
KATHOLIEKE UNIVERSITEIT LEUVEN

FAKULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
AFDELING ESAT - DIVISIE INSYS

Kasteelpark Arenberg 10, B-3001 Leuven, België

PARETO-OPTIMIZATION BASED

RUN-TIME TASK SCHEDULING

FOR EMBEDDED SYSTEMS

Promotoren:
Prof. F. CATTHOOR
Prof. R. LAUWEREINS

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de toegepaste wetenschappen

door

Peng YANG

September 2004

In samenwerking met

imec vzw

Interuniversitair Micro-Elektronica Centrum
Kapeldreef 75
B-3001 Leuven (België)

KATHOLIEKE UNIVERSITEIT LEUVEN

FAKULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
AFDELING ESAT - DIVISIE INSYS

Kasteelpark Arenberg 10, B-3001 Leuven, België

PARETO-OPTIMIZATION BASED

RUN-TIME TASK SCHEDULING

FOR EMBEDDED SYSTEMS

Jury :
Prof. G. De Roeck, voorzitter
Prof. F. Catthoor, promotor
Prof. R. Lauwereins, promotor
Prof. H. De Man
Prof. Y. Berbers
Prof. G. Deconinck
Prof. H. Corporaal (T.U. Eindhoven)

U.D.C. : 621.39

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de toegepaste wetenschappen

door

Peng YANG

September 2004

c© 2004 Katholieke Universiteit Leuven - Faculteit Toegepaste Wetenschappen
Arenbergkasteel, B-3001 Heverlee (België)

Alle rechten voorbehouden. Niets van deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt door middel van druk, fotocopie, microfilm, elektronisch
of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de
uitgever.

All rights reserved. No part of this publication may be reproduced in any form by
print, photoprint, microfilm, or any other means without written permission from the
publisher.

D/2004/7515/81

ISBN 90-5682-541-0

i

Acknowledgements
When I am writing down these words, I am looking back into the days and

nights of the last five years. Obtaining a Ph.D. is hard work, which is no lack
of joys and frustrations. Fortunately, I am not a solitary pilgrim: I am guided
and accompanied by my mentors and friends, whom I know I can always turn
to, for guidance, discussions, exchanging ideas and support. Hence, at the start
of this text, I would like to express my full gratitude to all those who helped
me during the last five years.

Prof. Francky Catthoor, for bringing me into the world of embedded sys-
tems design, for inspiring and motivating me on the way of research as my
promotor. Prof. Rudy Lauwereins, for being my co-promotor and guiding me
through all my research. Prof. Hugo De Man and Prof. Yolande Berbers, for
being members of the reading committee, for following up my research and for
providing invaluable feedbacks. Prof. G. Deconinck and Prof. H. Corporaal,
for serving in the jury.

I would like to thank my previous and current group leaders, Diederik Verk-
est and Johan Vounckx, for providing me with so fantastic an environment to
work and study. Thanks to my TCM-mates, Chun Wong, Paul Marchal, Ste-
faan Himpe, Zhe Ma, Chantal Ykman, Patrick David. I will remember the days
we spent together. Thanks to my colleagues in IMEC. I owe them a lot for
their generous help and support and for the happy after-hours get-togethers.
Dirk Desmet, Shashi Kodamballi, Bingfeng Mei, Prahbat Avasare, Frederik
Vermeulen, Miguel Miranda... I can not list all the names but I will keep them
in my heart. Also I would like to thank my friends in Leuven and Belgium.
They have made my stay here more enjoyable and memorable.

Finally, I would like to thank my family. I know I could never have gone so
far if it were not for the support and warm encouragement from them. Also,
thanks to my girl friend, for the laughs and dreams she has brought to me.

Peng Yang
Leuven, September 2004

ii

iii

Abstract
The rapid evolution and convergence of computing, consumer electronics

and communication disciplines are witnessing a trend toward integrating com-
plete and complex systems on a single chip. Technology advances lead to plat-
forms with enormous processing capacity that is however not matched with
the required increase in system design productivity. One of the most critical
bottlenecks is the very dynamic and concurrent behavior of many current mul-
timedia applications. In today’s designs, quite conservative worst case timing
characteristics are used to cope with this, leading to a partial waste of resources
and energy due to over-dimensioning.

In order to deal with these new dynamic applications where tasks and com-
plex data types are created and deleted at run-time based on non-deterministic
events, a novel system design paradigm is needed. Our complete Task Concur-
rency Management methodology first represents and transforms the system into
several concurrent partitions with an in-house gray-box model. Then a two-
phase scheduling approach is proposed to allocate, map and order the tasks
and sub-tasks of the system onto the multiprocessor platforms. The design-
time scheduler explores the design space per task and stores the exploration
results, while the run-time scheduler is used to optimize across all tasks the
system performance/cost according to the dynamic system context and the
pre-computed task information.

In this thesis, we mainly focus on the algorithms that the run-time scheduler
applies to make system-level tradeoffs and the implementation of such a sched-
uler on top of conventional Real-Time Operating Systems. We have proposed
two algorithms for the run-time scheduling. The first algorithm is able to ex-
plore the pre-computed design tradeoffs fast, while for systems with more than
a few processors, the second algorithm can better exploit the multiprocessor
feature and result in better scheduling. To support our two-phase scheduling, a
module is developed to provide a generic method to integrate the application,
the run-time scheduler and the Real-Time Operating System at low overheads.

The effectiveness of our design methodology has been verified by several
real-life demonstrators, both in simulation and on real hardware boards. All
results prove our methodology can significantly reduce the system cost at low
implementation overheads.

