolate kernel algorithms, embedded in the
loop, that the compiler can recognize and then replace
with a parallel version. Typically, parallelizing compilers
recognize, by pattern-matching, reductions, other types
of linear recurrences, and even relatively complex algo-
rithms such as matrix-multiplication.
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(b)

Figure 14: Iteration dependence graphs for Example 13:
(a) Tteration space of the original loop; and (b) iteration
space after skewing.

chronization operations could be redundant. Techniques
to avoid this redundancy are described in [75, 36, 76].
Another approach to avoid unnecessary synchronization
operations is to skew the loop body to decrease the num-
ber of cross-iteration dependences. This technique, also

called alignment, is described in [74, 36, 77].

Example 19 Consider the following loop:
dol=0,N
S1: A(I)=B(I)+1
Se: C(H)=AI-1)+1
enddo
Its iteration dependence graph is shown in Fig. 12.
Horizontal parallelization could be applied to this pro-
gram, but this would require synchronization. However,
if the loop is skewed as shown in Fig. 12b, then it can
be parallelized without the need for any cross-iteration
synchronization. Thus, if we ignore the first and last it-
eration, the resulting loop has the form:
paralleldo I =1, N
St Al-1)=B(I-1)+1
So CHy=AI-1)+1
enddo
Sometimes, replicating some of the statements is nec-
essary to avoid all cross-iteration dependences. For ex-
ample, if Sy were replaced by C(I) = A(L — 1)+ A(I),
then alignment would not be possible without changing
the loop. However, the loop can be aligned if we change
it by adding the statement X A(I) = B(I) + 1 after .S;
and changing Sy into C(I) = A( — 1) + X A(I). O
The choice of which one of the loop transformations
described in the preceding three sections to use depends



on several factors. The nature of the target machine
is clearly one of them. For example, perfect pipelin-
ing is particularly appropriate for VLIW uniprocessors
where each instruction can be considered as a cobegin-
coend with just an arithmetic operation executed on
each thread. Other types of machines, such as the Al-
liant multiprocessor, favor the use of doacross by includ-
ing hardware support for ordered loops.

If there is a wide variability in the execution time
of the statements in the loop, the homogeneous par-
allelization could be a better choice than parallelizing
the loop body, which may introduce unnecessary delays
when waiting for the longest statement in each itera-
tion to complete. Another important factor in the selec-
tion of the target parallel construct is the organization
of the data in the memory system. For example, the
choice between transforming into doacross or applying
distributed loop parallelization could be influenced by
the way in which the data are allocated.

The third and last technique to be discussed in this
section is known as partitioning. It was first discussed
by Padua [74] for single loops. It works by computing
the greatest common divisor of the cross-iteration de-
pendence distances.

Example 20 Consider the loop:
dolI=0,N
Si: Al = F1(A(I —4),C(]))
Sa: D(I) = Fo(A(D), D(I — 2))
enddo
Because the ged of the cross-iteration dependence dis-
tances is 2, we unroll the loop twice and then distribute
the loop. Each resulting loop becomes a branch of a
cobegin.

cobegin
doI=0,N,2
St: A(l) = (A1 —4),C(]))
Ss: D(I) = Fa2(A(I), D(I —2))
enddo
doI=1,N,2
St: Al = (AT —4),C(]))
Ss: D(I) = Fa2(A(I), D(I —2))
enddo
coend

3.2.3 Parallelization of Multiple Loops

The iteration dependence graphs of a multiple loop in-
clude one dimension for each loop nest, and one extra
dimension for the loop body if it includes several state-
ments. To facilitate the graphical representation, the
examples presented are all double loops with a single-
statement body.
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As in the case of single loops, the objective of the
techniques presented here is to rearrange the loop to ex-
pose the parallelism. These techniques can be described
in terms of simple transformations to the iteration de-
pendence graph.

The first transformation to be discussed is interchang-
ing. One of its goals is to change the order of the loop
headers to generate more efficient parallel code.

Example 21 Consider the loop:
dol; =0,N
dol, =0, M
AL, L) = F(A(L — 1, I2))
enddo
enddo

Sli

The iteration dependence graph of this loop is pre-
sented in Fig. 13a, from which it is clear that the inner
loop can be parallelized because, if we consider only one
column of the iteration dependence graph at a time,
there are no cross-iteration dependences. However, the
outer loop has to proceed serially because of the hori-
zontal dependence edges.

If the inner loop is parallelized, the overhead of start-
ing the parallel loop will have to be paid once per iter-
ation of the outer loop. However, in this case, as shown
in Fig. 13b, we can transform the iteration dependence
graph by transposing the graph along the Iy = I line.
This transformation, which is valid in this case because
no dependence edges in the resulting graph point oppo-
site to the lexicographic execution order, is equivalent
to interchanging the loop headers:

do K1 =0,M
do Ky =0,N
A(K2, K1) = F1(A(K2 — 1, Ky))
enddo
enddo
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This loop has the same amount of parallelism as the
original loop, but now the outer loop is parallelized and
therefore the overhead is paid only once. a

Loop interchanging is also useful for vectorization. In
fact, moving to the innermost position a loop header, L,
whose iterations are independent of each other is always
valid and allows the vectorization along the index of L.

Example 22 Assume that the second loop in the pre-
vious example is now the input to the translator. This
loop cannot be vectorized because of the cross-iteration
dependences of the inner loop. However, if the loop head-
ers are interchanged, which leads to the first loop of the
previous example, the resulting code can be vectorized:

dol; =0,N

Sli A(Il,Z)IFl(A(Il—l,Z)
enddo O



Figure 15: Dependence graphs of loops in Example 21.

The correctness of loop interchanging can be deter-
mined using only direction vectors. This method was
developed by Steve Chen for the Burroughs Scientific
Processor. Loop interchanging is described in detail by
Wolfe [14, 78], who also studied how it can be applied
to triangular loops. Further discussions on interchanging
can be found in the work of Allen and Kennedy [79].