iv

Contents

1 Introduction 1

1.1 Context and Motivation . 1

1.1.1 The System-on-Chip Era 2

1.1.2 Platform Based Design 5

1.1.3 Embedded Software . 7

1.2 Two-Phase Task Scheduling: Why and How 9

1.2.1 Design-Time Task Scheduling phase 11

1.2.2 Run-time Task Scheduling Phase 13

1.2.3 Combine Them Together: A Simple Experiment 14

1.3 Main Contributions . 16

1.4 Chapter Overview . 17

2 Related Work 19

2.1 Scheduling Theory . 19

2.1.1 Static Scheduling . 21

2.1.2 Fixed or Dynamic Priority Scheduling 21

2.1.3 Dynamic Scheduling . 24

2.1.4 Summary . 27

2.2 Low-Power and Cost Considerations 27

2.2.1 Dynamic Power Management 28

2.2.2 Dynamic Voltage Scheduling 28

2.2.3 Battery Life Related . 34

v

vi CONTENTS

2.2.4 Physical Implementation of DVS 34

2.2.5 Other Approaches . 35

2.3 Platform and Simulation Framework 36

2.3.1 System-level Performance and Energy Models 37

2.3.2 Timing Analysis and Simulation 38

3 Model and Methodology 41

3.1 Overview of the TCM Flow . 41

3.2 The Gray-box model . 42

3.3 Scenario Selection . 47

3.4 Two-phase scheduling . 49

4 Fast and Scalable Run-Time Task Scheduling 55

4.1 Motivational Example . 55

4.2 Run-time Scheduling Algorithm 59

4.2.1 Application Model . 60

4.2.2 Problem Formulation 60

4.2.3 Greedy Heuristic . 62

4.3 Experimental Results . 65

4.3.1 Randomly Generated Test Cases 65

4.3.2 Real-Life Applications 67

4.4 Conclusion . 69

5 Run-Time Algorithm for Overlapping Task Schedules 71

5.1 Motivational Example . 71

5.1.1 The Heterogeneous Platform 71

5.1.2 Design Space Exploration 72

5.1.3 Run-Time Scheduling 73

5.2 Run-time Scheduling Heuristic 75

5.3 Experimental Results . 79

5.4 Conclusion . 82

CONTENTS vii

6 Validating the Methodology with Demonstrators 83

6.1 3D rendering QoS Control Demonstrator 83

6.1.1 The QoS Application . 83

6.1.2 Virtuoso RTOS . 85

6.1.3 Applying the TCM Methodology 87

6.1.4 Implementation . 92

6.1.5 Reference Cases for Comparison 95

6.1.6 Discussion of all results 96

6.2 PocketGL Demonstrator on XScale Board 97

6.2.1 Overview . 97

6.2.2 Demonstrator Setup . 99

6.2.3 Applying the TCM Approach 102

6.2.4 Experimental results . 105

6.3 Conclusion . 110

7 Mapping and Ordering Tasks Dynamically on Multiprocessors111

7.1 Dynamic Mapping and Ordering 112

7.2 Experimental System Setup . 115

7.2.1 The Experimental Platform 115

7.2.2 The Run-time System 116

7.3 Implementation . 117

7.4 Experiments and Results . 121

7.4.1 Experiment to Explore the Overhead 121

7.4.2 The Realistic H.263 Test Case 124

7.5 Conclusion . 127

8 Conclusions and Future Work 129

8.1 Contributions . 130

8.2 Future Work . 131

A List of Publications 133

viii CONTENTS

B Abbreviations 135

Chapter 1

Introduction

1.1 Context and Motivation

With the semiconductor processing technology entering in the deep sub-micron
era, it has long been recognized that the gap between the processing capability
and design capability is not decreasing but increasing, which is known as the
design productivity gap. As illustrated in Figure 1.1, the design productivity
(number of transistors designed by a designer in one month) increases only
21% a year, whereas the design complexity (number of transistors in a typical
design) increases 58% a year. The bottleneck here is not only what we can
produce now, but also what we can design. A direct result is the number of
designer months (number of designers times total time) in a design project
is increasing rapidly. The design cost has become the greatest threat to the
continuation of the semiconductor roadmap.

The second problem the designers will confront is the extremely high manufac-
turing nonrecurring engineering (NRE) cost. As the semiconductor industry
approaches the 100-nm technology node, the NRE (mask set and probe card)
costs are getting close to $1 million for a large integrated circuit (IC). With
an average of just 500 wafers produced from each mask set, rapid growth of
manufacturing NRE can throttle the initiation of new IC design projects.

The answers to the design productivity gap problem can come from a) novel
system-level design specification; b) hardware-software codesign; and c) sub-
stantially reuse intellectual property (IP) components [17]. This caused the
revolution of System-on-Chip (SoC) design. To solve the problem of the man-
ufacturing NRE cost, we have to produce the same IC in very high volume
to reduce the average NRE cost on every chip. This leads us to the motiva-

1

2 CHAPTER 1. INTRODUCTION

L
o
g
ic

T
ra

n
si

st
o
rs

p
e
r

C
h
ip

(M
)

P
ro

d
u
ct

iv
it
y

(K
)

T
ra

n
s.

/S
ta

ff
-M

o
.

L
o
g
ic

T
ra

n
si

st
o
rs

p
e
r

C
h
ip

(M
)

P
ro

d
u
ct

iv
it
y

(K
)

T
ra

n
s.

/S
ta

ff
-M

o
.

Figure 1.1: Design productivity gap (source: ITRS’99).

tion for a move to platform-based-design (PBD) [108, 37]. The emerging of
SoC and PBD has also moved the design complexity from the hardware side
to the embedded software side, which is increasing amazingly at a speed of
140% per year and will account for more than 80% of the total design cost
according to the ITRS 2003 roadmap in the near future. All these require a
novel system-level design methodology for the embedded software, especially
to manage the concurrent tasks running on a SoC. As Jan Rabaey said in
his keynote speech in DesignCon’04 [131], “It’s easy to create concurrency [by
putting several components/processors on the same chip], but it’s difficult to
manage concurrency.”

1.1.1 The System-on-Chip Era

The complexity of systems is surging due to the exponentially increasing tran-
sistor count enabled by smaller feature sizes and spurred by consumer demands
for increasing functionality, lower cost, and shorter time-to-market. To design
such complex systems, tradeoffs must be made between all aspects of value or
quality, and all aspects of cost.

An SoC is a complex IC that integrates the major functional elements of a com-
plete end-product into a single chip or chipset [108]. In general, SoC design
incorporates one or more programmable processor cores (homogeneously or

1.1. CONTEXT AND MOTIVATION 3

heterogeneously, even reconfigurable), on-chip memory, and accelerating func-
tion units implemented in hardware. It also interfaces to peripheral devices
and/or the real world. SoC designs encompass both hardware and software
components. Because SoC designs can interface to the real world, they of-
ten incorporate analogue components, and can, in the future, also include
opto/microelectronic mechanical system components. These components are
connected with one or more links, either bus, crossbar, or network-on-chip.
Figure 1.2 shows an example of such a device.

Custom acceler.

Reconfig.core

DSP
core

SRAM

DRAM

ACU/MMU

programmable
(heterogeneous
instr.set proc
with multi-Vdd)

distributed shared
data mem. hierarchy

RISC
core

Cache

L1

NV-
RAM

Control

distributed shared
instr. mem. hierarchy

L0

Figure 1.2: A typical System-on-Chip device.

One issue that is worth noting is the trend of putting more than one processing
elements into SoCs, either heterogeneously or homogeneously. Adding reconfig-
urable processing units is also an option. This can be explained by the daunt-
ing challenge of managing the SoC power, especially for low-power, wireless,
multimedia applications, which needs application-, OS- and architecture-level
optimizations including parallelism, and adaptive voltage and frequency scal-
ing. The upper curve of Figure 1.3 gives the intrinsic computation efficiency
available from silicon, while the lower one shows the computation efficiency of
a single traditional, instruction based processor. From that figure, it is clear
that traditional single processor solution is becoming extremely inefficient. An
example is the Pentium from Intel. While we are passing 3GHz CPU frequency,
it consumes more than 100W and is definitely not the solution to embedded
and portable devices, which require processing performance around 2GOPS
(Giga Operations Per Second) at average power consumption as low as 0.1W
(ITRS 2003 roadmap). However, if we put 4 Pentium cores on an SoC, to
provide the same computation power, each core has only to work at one forth
of the original frequency. Hence the total power consumption can be reduced
dramatically (theoretically the power is reduced by 64 times and the energy is
reduced by 16 times, as explained later, if full voltage scaling is allowed1). Dif-

1In reality, the possible Vdd variation is limited by the processing technology. However,
techniques such as multi-Vt, multi-Tox, multi-Vdd can be applied simultaneous in a single core

4 CHAPTER 1. INTRODUCTION

Figure 1.3: Computation efficiency vs. minimum feature length and time [30].
MOPS is Million Operations per Second.

ferent kinds of processors (microprocessor, DSP, ASIP, ...) have different kinds
of application domain and different performance/power ratio. For example, for
signal processing, a DSP is more efficient with respect to power dissipation and
chip area, while a microprocessor is more efficient in handling control-flow spe-
cific code. It is possible to explore different levels of parallelism intrinsic in an
application and to distribute them to different (kinds of) processors so that the
highest power efficiency is achieved. That explains the move to heterogeneous
multiprocessor platforms.