The second technique discussed here is skewing, which
is very similar to the technique of the same name pre-
sented above for single loops, except that in the present
case skewing is uniform along a particular dimension.
Example 23 Consider the loop:

dol, =1,N
dolr, =1,M

S: A(Il,Iz):Fl(A(Il—1,[2—1))

enddo
enddo

Its iteration space is shown in Fig. 14a, from where
it is clear that neither the outer nor the inner loop can
be parallelized. However, if the iteration space is skewed
as shown in Fig. 14b, we obtain the following loop

do K1 =0,N+M—1

do K3 = max(0, K; — N), min(M, K;)
S: A(Ky — Ko, Kq) = F1(A(Ky — Ko — 1, K — 1))
enddo
enddo

After the transformation, the inner loop can be par-
allelized. This can be seen by considering each column
of the transformed iteration dependence graph and ob-
serving that there are no dependences across iterations.
Notice that changes in the iteration space also imply
changes in the loop limits and the subscripts. a
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The third technique to be discussed in this section is
reversal, which inverts the order in which the iterations
of a given loop are executed.

Example 24 Consider the loop:
dol, =0,N
dol; =0,1
S: A(Il,IQ)ZFl(A(Il —1,[2+1))
enddo
enddo

As shown in Fig. 15a, the inner loop can be paral-
lelized because there are no vertical dependence edges,
but that does not help because the inner loop has only
two iterations. The outer loop cannot be parallelized
because of the cross-iteration dependences. Also notice
that interchanging is illegal because in the transformed
version of the iteration dependence graph, some edges
would point North-West, which is opposite to the lexi-
cographic order. However, we could reverse the order of
the inner loop, Fig. 15b, and then apply interchanging,
Fig. 15¢, which is now valid thanks to the reversal. This
produces the following code where the inner loop can be
parallelized:

do K; =0,1
do K =0,N
S: A(K2,1 = Ky) = F1(A(K2 — 1,1 - K1 4+ 1))
enddo
enddo

O

The transformations of the iteration dependence
graph illustrated above are special cases of Lamport’s
wavefront method [80]. Any combination of these trans-



Figure 17: Dependence graphs of loops in Example 24.
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formations can be represented formally by an n x n uni-
modular matrix, where n is the number of loops in the
perfect nest. (Here, the entire loop body is treated as
a single statement.) A unimodular matrix is an integer,
square matrix whose determinant has an absolute value
of 1. One advantage of representing these transforma-
tions as matrix operations is that the matrices can also
be used to compute directly the distance vectors, the ex-
pressions involving loop indices, and the loop limits of
the resulting loop from the corresponding information
in the original loop. Transformations based on opera-
tions with unimodular matrices are called unimodular
transformations. Unimodular transformations have been
studied by Banerjee [81] and by Wolf and Lam [82].

Determining the combination of transformations that
produces the best code is the main objective of the com-
piler. One strategy to achieve this goal, presented by
Shang and Fortes [83], uses linear programming tech-
niques to find the loop reorganization that produces the
optimum execution time assuming an unlimited number
of processors and ignoring overhead.

Other transformations can be applied in addition to
combinations of the previously described three trans-
formations to obtain parallel loops. For example, par-
titioning has been extended to multiple loops by Peir
and Cytron [84], Shang and Fortes [83], and D’Hollander
[85]. Also, multiple loops can be transformed into
doacross form, One complication that arises is that there
are several possible valid orderings in which the itera-
tions of a parallel do loop can be stored in the schedul-
ing queue. The ordering has performance implications,
as discussed by Tang el al. [86].

3.2.4 Locality Enhancement and Overhead Reduction

A number of restructuring techniques deal with the
transformation of the iteration space of a loop (or mul-
tiple loops) to reduce synchronization overhead and im-
prove data locality. Examples of such techniques are loop
fusion [87], loop collapsing [4], loop coalescing [88], and
tiling.

Loop fusion transforms two disjoint do loops into a
single loop. If both loops are parallel, fusing them de-
creases the overhead because, for example, only one par-
allel loop has to be started instead of two. Loop fusion is
also useful to increase data locality as discussed by Abu
Sufah et al. [89]. Loop collapsing and loop coalescing
transform multiple loops into single form. These trans-
formations are useful to enhance vectorization and to
improve load balancing at execution time.

Tiling partitions the iteration dependence of a loop
graph into blocks of adjacent nodes. All the blocks have
the same size and shape with the possible exception of
those at the extremes of the graph. In the case of a single
loop, tiling is done by strip-mining [87], a transformation
that changes a single loop into a double one. The outer
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loop steps across the blocks, and the inner loop steps
through the elements of the block. Thus, a loop of the
form:

do/=0,N
enddo
1s transformed into:

doJ=0,N,IB
do!=Jmin(J+IB—-1,N)

enddo
enddo

The tiling of multiple loops can be done by strip-
mining each nest level and then interchanging the loops
in such a way that those that traverse the elements of
the block are moved to the innermost level. An example
of this is shown later.

Tiling has several applications. One is to generate sev-
eral nesting levels to exploit several levels of parallelism.

Example 25 Consider the loop of Example 16. The two
levels of parallelism of a multiprocessor whose compo-
nents have vector capabilities can be exploited in this
loop if it is first strip-mined, and then the outer loop is
transformed into a parallel do and the inner loop into
vector form:
parallel do J =0, N,IB

M =min(J +IB -1, N)

AJ - M)=B(J: M)+1

C(J - M)=AJ :M)+1

51 .
52 .
enddo
O
Tiling can also be used to reduce, at the expense of
parallelism, the frequency of synchronization and, as a
consequence, the overhead.

Example 26 Consider the loop of Example 15. Synchro-
nization operations are executed on each iteration of the
three loops. However, if the loops are strip-mined into
blocks of length B, synchronization can be performed
outside the inner loop so that it takes place only once
per block. a

The final application of tiling to be discussed here is
the improvement of program locality.

Example 27 Let us assume a multiprocessor with a
cache on each processor. The cache (and thus the mem-
ory) is divided into blocks of IB words each, and the
data are only exchanged between the main memory and
the cache as whole blocks. Matrices are stored in column
major order.

Now consider the loop:

doI, =0,N



dol, =0,N

B(1z, I) = F1(A(L, I2))
enddo
enddo
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where N is much larger than IB. If the outer loop
were transformed into a parallel do, there will be
1+ 1/IB block transfers between the memory and the
caches for each assignment executed.
However, we can tile the loop into IB x I B blocks by
strip-mining each loop and then interchanging:
do J; =0,N,IB
do J, =0,N,IB
do Il = Jl,min(Jl + IB — 1,N)
do Iz = JQ,HliH(Jz + IB — 1,N)
B(Iy, I) = F1(A(, I))
enddo
enddo
enddo
enddo

Notice that this is equivalent to transposing the ma-
trix A by transposing each IB x I B submatrix. Now, if
the outer loop is parallelized, the number of cache block
transfers decreases to 2/IB per assignment. ad

One of the earliest discussions on program transfor-
mations to improve locality was presented by McKellar
and Coffman [90]. Their work was extended and devel-
oped into automatic strategies by Abu-Sufah et al. [89].
These techniques have been used extensively. For exam-
ple, they were applied by hand to improve the perfor-
mance of matrix multiplication on the Alliant FX/80
[91]. Tiling is discussed by Wolfe [92], Irigoin and Tri-
olet [93], Ancourt and Irigoin [94], Wolf and Lam [82],
and Schreiber and Dongarra [95].

Tiling influences the behavior of the memory hierar-
chy indirectly by reorganizing the code to increase the
effectiveness of pre-defined memory management policy.
An alternative strategy is to control directly the move-
ment of data across the different levels of the memory
hierarchy. Such techniques have been studied by Cytron
et al. [96], Gornish et al. [97], Callahan et al. [98], and
Darnell et al. [99].

3.2.5 Dependence Breaking Techniques

In this section we discuss the two transformations
most frequently used to eliminate cross-iteration depen-
dences. The first eliminates from a loop L all assign-
ments to induction variables. The sequence of values of
an induction variable is computed by means of recur-
rence equations whose closed-form solution can be ob-
tained at compile time and is a function only of loop
invariant values and loop indices. ”

7. Notice that our definition of induction variable is more general
than the traditional one [100], which is restricted to the case where
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Example 28 Consider the loop:
doI=0,N
doJ=0,M
K=K+1
B(K) = Fa(A(1,]))
enddo
enddo

513
523

In this loop, K is an induction variable because it is
computed using the equation

I(iyj = ]{i,j—l +1,7>0

[{570 = Ari—l,M +1,2>0

which has a closed form solution. In fact, the value of
Kin Syis Ko+ I x (M + 1)+ J + 1 where Ky is the
value of K when the loop starts execution. Clearly, the
statement S; can be deleted if the occurrences of K in
So are replaced by its value. This produces the following
loop:
dol=0,N
doJ=0,M
B(K+Tx(M+1)+J+4+1)="F(A(,J))
enddo
enddo

Ss: K=K+ (N+1)*x(M+1)

Notice that statement Sz is needed only if K is used
after the loop terminates. The important effect of delet-
ing 57 is that it eliminates the cross-iteration depen-
dences due to this statement. Because the only cross-
iteration dependences in the original loop were due to
S1, the resulting loop can be directly parallelized. a

The closed form solution for some induction variables
could sometimes be too complicated to be handled by
the current dependence analysis techniques. One way
to overcome this difficulty is to determine some impor-
tant properties (such as monotonicity) of the sequence
of values assumed by the induction variable by analyzing
the original assignments to the induction variables [101].
Techniques to recognize induction variables and other
forms of recurrences have been presented by Ammar-
guellat and Harrison [102], Wolfe [103], and Haghighat
and Polychronopoulos [104].

The second type of transformation to be discussed
in this section operates on variables or arrays that
are rewritten on each loop iteration before they are
fetched in the same iteration. Such variables cause cross-
iteration, output dependences and anti-dependences
which can be easily removed by creating a copy of the
variable or array for each iteration of the loop.
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Example 29 Consider the loop:

the sequence of values assumed by the induction variable forms
an arithmetic sequence.



dol=0,N
doJ=0M

A(J) = F1(C(1, 7))
enddo
doJ=0,M

B(1,]) = Fy(A(]))
enddo
enddo
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The array A is assigned in each iteration of the outer
loop before it is used. There are two related techniques
to create a copy of A per iteration. The first is expansion,
which replaces the references to A by references to an
array with an additional dimension:
dol=0,N

doJ=0M
AE(I,J) = F(C(1,J))
enddo
doJ=0M
B(I,J)= Fy(AE(1,]))
enddo
enddo
S3: A(1: M)=AE(N,1: M))

Sli

SQZ

The assignment to A in S3 is only needed if A is read
before being rewritten and after the loop completes. Be-
cause the only cross-iteration dependences in the orig-
inal loop were those caused by the rewriting of A, the
outer loop can now be parallelized.

The second strategy is privatization which, if the loop
is transformed into a parallel loop, replaces all ref-
erences to A with references to an array local to the
loop body. Expansion and privatization have the same
effect on parallelization, but privatization may require
less space if only one copy of the private variable is allo-
cated per processor and the number of processors coop-
erating in the execution of the parallel loop in less than
the number of iterations. ad

The previous example illustrates privatization and ex-
pansion of an array. Equivalent transformations can of
course also be applied to scalars. In fact, several of the
existing parallelizers are only capable of expanding or
privatizing scalars, and most of the literature on paral-
lelizers only discusses the case of scalars [14, 68]. How-
ever, array privatization is very important for the ef-
fective parallelization of many real programs. (See the
papers by Feautrier [105], Maydan et al. [106], Tu and
Padua [107], and Li [108] for array privatization and ex-
pansion techniques.) Burke et al. [109] discuss the use
of privatization for the parallelization of acyclic code.

3.3 Run-Time Decisions

There are decisions that are difficult or impossible to
make at compile time. For example, to determine data
dependences exactly, the values of certain variables must
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be known. For deciding which one of two nested parallel
loops is better to move to the outermost position, the
number of iterations of each loop is usually needed. In
general, for deciding which transformation produces the
best code, information that is only available at run time
may be necessary.