The required shift for SoC design is the result of two industrial trends: the de-
velopment of application-oriented IC integration platforms for rapid design of
SoC devices and derivatives, and the wide availability of reusable virtual com-
ponents [24]. The most obvious way to combine flexibility and cost efficiency is
to take the best from both. By their nature, software implementations on pro-
grammable cores are preferred to realize maximum flexibility. Tasks which run
inefficiently in software, have to be mapped on co-processors (or specific pro-

to achieve ultra low power/energy consumption at a reduced performance level. Multi-Vt and
multi-Tox are mainly useful for reducing the static leakage power.

1.1. CONTEXT AND MOTIVATION 5

cessor cores) for cost reasons: signal-processing tasks are better implemented
on DSP cores or media processor cores than on microprocessor cores, while
the opposite is true for control tasks. These considerations lead to the con-
cept of a multi-core “silicon system platform”. The move to platform based
SoC provides several advantages: high production volumes, the same chip can
be used to several related application domains; high flexibility, it is easy to
change the functions of the product by simply upgrading the software of the
programmable cores; good performance and power numbers; and fast designs,
the time to market is significantly shortened by reusing existing HW/SW mod-
ules.

1.1.2 Platform Based Design

Design problems are pushing IC and system companies away from full-custom
design methods, toward designs that they can assemble quickly from pre-
designed and precharacterized components. This places priority on design
reuse, correct component assembly, and fast, reliable, efficient compilation from
specifications to implementations [140].

The platform concept has been around for years, but multiple definitions make
its interpretation confusing. According to the VSIA working group, a platform
is “An integrated and managed set of common features, upon which a set of
products or product family can be built. A platform is a virtual component.”
In general, a platform is an abstraction that covers several possible lower-level
refinements. Every platform gives a perspective from which to map higher
abstraction layers into the platform and one from which to define the class
of lower-level abstractions that the platform implies. A good example is the
motherboard of a personal computer (PC). It defines and characterizes the
architecture and capabilities of a PC, whereas it keeps enough flexibility. A
designer can choose different components, such as processors, graphic cards,
size of memories, to derive different products for different users or for different
needs, as long as these components share the same interface supported by
that motherboard. At another level, the motherboard itself is derived from a
platform at a higher level, which decides, for example, the kind of processor
to support (Intel or AMD) or the number of peripheral connection slots. For
embedded software, the platform is a fixed microarchitecture that minimizes
mask-making cost but is flexible enough to work for a set of applications so
that production volume remains high over an extended chip lifetime.

In [108], PBD is defined as “an organized method to reduce the time required
and risk involved in designing and verifying a complex SoC, by heavy reuse of
combinations of hardware and software. Rather than looking at IP reuse in a
block by block manner, platform-based design aggregates groups of components

6 CHAPTER 1. INTRODUCTION

into a reusable platform architecture.”

Typically, PBD is either a derivative design with added functionality, or a
convergence design where previously separate functions are integrated. In the
vision of [140], ICs used for embedded systems will be developed as instances of
a particular architecture platform. That is, rather than assembling them from
a collection of independently developed blocks of silicon functionality, designers
will derive them from a specific family of microarchitectures – possibly oriented
toward a particular class of problems. The system developer can then modify
the ICs by extending or reducing them (see Figure 1.4). Good examples of this

Figure 1.4: System platform layer and design flow. The system platform effec-
tively decouples the application development process (the upper triangle) from
the architecture implementation process (the lower triangle).

kind of platform are OMAP of TI, Nexperia of Philips, PrimeXsys of ARM
and Virtex-II Pro of Xilinx [108].

1.1. CONTEXT AND MOTIVATION 7

PBD is the extension of core-based design. It creates highly reusable groups
of cores to form a complete hardware “platform,” further simplifying the SoC
design process. With highly programmable platforms that include one or more
programmable processor(s) and/or reconfigurable logic, derivative designs may
be created without fabricating a new SoC. Platform customization for a par-
ticular SoC derivative then becomes a constrained form of design space explo-
ration: the basic communications architecture and platform processor choices
are fixed, and the design team is restricted to choosing certain customization
parameters and optional IP from a library. PBD also entails HW-SW parti-
tioning, which decides the mapping of key processing tasks into either HW or
SW, and which has major impact on system performance, energy consumption,
on-chip communications bandwidth consumption, and other system figures of
merit. Multiprocessor systems require “SW-SW” partitioning and codesign,
i.e., assignment of SW tasks to various processor options. While perhaps 80-
95% of these decisions can be made a priori, particularly with platform-based
or derivative SoCs, such codesign decisions are usually made for a small number
of functions that have critical impact.

To map a specific application on a given platform, since a large portion of the
design has already been fixed, the main effort of the design is on the embedded
software part, which is becoming increasingly complex and will account for 80%
of the design cost (ITRS 2003 roadmap).

1.1.3 Embedded Software

The trend of future embedded systems is now clearly toward wireless, multime-
dia, multi-functional and ubiquitous applications. This challenges the existing
solutions on performance, power, flexibility and costs, calling for innovations
in both architecture and design methodology.

In general, the platforms we discuss in the previous section are characterized
by multiple programmable components. Thus, each platform instance derived
from the architecture platform maintains enough flexibility to support an appli-
cation space that guarantees the production volumes necessary for economically
viable manufacturing. This also results in fast time-to-market. For this kind
of platforms, the key problem is how to transform the applications from highly
abstract specifications (even in several different computation models) to em-
bedded software implementations and how to map them to the given platforms.

To cope with the tight constraints on performance and cost typical of most em-
bedded systems, programmers write today’s embedded software using low-level
programming languages such as C or even assembly language. Because of per-
formance and memory requirements, it typically uses application-dependent,
proprietary operating systems, or even no operating systems. When embedded

8 CHAPTER 1. INTRODUCTION

software was simple, there was little need for a more sophisticated approach.
However, with the increased complexity of embedded-systems applications (in-
creasing 140% a year), this rather primitive approach has become the bottleneck
of the design productivity.