To cope with unknown values at compile time, the
translator may insert tests that determine crucial values
at run-time and branch to the version of the code that
is best for the given value. Alternatively, the compiler
can employ run-time libraries that have some of these
tests built in.

In all the examples presented in previous sections, the
dependence relations could be computed statically. This
situation facilitates the task of the compiler. Unfortu-
nately, the values of the subscripts are not always known
at compile time. Sometimes it is because one of the coef-
ficients in the expression is a variable whose value cannot
be determined at compile time.

Example 30 Consider the loop:
dol=0,N
S: AM+ Kx1I)=B(I)
enddo

It is clear that when the variable K is not zero, the
loop can be parallelized. There are several reasons why
a compiler may not be able to determine the value of K.
For example, K could be a function of an input value
or the compiler may not be able to determine its value
due to limitations of the analysis algorithms.

The strategy that is followed in cases like this is to
generate conditional parallel code, known as two-version
loops [110], that is executed only when K is not zero:
if K =0 then

A(M) = B(N)
else
parallel do I =0, N
AM + K 1) = B(I)
enddo
end if
O

Other cases more complex than the previous example
may arise, and in some of these it is profitable to apply
at run time some of the dependence tests described in
Section 2. (See [101] for an example.) Multiple-version
loops similar to the one used in the previous examples
can be controlled by run-time dependence tests but also
by other dynamic factors mentioned above. For example,
the loop headers could be interchanged in several ways
and one version selected for execution depending on the
values of the loop limits.

Array subscripts could have a form that is impossible
to analyze, using the dependence tests described in Sec-
tion 2. However, if the subscript values are known before



Figure 18: Dependence graphs of loop in Example 31.

the loop starts execution, it is possible to determine at
run time in which order to execute the loop in order to
exploit some parallelism.

Example 31 Consider the loop:

do7=0,4
Si: A(K(I)) = B(I)
Sa: C(I) = A(L(]))
enddo

The subscripts of the references to array A are them-
selves array elements. If the values of K and L are not
known at compile time, it is not possible to determine
whether or not the loop can be parallelized. However,
in many situations parallel execution of the loop would
be possible. For example, if K =< 1,2,3,5,10 > and
L =< 7,5,1,3,4 >, the iteration dependence graph
would take the form shown in Fig. 16 from which it
is clear that iterations 0,1, and 4 can execute in paral-
lel in a first step, followed by the parallel execution of
iterations 2 and 3. O

A technique to handle, at run time, situations like
the one in the preceding example has been discussed by
Zhu and Yew [111]. In this technique, the set of itera-
tions that can execute in parallel and their order are
computed every time the loop is executed. A second
technique, proposed by Saltz and his co-workers [112],
assumes that the subscripts do not change between loop
executions and therefore the subscript analysis is only
needed the first time the loop is executed.

3.4 Issues in Non-Fortran languages
3.4.1 Pointer analysis

Dependence analysis in the presence of pointers has been
found to be a particularly difficult problem. Program-
ming languages such as C allow aliases to be created at
any program point, and between memory locations al-
located statically or dynamically. Much work has been
done on this problem, though in general it remains un-
solved. A common approach is to automatically infer
the relationship between the pointers and their targets.
For example, a compiler could infer that a pointer refers
to a linear linked list (as opposed to a circular linked
list), allowing more accurate dependence analysis dur-
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ing a list traversal. This approach has been taken by
numerous researchers, with varying degrees of success
[113, 114, 115, 116, 117, 118, 119, 120, 121, 122]; re-
cursion and cyclic relationships have posed the greatest
difficulty (the recent work of Deutsch [123] may prove
more powerful). A related approach, originally focused
on solving a different problem (automatic type inference
or lifetime analysis, for example), can be used to provide
alias information as well [124, 125, 126]; the viability of
this approach has not been demonstrated. Finally, vari-
ous language-based approaches [127, 128, 129, 130] pro-
vide the compiler with additional information on which
to base dependence decisions (or in the case of [131],
represent a data structure in a more parallel form).

3.4.2 Parallelization of Recursive Constructs

Recursion is seldom used today in numerical programs,
partly because it is not part of the Fortran 77 standard.
However, recursion is the most natural way to express
some algorithms, especially non-numerical algorithms.
We describe in this section a technique developed by
Harrison [132], called recursion splitting which, although
it was originally developed to parallelize Lisp programs,
can be applied to programs in other languages including
Fortran 90. Assume a function of the form:
function z(P)
if ¢(P) then return(r(P))
Y = 2(£(P))
return g(P,Y)
end
Any recursive function can be cast into this form if
q, 7, f, and g are chosen appropriately. Recursion split-
ting transforms the invocations to « (for example, z(Fp)
where Py could represent a sequence of parameters) into
the expression

reduce(g, expand(Fy, ¢, f, 7))
where expand (P, q, f,r) returns the sequence

Po, Pl, ceey Pm, T’(Pm+1).

This sequence is just the value of the parameters in suc-
cessive invocations to ; that is, Py = f(Pr—1). Also, m
is the depth of the recursion; that is ¢(Pp,41) is true and
q(F;) is false for ¢ < m. It is easy to see that the value
returned by the original function z is:

_l](Po, .. ~;!](Pm—1;g(Pmar(Pm+1))) N )

which can be written
as reduce(yg, Py, ..., Py, 7(Ppy1)). Once the program
has been written in this form, the reduce and expand
functions can be parallelized.

Example 32 Consider the following function:



function tak(A, B,C)
if A < B then return(C)
return tak( tak(A —1,B,C),
tak(B—1,C,A),
tak(C —1, A, B))
end

This function can be cast into the form shown above
in several ways; one is:
function tak(A, B,C)
if A < B then return(C)
Y =tak(A-1,B,C)
return tak( Y,
tak(B —1,C, A),
tak(C — 1, A, B))

end

In the expand/reduce form presented above, the
function f corresponding to this version of tak is just
f(A,B,C) = A —1,B,C. Assuming that the original
invocation to tak is tak(Ag, By, Co) and that Ag > By,
then expand should generate the sequence:

Py = (Ao, Bo,Co), P1 = (Ao — 1, By, Cq), .., Pm = (Bo, Bo, Co)

which can be clearly computed in parallel. Also, the
reduce function in this case involves two invocations
of tak for each P;. Both of these invocations can be
executed in parallel. a

4 Effectiveness of Automatic
Parallelization

4.1 Introduction

Demonstrating the effectiveness of new approaches is a
requirement in every scientific discipline. Effectiveness
measures help the designer decide what new technology
to adopt, what to set aside in favor of less complexity,
and what topics need further study. This is particularly
important in the case of parallelizing compilers, given
the large number of possible transformations.

The value of effectiveness studies of traditional com-
piler technology is widely recognized, and there are a
number of papers on the subject. For example, Cocke
and Markstein [133] reported the effectiveness of several
traditional techniques such as common subexpression
elimination, code motion, and dead code elimination.

Unfortunately, published studies on the effectiveness
of parallelizing compilers are relatively sparse. The ef-
fectiveness of new compiler techniques is usually demon-
strated using simple and often artificial program seg-
ments that can be analyzed or transformed successfully.
However, the papers introducing these new techniques
also point out that more performance studies are neces-
sary.

In this section we present first a survey of the avail-
able literature on the evaluation of instruction-level par-
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allelism (Section 4.2) and loop-level parallelizing compil-
ers (Section 4.3) followed in Section 4.4 by a discussion
of the implications of these evaluations.

4.2 Performance Evaluation of
Instruction-Level Parallelism

The current commercially available or soon-to-be-
available microprocessors have limited amounts of hard-
ware parallelism. Furthermore, some of the production
compilers used for these machines often lag behind the
state of the art. Nevertheless, performance previously
associated with supercomputers is becoming commonly
available on these new processors. Thus, for example,
the PA-RISC HP 730, achieves 75 SPECmarks, while
the new DEC Alpha processor is projected to obtain
110 SPECmarks [134].

More fundamental studies that attempt to measure
the potential of instruction-level transformations have
also become available. Many of these studies assume
some idealized circumstances, such as unlimited re-
sources or complete compile-time knowledge of depen-
dences and branches. An early study on numerical ker-
nels by Nicolau and Fisher [135] found an average of 90-
fold parallelism available at the instruction level, given
absolute dependence information and absolute branch
prediction. The parallelism found was mainly limited
by the problem size, which had to be kept small due to
limitations of the experiment implementation.

In a more recent study Wall [136] evaluated com-
plete numeric and systems benchmarks under various
dependence-analysis and branch-prediction conditions,
ranging from idealized to realistic. The results showed
instruction-level parallelism average factors of 7 for dy-
namic and 9 for static scheduling under idealized condi-
tions, with factors of about 4-5 estimated to be achiev-
able with state-of-the-art realistic compiler techniques.

Early efforts in instruction-level parallelism by Tjaden
and Flynn [137] and Riseman and Foster [138] investi-
gated the amounts of parallelism available at the ma-
chine instruction level for either static (compile-time)
or dynamic (run-time) parallelism exploitation. The for-
mer study limited itself to finding parallelism within ba-
sic blocks,® and thus found only factors of 2-3 speedup
over sequential execution. The latter study found sig-
nificantly larger speedups (factors of 51 over sequen-
tial code, on average) but was based on a brute-force
approach that involved cloning the hardware at each
branch encountered and following all paths in parallel.
The study concluded that dynamic exploitation of paral-
lelism beyond basic blocks was impractical, as the hard-
ware required to achieve significant speedups with the
proposed approach was prohibitive. This study also con-

8. A reasonable restriction given that no global—i.e., beyond ba-
sic block boundaries—instruction-level parallelization techniques
had been yet developed at the time.



firmed the previous results regarding the small speedups
achievable within basic blocks.

In more recent studies Ellis [41] and Lam [63]
have taken into account the development of global
instruction-level parallelization techniques. The former
effort utilized trace-scheduling in the context of simu-
lated VLIW architectures and achieved speedups of over
10-fold over sequential code. The latter effort performed
extensive experiments with software pipelining and hi-
erarchical reduction® on the Warp machine. The results
were very good in terms of the utilization of the ma-
chine, but the actual speedups were smaller (factors of
three-fold over sequential) because of the resource limi-
tations of the Warp hardware.

Other work has evaluated the applicability of
instruction-level parallelism extraction techniques in
systems and Al codes. Such codes are characterized by
frequent and unpredictable control-flow. In experiments
using a modification of percolation scheduling and a
software pipelining scheme to generate code for a VLIW
engine under construction at IBM T.J. Watson Labs,
speedups of more than 10-fold versus the initial sequen-
tial code have been reported by Ebcioglu [139]. In a
related paper Nakatani and Ebcioglu [140] showed that
average speedups of 5.4-fold could still be obtained in
systems and Al codes, even when percolation of opera-
tions is limited to a relatively small (moving) window in
order to reduce code explosion and compilation-time. In
an independent effort Potasman [53] evaluated the effect
of percolation scheduling used in conjunction with soft-
ware pipelining and various auxiliary techniques (e.g.,
renaming) on a variety of kernels from numerical as
well as systems codes. Average speedups of 11-fold over
sequential execution were obtained, given sufficient re-
sources.

Perhaps the most robust results to date, using state-
of-the-art compilation techniques for a relatively large
instruction-level machine, come from the Multiflow
Trace by Colwell et. al. [42]. This paper reports 5-6 fold
speedups on full scientific applications on a 7-functional-
unit Trace machine using their trace-scheduling com-
piler. This speedup was relative to a Vax 8700 9. The
paper also claims “based on experience with 25 million
lines of scientific code” a speedup of 2-3 fold over “com-
parable” vector processors, but not enough information
is provided to make an evaluation of this claim feasible.
The code-size increase from trace scheduling and loop
unrolling was reported to be approximately three-fold.
An effective technique to further limit the code explo-

9. Hierarchical reduction is a technique that combines branches
of conditionals for the purpose of data and resource analysis. This
allows the application of software pipelining techniques that nor-
mally work only on straight-line code, to code containing condi-
tional control flow.