In many emerging embedded-systems applications in areas such as wireless
communication and portable multi-media device, the need to capture specifi-
cations at high abstraction levels has led to the use of modeling tools such as
the Mathworks’ Matlab/Simulink and the UML. After the systems are charac-
terized and evaluated, they are further implemented in languages such as Java,
SDL, C++ and SystemC. However, these models and high level implementa-
tions do not cover the full embedded-system design spectrum. For example,
they lack formal dataflow support and the Finite-State Machine capture. Lower
level platform/architecture related details are far less considered at this stage.
An effective methodology is needed to partition the system and map it onto
an embedded platform, normally with more than one programmable compo-
nents. During this stage, many different partitionings/mappings can be tried,
generating different designs, each with different characteristics such as execu-
tion speed, power consumption and memory footprint. This is known as design
space exploration.

To make things even worse, these applications are completely different from the
conventional embedded softwares, which are small in size, simple in architec-
ture, static in function, typically managed by a simple scheduling policy such
as cyclic scheduling. The new challenge is the inherent dynamism of the em-
bedded systems. Dynamism is the system property that enables the system to
adapt at run time under the influence of user requirement (e.g. the multimedia
quality of service). New abstractions are required for such run-time modifica-
tion of function and architecture. In nowadays embedded systems, typically
more than one task is running simultaneously, processing and manipulating
complex data structures. These tasks and data are created and deleted at run
time to the request of the applications. From time to time, the embedded sys-
tems also have to switch between different modes. For example, it can act as a
wireless phone at one moment while as a 3D game engine at another moment.
Certainly different modes will cause different execution characteristics on the
same device. Besides the concurrent and dynamic features of the new applica-
tions, the heterogeneous multiprocessor platform makes the embedded software
design even more difficult. No effective concurrent programming model exists
for the multiprocessor embedded software programming.

Clearly, a gap exists between the high level specification and the final imple-
mentation for embedded software design. Hence, a need exists for a systematic
design methodology and system-level tool support. The Task Concurrency
Management (TCM) approach developed in IMEC (see Chapter 3) is our an-

1.2. TWO-PHASE TASK SCHEDULING: WHY AND HOW 9

swer to that challenge and our two-phase scheduling methodology is a key com-
ponent of that approach. The novel scheduling methodology provides design
space exploration, run-time task scheduling (to optimize the system behav-
ior) and the integration of the complete application with the RTOS and the
hardware below.

1.2 Two-Phase Task Scheduling: Why and How

The procedure of embedded systems design is to make decisions and tradeoffs
between different values, qualities and costs. This is called the design space.
Among all the tradeoffs, some can be fixed a priori, while it is beneficial to put
off some decision-making till the run-time stage, which becomes ever more cru-
cial for nowadays dynamic applications. This distinguishes our design method-
ology from others. Conventional compiler oriented design methodologies also
explore the design space. However, they do the exploration, evaluation and
decision making all at design time. When a design finishes, everything is fixed
and the system can not adapt itself to the run-time environments. Hence this
approach often results in over-designed and/or energy wasting systems. The
other extreme is to do everything at run time with a (Real-Time) Operating
System. However, the scheduling problem is notoriously hard to solve. For
non-trivial number of tasks, the run-time overhead is very high even with a
heuristic. Moreover, due to the limitation of the computing time, the schedul-
ing quality is questionable.

Our methodology is a hybrid of the above two approaches. We do the full
exploration at design time but postpone some critical decision making till run
time to best make tradeoffs dynamically according to the run-time environment.

The basic idea of our method can be clarified with a simple example (the termi-
nologies used here will be explained in Chapter 3). In Figure 1.5(a), there are
originally two thread frames. These two thread frames can each be represented
by a typical cost-performance tradeoff curve. The X-axis represents the num-
ber of cycles to execute that thread frame and the Y-axis represents the cost
of that implementation. Suppose at run time totally 200 cycles are available
in the system and the two thread frames are working at the operating points
marked as diamond on that figure. Whenever a new thread frame (thread
frame 3), accompanied with its tradeoff curve, enters the system, the run-time
scheduler has to take into account the tradeoff curves of all three thread frames
to minimize the total system cost while satisfying the cycle budget constraint.
Conventional design can only solve this problem in an over-designed way: no
matter whether thread frame 3 presents or not, the three thread frames always
work at the operating points marked as triangle. Clearly, this design is costly
when thread frame 3 is not in the system.

10 CHAPTER 1. INTRODUCTION

?

thread frame one thread frame two thread frame three

100 100

cost

cycle budget cycle budget cycle budget

cost cost

(a) before the third thread frame comes

thread frame one thread frame two thread frame three

40 60 100

cost

cycle budget

cost

cycle budget

cost

cycle budget

(b) after the third thread frame comes

Figure 1.5: Make tradeoffs for three thread frame system at run time to reduce
the system cost. Suppose totally 200 cycles are available. Diamonds are our
adaptive solution and triangles are the conventional static solution.

To provide that kind of dynamic adaptiveness, we propose a methodology called
Task Concurrency Management (TCM). The purpose of task concurrency man-
agement is to determine a cost-optimal, constraint-driven scheduling, alloca-
tion, and assignment of various tasks to a set of processors. Task concurrency
management comprises three steps, which will be detailed in Chapter 3 but are
briefly discussed here. The first is concurrency extraction and improvement,
which produces a set of thread frames. Each thread frame consists of many
thread nodes, the basic scheduling units. Second, design-time scheduling is
applied inside each thread frame at compile time, including a processor assign-
ment decision in the case of multiple processing elements. Finally, runtime
scheduling is applied to these thread frames on the given platform. We sepa-

1.2. TWO-PHASE TASK SCHEDULING: WHY AND HOW 11

rate task scheduling into two phases for three reasons. First, this scheme better
optimizes the embedded software design compared to a pure design time ap-
proach. Second, it gives the entire system more runtime flexibility to deal with
non-deterministic events. Third, it reduces runtime computation complexity
compared to a pure run time approach.

1.2.1 Design-Time Task Scheduling phase

A thread frame’s behavior can be described by task graphs such as Fig. 1.6, in
which each node represents functions to be performed. Each edge represents

t0

t1

t2

t3

t4

t5

t6

Figure 1.6: An example of a task graph.

the data dependency between two nodes. This task graph represents part
of a voice coder [78] and will be mapped to a dual-processor platform. The
two processors are almost the same, except that P1’s working voltage is three
times that of P2. Table 1.1 shows each node’s execution requirement on those

Execution Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

P1 3 10 12 13 16 13 15 30 20 15
P2 9 30 36 39 48 39 45 90 60 45

Energy Consumption
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

P1 27 90 108 117 144 117 135 270 180 135
P2 3 10 12 13 16 13 15 30 20 15

Table 1.1: Normalized thread nodes execution time and energy consumption.

two processors in terms of execution time and energy consumption. We have
normalized the execution time and energy consumption numbers because only
the relative value is important in this context.

In a well-designed CMOS circuit, the dominant energy consumption term is

12 CHAPTER 1. INTRODUCTION

the switching component [23], which can be written as
energy per transition = Ptotal/fclk = CeffectiveV

2
dd

while the maximal frequency is given by

fmax =
1

Td

=
µCox(W/L)(Vdd − VTh)2

CLVdd

Approximately we can say the energy consumption is proportional to the square
of the supply voltage while the processor speed is linear proportional to it.
Hence, by decreasing the supply voltage when possible (when the system is not
at its worst case), the system energy consumption can be reduced significantly,
though the processor speed is also slowed. This technique is called Dynamic
Voltage Schaling (DVS). In our example, we assume two fixed voltage and thus
avoid the overhead and efficiency loss of continuous DVS.