10. Althogh the the Vax 8700 and the Multiflow Trace have dif-
ferent organizations, the basic hardware of the two machines is
roughly the same
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sion in trace scheduling has also been reported by Gross
and Ward [141].

An evaluation of the dynamic exploitation of
instruction-level parallelism was done by Butler et. al.
[142], who report that with an issue rate of 8 instruc-
tions per cycle (and with a window-size limit placed on
the total number of instructions currently under evalua-
tion), speedups of 2-5.8 over sequential can be obtained
on the SPEC benchmarks. Much larger potential par-
allelism (17-1160 fold) is found in these benchmarks if
the issue and window-size limits are lifted (i.e., in an
unrestricted (ideal) data-flow model).

4.3 Effectiveness of Loop Parallelizers

Three groups of studies are presented next. First, in
Section 4.3.1, we present two studies that evaluate sev-
eral compilers according to the number of parallel loops
that can be recognized as such. In Section 4.3.2, we dis-
cuss comparisons of compilers based on the performance
of the resulting codes on real machines. Next, in Sec-
tion 4.3.3, evaluations of the effectiveness of individual
compilation techniques are presented. Finally, in Sec-
tion 4.3.4, we discuss several projects that, after study-
ing the output of some parallelizers, conclude that there
is much room for improvement in today’s parallelizers.

As will be seen below, the compilers most often eval-
uated are KAP and VAST. These are source-to-source
parallelizing compilers developed by Kuck & Associates
and Pacific Sierra Research, respectively. Also, there are
a few evaluations of parallelizing compilers developed by
individual computer companies. However, we should in-
dicate that even though the evaluation reports do not
always point this out, some of these compilers are based
on VAST (e.g., Alliant FX/8 optimizer, Cray Autotask-
ing) or KAP (e.g. Alliant FX/2800 optimizer).

4.3.1 Recognizing Parallelism

One way to evaluate a parallelizing compiler is to count
the number of program segments that can be paral-
lelized. The two projects discussed here measure the
number of do loops that the compilers under evaluation
were able to vectorize totally or partially.

Detert [143, 144] used 101 short Fortran loops to eval-
uate the compilers of seven parallel machines. Callahan
et al. [145] did a similar but more extensive study using
100 short loops. A total of 19 compilers and machines
were evaluated. Both studies show that there is a wide
variability in the capabilities of existing compilers. For
example, in the second study, one of the compilers was
only able to parallelize 24 loops, while others recognized
as many as 69. Table 1 summarizes these results.

Data-dependence tests, as described in Section 2, are
crucial for the successful recognition of parallel loops.
Early evaluation work for these techniques was done by
Shen et.al. [146] who have analyzed subscript patterns



that arise in real programs. Maydan et.al. [19] and Goff
et.al. [20] present statistics on the success rates of data-
dependence tests. Recently, Petersen and Padua [147]
have extended this work by relating these numbers to
program performance of a suite of Benchmark programs.

4.3.2 Comparing Performance Measurements

Other researchers have focussed on actual timing mea-
surements of automatically parallelized code. Thus,
Nobayashi and Eoyang [148] evaluated several vector-
izing compilers by translating a collection of program
kernels onto three machines: Cray X-MP, Fujitsu VP,
and NEC SX. They found that compilers that vector-
ize more loops do not necessarily produce faster code.
They also show that kernel measurements can yield
very divergent results. Table 2 summarizes one of the
measurements, which compared the performance of the
automatically restructured loops with that of hand-
restructured loops and also shows the number of loops
whose automatic/hand-optimized performance ratio is
higher than the threshold shown in the Table.

Arnold [149] reports performance improvements pro-
duced by KAP, VAST, and FTN200, the Fortran com-
piler of the Cyber 200 machines, on 18 Livermore Loops.
The measurements were taken on the Cyber 203 and 205
machines.

A related study was done by Braswell and Keech [150],
who use a set of 90 loops to evaluate KAP, FTN200, and
two versions of VAST. The target machine was the Cy-
ber 205. They present timing numbers for 18 of the 90
loops as well as the overall results shown in Table 3.
Even though KAP and the ETA VAST produce similar
timing results, Braswell and Keech found interesting dif-
ferences in the way these two restructurers transform in-
dividual loops. Notice that the two VAST versions have
the same vectorization success rate but very different
timings. This is caused by one of the loops whose serial
execution time dominates the total timing. Only KAP
and ETA VAST-2 were able to vectorize this loop and,
in this way, improve the performance by a factor of ten.

Another comparative study of KAP and VAST was
done by Luecke et al. [151]. They discuss a number of
transformations applied to a set of loops, including the
Livermore Kernels. Differences in transformations ap-
plied by KAP and VAST are discussed qualitatively. No
performance measurements are reported.

Cheng and Pase [152] measured speed improvements
resulting from the automatic parallelization (vector-
ization and concurrentization) of 25 programs, includ-
ing the Perfect Benchmarks®. The measurements were
taken on a Cray Y-MP machine using KAP and fpp
11 Their baseline was not the set of original programs
but versions that were hand-optimized for execution on

11. The Cray Autotasking facility is based on VAST technology.
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one Cray processor. The authors report small (< 10%)
improvement on a single Cray processor when the base-
line programs are processed by KAP and VAST. In con-
current mode, and with 8 processors, one-third of the
programs have a speedup between 2 and 4.5. The im-
provement of the other two-thirds of the programs was
insignificant. Table 4 shows the improvements by auto-
matic parallelization for the Perfect Benchmarks.

4.3.3 Evaluating Individual Restructuring Techniques

The effectiveness studies described so far considered the
parallelizing compilers as black boxes. Another approach
is to discriminate among individual compiler techniques.
Thus, Cytron et al. [155] studied the performance degra-
dation of the EISPACK algorithms after disabling var-
ious restructuring techniques of Parafrase [4]. Of the
measured analysis and transformation steps, scalar ex-
pansion was the most effective, followed by conversion
of control dependence into data dependence, a sharp
data-dependence test analysis pass, and the recurrence
recognition and substitution pass. In their terminology,
a sharp dependence test is just a collection of tests sim-
ilar to those described in Section 2. When these tests
were disabled, the restructurer used only the names of
the variables, and not the subscript expressions, to de-
cide whether or not there was a dependence. The mea-
surements were obtained on a simulated shared-memory
architecture of 32 and 1024 processors, respectively. The
effect of disabling the transformations was more impor-
tant when the number of processors was large.

Blume and Eigenmann [153] discussed the effec-
tiveness of parallelization on the Perfect Benchmarks
suite. The target machine was an eight-processor Al-
liant FX/80 machine. They found that 50% of the pro-
grams showed insignificant improvements, but the re-
maining programs showed a respectable improvement
due to vectorization and an additional speedup of up to
four from concurrent execution. By disabling individual
restructuring techniques, the authors were able to mea-
sure their performance impact. The techniques analyzed
include reduction substitution, recurrence substitution,
transformation into doacross, induction variable elimi-
nation, scalar expansion, forward substitution, stripmin-
ing, and loop interchanging. As with Cytron et al., the
scalar expansion technique proved the most effective, fol-
lowed by the substitution of reductions. Most other tech-
niques had a small performance impact and the substi-
tution of general linear recurrences had a consistent neg-
ative effect, probably because the number of iterations
of loops containing recurrences was relatively small. Ta-
ble 4 shows the speed improvements over the serial pro-
gram execution from both vectorization (1 CPU) and
vector-concurrent (8 CPUs) execution.



Machine Compiler Vectorized Partially Not
Vectorized | Vectorized
Alliant FX/8 FX/Fortran V2.0.18 76 14 11
Convex C1 Fortran V 2.2 81 10 10
Cray 2, Cray X-MP CFT 77 V1.2 69 0 32
Cray X-MP CFT 1.15 BF 2 75 0 26
ETA-10 VAST-2 V 2.20H2 71 8 24
Fujitsu VP200 Fortran 77 V 1.2 79 5 17
IBM 3090VF VS Fortran V 2.1.1 59 4 38
Alliant FX/8 FX/Fortran V4.0 68 5 27
Amdahl VP-E Series Fortran 77/VP V10L30 62 11 27
Ardent Titan-1 Fortran V1.0 62 6 32
CDC Cyber 205 VAST-2 V2.21 62 5 33
CDC Cyber 990E/995E VFTN V2.1 25 11 64
Convex C Series FC 5.0 69 5 26
Cray Series CF77 V3.0 69 3 28
CRAY X-MP CFT V1.15 50 1 49
Cray Series CFT77 V3.0 50 1 49
CRAY-2 CFT2 V3.1a 27 1 72
ETA-10 FTN 77 V1.0 62 7 31
Gould NP1 GCF 2.0 60 7 33
Hitachi S-810/820 Fortran77/HAP V20-2B 67 4 29
IBM 3090/VF VS Fortran V2.4 52 4 44
Intel iPSC/2-VX VAST-2 V2.23 56 8 36
NEC SX/2 Fortran77/SX V040 66 5 29
SCS-40 CFT x13g 24 1 75
Stellar GS 1000 Fortran77 prerelease 48 11 41
Unisys ISP UFTN 4.1.2 67 13 20

Table 1: Number of loops vectorized automatically. First section: [144] (101 loops total). Second section: [145] (100
loops total).

Threshold(%) || NEC SX | Fujitsu VP | Cray X-MP CFT77 | Cray X-MP CFT
90 14 17 9 11
80 16 26 12 12
70 18 26 15 15

Table 2: Number of loops (out of 46) whose automatic/optimal performance ratio is higher than the threshold in
[148].

FTN200 KAP/205 | ETA VAST-2

No. of loops (partially)
vectorized
(N = 90 loops)
Sum of execution times of
18 test loops 17 15 1.5 1.2
on Cyber 205

36(0) 60 (2) 57 (5)

Table 3: Vectorization success rate and timing results in [150]
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4.3.4 Evidence for Further Improvements

As important as evaluating available compilers, is to
look at existing evidence showing potential improve-
ments of the compiler effectiveness. The following re-
ports contribute to this goal.

In an early study, Kuck et. al. [56] have determined
the parallelism available in a set of algorithms. Their
analyzer detects parallelism in do loops and paral-
lelism from tree height reduction. The authors conclude
that there is a potential average speedup of about 10.
Eigenmann et al. [101, 154] conducted “manual com-
pilation” experiments to determine new transformation
techniques that significantly improve the performance of
real programs. They hand-optimized the Perfect Bench-
marks for the Alliant FX/80 and the Cedar machine.
The speedups obtained are shown in Table 4. They con-
cluded that many of the optimizing transformations ap-
plied by hand can be automated in a compiler. Some
of the most important techniques were array privatiza-
tion, reduction recognition, and recognition of complex
forms of induction variables. They also pointed out the
need for advanced interprocedural analysis techniques.
It is worth noting that many of the transformations dis-
cussed in section 3 were not found necessary to obtain
good performance. Most of the loops could be trans-
formed into completely parallel forms (i.e., vector and
parallel dos without synchronization) after the trans-
formations just mentioned were applied.

Singh and Hennessy [156] studied the limitations of
automatic parallelization using three scientific applica-
tions. They found that the time-consuming loop nests
are often complex and require more sophisticated anal-
ysis and data restructuring. Recommendations for fur-
ther development of automatic parallelization technol-
ogy are given. These include advances in symbolic data-
dependence analysis, dataflow and interprocedural anal-
ysis, and privatization/expansion of data structures.

Petersen and Padua [157] have compared the par-
allelism found by compilers to an estimated maxi-
mum parallelism and derived potential compiler im-
provements. The compiler used is KAP/Concurrent.
The maximum parallelism is measured by instrument-
ing the program so that the execution can be simulated
for an ideal machine, taking into account all essential
data dependences. It is found that both maximum and
compiler-extracted parallelism vary widely. The authors
conclude that there are potential improvements for com-
pilers in handling unknown values at compile time, sub-
scripted subscripts, non-parallelizable statements, and
subroutine calls.