Figure 1.7 shows the performance-energy tradeoff curve we have derived for

50 100 150 200 250 300
200

300

400

500

600

700

800

Cycle Budget

E
ne

rg
y

C
os

t

Figure 1.7: Performance-energy tradeoff curve derived in design-time schedul-
ing. Triangles are the operating points to be passed to the run-time scheduler.

the voice coder example and the given processors, after we have tried all the
assignment and ordering possibilities for the nodes. Among all the possible
operating points, only those chosen by the design-time scheduler as typical
cases (indicated by triangles) are passed to the run-time scheduler. The more
points are passed, the better the runtime scheduler’s results, but at the cost of
greater run-time computation complexity and overhead.

1.2. TWO-PHASE TASK SCHEDULING: WHY AND HOW 13

1.2.2 Run-time Task Scheduling Phase

Design-time scheduling provides a series of possible allocation and scheduling
options inside a thread frame, but only the run-time scheduler decides which
option is used. Each option has a thread node assignment and ordering pattern
pre-computed by the design-time scheduler. The run-time scheduler considers
computation requests from all the ready-to-run thread frames and selects an
option for each thread frame so that the entire system’s combined energy con-
sumption is optimal. Working with the thread frame as its operational unit,
the runtime scheduler considers the timing constraints among thread frames,
such as data dependency or execution order. In Table 1.2, for example, each
of two thread frames has three options that are identified by the design-time

Thread Frame One Thread Frame Two
opt.1 opt.2 opt.3 opt.1 opt.2 opt.3

Cycle Budget 20 60 100 40 60 80
Energy Cost 110 80 50 90 60 50

Table 1.2: Example of two thread frames.

scheduler. These options correspond to different cycle budget and energy cost
combinations. At runtime, if the total cycle budget for the two thread frames
is 100, the energy-optimal schedule is option 1 for thread frame 1 and option
3 for thread frame 2 (see Figure 1.8). If the cycle budget is 140, however, the
optimal schedule becomes option 2 for thread frame 1 and option 3 for thread
frame 2. Complex trade-offs are involved in distributing the total execution

Thread Frame 1
Option 1

Thread Frame 2
Option 3

Thread Frame 1
Option 2

Thread Frame 2
Option 3

0 20 100

0 60 140

Figure 1.8: Run-time scheduler selects different operating points of the same
thread frame according to the system deadline to minize the energy consump-
tion. The top combination is chosen when the deadline is 100; while the bottom
one is chosen when the deadline is 140.

period over the different thread frames. An algorithm is needed here to explore
the tradeoffs at run time.

14 CHAPTER 1. INTRODUCTION

1.2.3 Combine Them Together: A Simple Experiment

We use an artificial but typical example to illustrate how we combine the two
scheduling phases discussed earlier together and to illustrate how the novel
scheduling approach can benefit the design. Here we only give the result briefly.
The detail can be found in Section 4.1.

Fig. 1.9 shows an application which requires the cooperation of five thread
frames, denoted from 0 to 4. We assume the application is frame based, i.e.
every time frame the application will be executed once to process the current
input data. This is a reasonable abstraction for the multimedia or communi-
cation applications (e.g. MP3 or video decoding).

After applying design-time scheduling, we get one Pareto curve for every thread
frame. The Pareto curve we extract for task graph 2 is given as an example
in Fig. 1.10. At run time, knowing the active task graphs of the current time
frame and their Pareto curves, the run-time scheduler is able to select one
Pareto point (which represents a specific voltage assignment and ordering for
that task graph) from each active curve and can combine them together to get
the complete scheduling, taking into account the time constraints.

We have simulated the scheduling of the above problem for 1000 periods and the
results are summarized in Table 1.3, in which our two-Vdd scheduler is denoted

no DVS inter-task DVS PC 2 PC 3 optimal

en. cons.(uJ) 1620 1068 956 823 705

en. saving 0 34% 41% 49% 56%

Table 1.3: Energy consumption of the motivation example with different sched-
ulers.

as PC 2. For comparison, we also list the energy number for an “optimal”
scheduler which uses a continuous optimal DVS strategy and is not achievable
in practice because it requires the full knowledge of the future run-time behavior
of the tasks. In this simple example, compared to the state-of-the-art inter-task
DVS schedulers (see related work section), our approach saves 7% more energy,
which is quite good taking into account we have only two discrete voltages
instead of a continuously changeable one used by the reference case2. When
a third voltage is available (PC 3), 15% more energy can be saved compared
to the inter-task DVS case. This result also comes close (within 7%) to the
theoretical optimal value, which is unachievable because it requires perfect
knowledge of the future and continuous Vdd scaling.

2The energy and time overhead of implementing a continuously changeable voltage is
potentially high.

1.2. TWO-PHASE TASK SCHEDULING: WHY AND HOW 15

t0_1

t0_2

t0_3

t1_1

t1_2

t1_3

t1_4

t2_1

t2_2

t2_3

t3_1

t3_2

t3_3

t3_4

t3_5

t3_6

t4_1

t4_2

t4_3

t4_5

t4_4

t4_6

Task

Graph 0
Task

Graph 1

Task

Graph 2

Task

Graph 4

Task

Graph 3

Figure 1.9: The task graph of the motivational example.

16 CHAPTER 1. INTRODUCTION

400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

Execution time(uS)

E
ne

rg
y

co
ns

um
pt

io
n(

nJ
)

Figure 1.10: The Pareto curve of task graph 2.

1.3 Main Contributions

In developing the design technology of embedded software for concurrent and
dynamic applications, as described in this thesis, we have achieved a number
of original contributions:

• A complete design flow and design methodology has been defined
in cooperation with several PhD students working in a team including
also Chun Wong, Paul Marchal, Stefaan Himpe and Aggeliki Prayati
[180, 183, 175, 169, 106]. In that methodology, an application is first
modeled with MTG*, then transformed in order to increase and expose
the parallelism embedded. After that, a hybrid design time and run time
scheduling is done to adapt the application best to the dynamic system
context. This flow is different in many ways compared to the state of the
art (see Chapter 2 and Chapter 3).

• A fast and scalable run-time task scheduling algorithm has been
developed to schedule applications sequentially while exploring different
tradeoffs [178]. The problem is modeled as a Multiple Choice Knapsack
Problem and a greedy heuristic is proposed. Given the pre-computed
information stored as Pareto curve, the heuristic is able to make tradeoff

1.4. CHAPTER OVERVIEW 17

at run time both fast (speedup of more than 10) and effectively (subop-
timality less than 5%). The incremental and scalable feature makes the
heuristic well suitable for on-line task scheduling.

• A Tabu search based heuristic has been developed to schedule appli-
cation at run time to further explore the parallelism provided by multi-
processor platforms. Different from the previous heuristic, which executes
applications sequentially on a multiprocessor platform, this heuristic al-
lows several applications to run simultaneously, each application utilizing
part of the platform (overlapping in time). Energy savings up to 34%
have been observed compared to the sequential scheduling heuristic, for
the same real time system constraint. To our knowledge, till now, no
other run time technique has been proposed for this case.