4.4 Discussion

Table 5 summarizes the reports on loop-level paralleliza-
tion described above, including the test suites, machines,
compilers, and the measurements used in each study.
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The earlier compiler effectiveness studies measured
how successfully individual loops were parallelized. As
shown in Tables 1, 2, and 3, these studies agree that, un-
der this criterion, automatic parallelization is relatively
successful. However, even though many of these loops
are extracted from real programs, the measurements of
how effectively they can be parallelized do not necessar-
ily predict the behavior on real programs.

In fact, recent program-level studies have drawn dif-
ferent conclusions: Many real programs are not im-
proved by existing compilers. This does not mean that
parallelizers fail all the time, and in fact there are some
real programs on which parallelization does a very good
job. The two most extensive measurements of the effec-
tiveness of parallelization on real codes are presented in
[152] and [153]. Both studies report small improvements
from automatic parallelization for a majority of the pro-
grams studied. However, it should be remembered that
these two studies use different types of programs. Cheng
and Pase [152] start with hand-optimized codes whereas
[153] starts with unmodified programs. This is proba-
bly why [153] reports a higher effectiveness in a few
programs whereas [152] sometimes shows performance
degradations. The (additional) automatic vectorization
done in the latter study leads to little or even negative
improvement. Apparently the automatic vectorization
could not find more parallelism than the previous man-
ual optimization, but introduced some overhead. It is
not reported to what extent manual vector optimiza-
tions were applied.

Another important result is that many restructuring
techniques were found ineffective [153], presumably be-
cause many of the most time-consuming loops of the
programs could not be parallelized. However, it was also
shown that these loops can potentially be transformed
into parallel code [154] by advanced techniques. Hence,
the existing techniques may become more effective once
more powerful complementary compiler technology is
developed.

The evaluation papers on instruction-level parallelism
(Section 4.2) have shown that corresponding compiler
technology has been developed that is able to success-
fully exploit multiple functional units. However, there
is room for studies that evaluate this technology more
comprehensively.

There exists evidence for potential improvements of
parallelizing compilers. It was given by analyzing real
program patterns and deriving new compiler capabil-
ities [159], by optimizing programs manually and dis-
cussing the automatability of the transformations ap-
plied [101, 154], and by comparing “best” parallelism
that one found by compilers [157] and deriving new re-
structuring capabilities. At the instruction-level poten-
tial advances have been pointed out in increasing the
window size when dynamically exploiting parallelism



D S
A Y F (@] P S T
R B F L M C E P R T
A C D E (o] M G E Q C I A R
D 2 N S 5 D 3 A C 7 C C F
M D A M 2 G D N D 7 E K D
vectorized 1.2 1 1 1 1 1 0.9 1.2 1 1 1 1 1
(Y-MP, 1 CPU)
vector-concurrent 1 3.1 1 1.2 2.5 1 0.9 1.1 1 1.2 1 1 1
(Y-MP, 8 CPUs)
vectorized 1.1 | 20 | 1.1 | 3.6 3.4 1.2 |1 23|13 |12 ] 22|11 |11 2.8

(FX/8,1 CPU)
vector-concurrent 1.3 | 80 | 3.3 | 43 | 102 | 11 16 | 1.3 | 1.2 23 |11 1.0 2.2
(FX/8, 8 CPUs)
manually 7.5 4.2 | 7.7 16 55|44 | 83 | 7.0 | 5.5 5.1 | 14.3
improved
(FX/8, 8 CPUs)

Table 4: Performance improvements of the Perfect Benchmarks. First two lines: Improvement over manually vec-
tor-optimized programs on Cray Y-MP [152]. Third and fourth line: Improvements over serial program execution on
Alliant FX8 [153]. Fifth line: manual improvements over serial program execution on Alliant FX8 [154]

Study Test Suite Measures Machines Compilers
K|A|P|V|N|T|S|IT|F
[56] X X simulated
[149] X x| x| x|x Cyber 203/5 | FTN200, KAP, VAST
[158] X X simulated Parafrase
[155] X X | x simulated Parafrase
[144, 143] | x X X see Table 1
[150] X x | x| x Cyber 205 | FTN200, KAP, VAST
[145] X X see Table 1
[151] x x NAS 160 | KAP, VAST
[148] X x | x X see Table 2
[153] X x | x| x|x Alliant FX/8 KAP, VAST
[152] X | x X X Cray Y-MP KAP, fpp
[156] x | x x | Alliant FX/8 VAST
[101, 154] x | x X x | FX/8, Cedar KAP
[157] x | x X simulated KAP
test suite: K=Kernels A=Algorithms P=Application programs
measures : V=shows rate of successfully vectorized loops

N=compares performance numbers of different compilers
T=compares transformations of different compilers
S=shows speedups due to automatic parallelization
I=evaluates individual compiler techniques

F=discusses future compiler improvements

Table 5: Summary of compiler effectiveness studies
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[142].

The measurements have pointed out both success and
limitations of available automatic parallelizers. Improve-
ments are necessary to make restructurers consistently
useful tools in multiprocessor environments. The reports
on potential improvements do not prove that future
compilers will be much more effective; however, they
give reasonable indication that significant performance
improvements are possible and — perhaps more impor-
tant — that efforts are worthwhile to search for and im-
plement new, more powerful automatic parallelization
techniques.

5 Conclusions

Many program analysis and transformation techniques
for program parallelization have been developed, pri-
marily during the last decade. A program calculus is now
emerging which allows the formal analysis of these trans-
formations as well as the development of new powerful
transformations. However, these techniques are only as
good as their impact on the performance of the target
program. As discussed in Section 4.4, there is a need for
more experimental evaluation and analysis of the nature
of real programs.

The ultimate goal of research in program paralleliza-
tion is to develop a methodology that will be effective
in translating a wide range of sequential programs for
use with several classes of scalable parallel machines. Al-
though it is not clear how close we are to that goal, it is
clear is that we are not there yet and that our research
effort must continue because of the great impact that
effective parallelizers are bound to have on the ordinary
users’ acceptance of parallel machines.
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