• The design flow and design methodology have been verified by
both simulation and on hardware platforms [181, 182]. A 3D Quality
of Service application is used for the simulation on top of a PC and a
RTOS. The result gives good motivation to our methodology. An exper-
iment with a 3D application on a real XScale board further proves the
effectiveness of our method.

• A middleware-like module has been developed to allow mapping
and scheduling tasks dynamically on a multiprocessor platform, as de-
cided by the run-time scheduler [179]. Inserted between the applica-
tion and the RTOS, this module integrates the application, the run-time
scheduler and the RTOS at low overheads. Experiments on a real dual-
DSP platform illustrate significant performance improvement.

1.4 Chapter Overview

The rest of this thesis is organized as follows.

Chapter 2 gives a detailed survey of related work, including task scheduling,
voltage scaling and simulation framework.

Chapter 3 presents our task concurrency management design flow in detail. All
the steps in this design flow are covered. A simple example is used to illustrate
the function of each step.

Chapter 4 presents a fast and scalable heuristic for the run-time Pareto curve
based scheduling. A motivating example is given first, followed by the problem
formulation and the heuristic algorithm. Then both artificial examples and
real-life examples are used to test the effectiveness of this algorithm.

18 CHAPTER 1. INTRODUCTION

Chapter 5 presents a Tabu search based run-time heuristic scheduling algo-
rithm. Compared to the algorithm in Chapter 4, this heuristic is much more
effective and efficient when a cluster of (heterogeneous) processors are available.

Chapter 6 validates our task concurrency management flow with two real-life
demonstrators. The 3D QoS adjustment application is simulated on a PC on
top of a RTOS. The PocketGL application is implemented on a XScale board
running Linux.

Chapter 7 introduces the run-time system to integrate our two-phase scheduling
methodology on top of the RTOS in the multiprocessor context. Tests are done
on a dual-DSP board to illustrate the overhead of the integration. An experi-
ment with H.263 decoding proves the advantage of applying task concurrency
management.

Chapter 8 finally concludes this thesis and points out interesting areas for future
research.

Chapter 2

Related Work

Task scheduling has been investigated overwhelmingly in different communities
in the last decades. Conventionally, it is used to guarantee objectives such as
timeliness or resources constraint, or to optimize objectives such as system
response time. Recently, as power consumption is getting a serious problem
in embedded systems, many approaches have been proposed to handle that
problem. In this chapter, we first give an overview on the conventional and
low-power scheduling techniques. After that, we discuss a little about the tools
and frameworks which may be helpful and needed in our research work.

2.1 Scheduling Theory

For a system with multiple tasks, an ordering has to be done to decide the
execution order of these elements. If more than one processor or processor
element exists in that system, another decision, assignment, has to be made as
well to decide on which processor a task should be executed. The ordering and
assignment problems are more or less coupled in a multiprocessor system and
traditionally the term scheduling is used for this coupled problem. Or more
formally, scheduling involves the allocation of resources (processor, I/O, bus,
etc.), the ordering of the tasks in time (on a relative or absolute time axis),
and the binding of them in such a way that certain constraints are satisfied
(e.g., timing constraints in real-time system, dependency, resource) and some
performance/cost metrics are optimized (e.g., average latency in UNIX; energy
in portable systems; quality in QoS). In our context, we do not always impose
a complete ordering and assignment, so also partial scheduling constraints can
be the result of our TCM design-time scheduling approach.

19

20 CHAPTER 2. RELATED WORK

Scheduling policies or algorithms are the ways to achieve this in practice.
Roughly, scheduling algorithms can be divided into design-time and run-time
algorithms based on whether the task execution order is decided at design-
time or run-time. They are usually known as static and dynamic scheduling
respectively. Sometime they are also called off-line and on-line scheduling. In
the following subsections, we separate the algorithms into three classes: static
scheduling, fixed/dynamic priority scheduling and dynamic scheduling. The
priority based scheduling is a kind of dynamic scheduling. However we put it
in a separate section because of its importance and the huge number of existing
techniques. Finally, we will discuss some topics about Operating Systems.

A very important concept is the Real-Time (RT) system.

“A real-time operating system has well-defined, fixed time con-
straints. Processing must be done within the defined constraints,
or the system will fail. A real-time system is considered to func-
tion correctly only if it returns the correct result within any time
constraints.”

–A. Silberschatz and P. Galvin, 1998, Operating System Con-
cepts.

Two aspects distinguish the RT system: rigid time constraint and on-time
response. For a RT system, if it can not finish one task before a specific
deadline, the system will be in an exception state (hard RT) or a bad but still
endurable state (soft RT). Compared to a non-RT system, scheduling is crucial
in a RT system because it is the only way to meet the deadlines and that is
the most important mission of the system.

In the real-time community, normally the black-box model is used, where the
scheduling unit is the task and no details inside the task are known to the
scheduler. The tasks are modeled with a task graph, describing the depen-
dencies, and worst case execution time (WCET) are assumed for each task.
Comprehensive overviews of scheduling algorithms for real-time systems are
given in [166, 145, 135, 4].

Subsection 2.1.1 looks at the algorithms used for static scheduling. Subsec-
tion 2.1.2 addresses the priority based scheduling. It belongs to the dynamic
scheduling category but we put it in a separate subsection because it is too
important to be mixed with other dynamic algorithms. After that, subsec-
tion 2.1.3 discusses some other dynamic algorithms and finally the scheduling
policies used by Operating Systems is summarized.

2.1. SCHEDULING THEORY 21

2.1.1 Static Scheduling

Up to now, mainly static table-driven or cyclic executive approaches are used
for static scheduling [5, 134]. Such static table-driven methods perform static
schedulability analysis at design-time and the resulting schedule (or table, as
it is usually called) is used at run time to decide when a task must begin
execution. This approach is highly predictable but also highly inflexible and
obviously it can only be applied to periodic tasks. Aperiodic systems can be
transformed into periodic tasks, introducing modeling overhead which can be
translated into penalties in timing and cost. The table can be constructed
using the well-known Earliest Deadline First or Rate Monotonic technique (see
subsection 2.1.2). However, when other constraints like precedence, exclusion,
resource requirements, etc., are also taken into account, the scheduling problem
is NP-hard. Good heuristics have to be found for it. Aperiodic tasks can be
handled more efficiently with the methods described later.

Xu and Parnas [177] have examined this scheduling problem using a branch-
and-bound technique. The algorithm described in [133] considers communica-
tion and replication constraints and is applicable to distributed systems. In
[134], a scheme is given to adapt the static scheduling so that some aperiodic
tasks can also be considered.

In [44], a white box view is used for the scheduling, where performance is
measured by the worst case delay. Communication is included in the scheduling,
which applies a two-step strategy: first to find the minimal worst case delay
then to generate the corresponding schedule table. Many other works apply a
similar approach [53, 80, 98].

2.1.2 Fixed or Dynamic Priority Scheduling

Priority based algorithms are quite common and used in most time-sharing
systems. The task which has a higher priority always preempts the current
task and gets executed. In non-RT systems, the priority of a task depends
on what kind of application it is and is assigned rather arbitrarily. It can
be changed by the user or the Operating System. In RT systems, priority
assignment is related to the time constraints associated with a job or task and
this assignment can be either fixed or dynamic. Here we only discuss the RT
systems. None of these algorithms considers cost and the timeliness is the only
objective.

22 CHAPTER 2. RELATED WORK

Basic Theory

In Liu and Layland’s classic paper [91], they investigated the problem of schedul-
ing periodic tasks on a single processor and proposed two preemptive algo-
rithms. Rate-Monotonic (RM) assigns static priorities to tasks based on their
periods and a task with shorter period gets a higher priority. Earliest-Deadline-
First (EDF) assigns the priority dynamically: the earlier a task’s deadline, the
higher its priority. For both of these algorithms, schedulability analysis has to
be done in advance. At the cost of some run-time overhead, EDF has a better
schedulability.

In addition to EDF, a task’s laxity (given by the amount of time one can wait
and still meet its deadline) can also be used as its dynamic priority. This leads
to the Least-Laxity-First (LLF) algorithm [112].

In Liu and Layland’s original paper, there are several restrictions. The RM
policy has been extended in a variety of ways to deal with shared resources,
aperiodic tasks, tasks with different importance levels, and mode changes. A
good overview can be found in [146]. In [85], an exact rate monotonic test
is provided, which is both sufficient and necessary. The restriction that the
tasks share a critical instant is released in [6]. Arbitrary start times are al-
lowed instead. [5] presents an efficient optimal priority assignment for tasks
with offsets. Leung and Whitehead [88] suggest Deadline Monotonic to relax
the deadline restriction: task priorities are assigned in inverse order to task
deadlines other than task periods in RM.

Chetto et. al. introduce precedence constraints to EDF [26]. They transform
the original task set Γ to task set Γ∗, modifying the release times and deadlines
so that each task can not start before its predecessors and can not preempt
their successors.

Handling Aperiodic Tasks

To provide service for aperiodic or sporadic tasks, several bandwidth preserv-
ing algorithms have been proposed [160, 86, 137, 161, 162]. The two common
approaches for servicing soft deadline aperiodic requests, namely background
processing and polling, do not give satisfactory result, but they provide a base
for considering aperiodic tasks. The Priority Exchange (PE) and Deferrable
Server (DS) algorithms [86] preserve some execution time allocated for aperi-
odic service and yield improved response times.

Unlike DS and PE, which periodically replenish their server execution time
to full capacity, the Sporadic Server (SS) only replenishes its server execution
time after some or all of the execution time is consumed by aperiodic task
execution. By this, SS can provide almost the same schedulability as PE but at

2.1. SCHEDULING THEORY 23

an implementation complexity comparable to DS. Also the run-time overhead
is lower because SS needs not to replenish the server capacity periodically as
long as it is not consumed. For hard sporadic tasks, each is allocated a high
priority server individually. SS can provide a guarantee as long as the aperiodic
task’s deadline is equal to or greater than its minimum inter-arrival time. If
that is not true, other priority assignment and schedulability analysis coming
from deadline monotonic should be used for the sporadic servers.

Different from PE, DS and SS, the Slack Stealing algorithm [84] does not create
a periodic server for aperiodic task service. It rather creates a passive task
(Slack Stealer), which attempts to make time for servicing aperiodic tasks
by “stealing” all the processing time it can from the periodic tasks without
causing their deadlines to be missed. At first, it computes a slack function for
the periodic tasks. The slack function is updated by the real execution time
of periodic tasks and addition of aperiodic tasks. Based on this function, it is
easy to find the slack time piece for pending aperiodic tasks. This algorithm
can be extended to guarantee firm aperiodic tasks [137]. Also it is natural to
include resource reclaiming to make use of the idle time which is required by the
worst case but is not used. The Dynamic Slack Stealer suggested in [35] tries
to circumvent the disadvantage of the conventional Slack Stealer by computing
the slack at run-time. This makes the algorithm applicable to a more general
class of scheduling problems.

Similar to the fixed priority servers above, Spuri [161, 162] proposes several soft
aperiodic task servers, namely Dynamic Priority Exchange, Total Bandwidth
Server, Earliest Deadline Latest Server and Improved Priority Exchange Server.
These servers can provide service to the soft aperiodic tasks in deadline-based
scheduling algorithm (EDF). Buttazzo’s algorithm [20] is an improvement to
the original Total Bandwidth Server. All the above dynamic servers are for
soft aperiodic tasks. When it comes to hard aperiodic tasks, the concepts of
optimality and performance are quite different.

Priority Inversion due to Resource Sharing

The problem of resource sharing is tackled with a Priority Inheritance Protocol
in [145, 8]. A resource is any software structure that can be used by a process to
advance its execution. To control accesses to a shared resource, some synchro-
nization primitives should be used. However, the direct application of them
may cause uncontrolled priority inversion. To solve such a problem, Priority
Inheritance Protocols (PIP) are used in fixed-priority scheduling: when a job
J blocks one or more higher priority jobs, its critical section is executed at the
highest priority level of all the jobs it blocks; after exiting its critical section,
job J returns to its original priority level. Still, the basic priority inheritance

24 CHAPTER 2. RELATED WORK

protocol has the following two problems: deadlock and chained blocking.

The Priority Ceiling Protocol (PCP) [145] can prevent the formation of dead-
lock and chained blocking. The Stack Resource Policy (SRP) [8] extends PCP
in three essential points:

1. It allows the use of multiunit resources.

2. It supports dynamic priority scheduling.

3. It allows the sharing of runtime stack-based resources.

Whereas under the PCP a task is blocked at the time it makes its first resource
request, under the SRP a task is blocked at the time it attempts to preempt.
This early blocking slightly reduces concurrency but saves unnecessary context
switches, simplifies the implementation of the protocol, and allows the sharing
of runtime stack resources.

2.1.3 Dynamic Scheduling

Dynamic Planning-Based Scheduling

This kind of schedulers performs feasibility checks dynamically. A task is guar-
anteed by constructing a plan for task execution whereby all guaranteed tasks
meet their timing and resource constraints. In a distributed system, when a
task arrives at a site, the scheduler at that site attempts to guarantee that the
task will complete execution before its deadline, on that site. If the attempt
fails, the scheduling components on individual sites cooperate to determine
which other site in the system has sufficient resource surplus to guarantee the
task. If all fail, the task will be rejected by this system, leading usually to an
“exception” to be issued.

In [136], an algorithm is described to guarantee nonpreemptable tasks arriving
at a site given their arrival time, deadline or period, worst case computation
time, and resource requirements.

Dynamic algorithms that do not a priori know the arrival times of tasks cannot
guarantee optimal performance [38]. An algorithm is considered better than
another if for some task sets the former can find a feasible scheduling while the
latter can not.

With regard to cooperation between processing elements, several schemes have
been reported in the literature [16, 61] and they differ in the way a site treats
a task that cannot be guaranteed locally.

The variance in the tasks’ execution times compared to their WCET may result
in some tasks completing earlier than expected by the scheduler. Reclaiming

2.1. SCHEDULING THEORY 25

unused time to improve the schedulability of dynamically arriving tasks is the
motivation behind the work in [148]. This is a form of slack stealing at run
time.

Chetto [25] investigates the maximal idle time available for sporadic tasks for
a processor with a set of hard periodic tasks. He turns to Earliest Deadline
algorithm, defining EDS (earliest deadline as soon as possible) and EDL (ear-
liest deadline as late as possible). Like As Soon As Possible and As Late As
Possible, EDS and EDL give a bound to the available idle time in a super pe-
riod. This bound gives the criteria for sporadic acceptance and is implemented
by the algorithm in that paper.

Schwan’s dynamic preemptive algorithm has its root in EDF [142]. By using
two separate lists, slot list (SL) for the scheduled time slot and earliest deadline
first list (EL) for tasks, Schwan provides an efficient dynamic algorithm for
periodic and sporadic tasks with arbitrary arrival time, start time and deadline.
When a new task comes, the slot list is checked to find out the earliest time
to complete that task. If that time is greater than the task deadline, it is
unschedulable and rejected. Otherwise, the SL and EL will be updated to
reflect the new decision.

Dynamic Best Effort Scheduling

Best effort scheduling is the approach used by many real-time systems deployed
today. In such a systems, a priority value is computed for each task based on
the task’s characteristics and the system schedules tasks according to their
priorities. Confidence in the system is gained via extensive simulations, in
conjunction with recoding the tasks and priority adjustment.

Often used real-time scheduling algorithms, such as, EDF and LLF work well
as long as no overloads occur. They degrade extremely under overload. The
best effort approach proposed in [93] tries to minimize this degradation. Many
priority-driven preemptive scheduling and other methods are tested with this
approach.

The biggest disadvantage of dynamic best effort algorithms lies in their lack
of predictability and their suboptimality. For most real-world circumstances,
optimal dynamic algorithms do not exist though. However, it is useful to
quantify the worst case behavior of the dynamic algorithms. [10] analyzes such
bounds for the problem of preemptively scheduling sporadic task requests in
both uniprocessor and multiprocessor environments. It is proven that no on-line
algorithm can exceed an upper bound compared to a unrealizable clairvoyant
algorithm, in sense of schedulability.

26 CHAPTER 2. RELATED WORK

Resource Allocation and Assignment

Resource allocation and assignment problem is discussed a lot in the multipro-
cessing community or a multiprocessor context [165] since any inappropriate
operation can then cause a system deadlock. Sometimes, this problem is also
considered as a communication and memory access problem, because the com-
munication channel and memory are both resources too.

In section 2.1.2, we discuss the priority inversion problem due to the resource
sharing. The solution to that is to add a priority inheritance protocol to prevent
the low priority tasks from getting the resources.

Hegazy et al [55] consider an application model where timeliness requirements
are expressed using benefit functions. They propose adaptation functions to
describe anticipated application workload during future time intervals. Two
heuristic algorithms are proposed to compute resource allocations in polynomial
time. The objective is to maximize aggregate application benefit and minimize
aggregate missed deadline ratio. A proportional shared resource allocation
algorithm is proposed in [164] for realizing real-time performance in time-shared
operating systems. Processes are assigned a weight which determines a share
(percentage) of the resource they are to receive. Gertphol et al [47] introduce a
novel performance metric to capture the effectiveness of a resource allocation.
A MILP (mixed integer linear programming) based approach is developed to
determine a resource allocation that has the highest metric value.

Other Scheduling Approaches

In [187], with only partial knowledge of the environment, a new dynamic
scheduling method is proposed, which minimizes the maximal response time of
the system. Therefore, it suits only for soft RT at most.

Communications between tasks are also considered in some papers. [121] dis-
cusses the bus allocation problem for distributed embedded systems. Four
approaches are considered for scheduling of messages. They differ in the way
the messages are allocated to the communication channel (either statically or
dynamically) and whether they are split or not into packets for transmission.
This is further extended in [123, 122]. For both tasks and communications, a
time-table based static scheduling is used for the periodic case and a priority
based scheduling is used for the sporadic case. In [87], a high-throughput com-
munication network is considered, in which multiple time-division-multiplexed
data streams are transferred over several parallel physical channels. A method
is presented to guarantee the throughput for hard-real-time streams. Recently,
many research works are done on Network-on-Chips [14, 185], but most of them
assume a random traffic.

2.2. LOW-POWER AND COST CONSIDERATIONS 27

2.1.4 Summary

A key mission of the operating system is to manage the various resources avail-
able to it (main-memory space, I/O devices, processors) and to schedule their
usage by the various active processes. Any resource allocation and scheduling
policy must consider three factors: fairness, differential responsiveness and ef-
ficiency. Of course, when the system has hard RT constraints, time constraints
always have the highest priority. For soft RT systems, timing is very crucial
also to avoid deadline misses as much as possible.

A standard Operating System like UNIX uses a paradigm based on the combi-
nation of design-time and run-time scheduling: for some urgent IO, preemptive
priority based scheduling is used; for normal processes, round-robin and time
slicing are used [163]. The objective is to give high performance, fast response
and a certain level of fairness.

Almost all modern RTOSs provide a strict priority-based preemptive scheduling
mechanism in their kernel (e.g., Virtuoso, VxWorks and pSOS). The priority
of each task is either fixed at design time or changed dynamically, but it is the
responsibility of the user to assign the priorities, i.e., the user is supposed to
implement his own scheduler on top of that kernel.

In our context, we need an OS with the following features:

1. It must be a RTOS to guarantee fast and deterministic response.

2. It provides a priority-based scheduling mechanism as described earlier to
allow us to implement our scheduler. The number of priority levels should
be high enough to allow each (sub)task to be assigned a different level.
So a few dozen levels should be present at least.

3. It should support heterogeneous and multiprocessor platforms.

Also, we expect a good development framework to be provided for that OS. We
have compared several available RTOSs and the result can be found in [168].
One of the main candidates is Virtuoso [172], on which our one demonstrator
is based on [181] (see Section 6.1).

2.2 Low-Power and Cost Considerations

It has long been realized that we can reduce the system energy consumption by
selectively shutting off or slowing down functional components which are idle
or under utilized. This observation entails the Dynamic Power Management
(DPM) and Dynamic Voltage Scaling (DVS) approaches. [13] and [68] give

28 CHAPTER 2. RELATED WORK

good surveys on the design methodology and tools of low power system design
and synthesis. Good tutorials about the physics behind it can be found in
[23, 22]. The key equations governing power and performance are summarized
in [113].

2.2.1 Dynamic Power Management

Whenever a system is in the idle state, DPM either shuts it down completely
or swaps it into some sleep state to save energy. Advanced Power Management
API provides a way to implement it. Since the state swapping between the
normal and low-power states requires extra time and energy, it can increase
the system response time undesirablely. The key issues of DPM are to decide
whether to switch to a power saving state and to which one if yes. DPM makes
decisions based on the activity history and its prediction to the future. How it
does the latter distinguishes a DPM algorithm from another.

[12] and [11] give a good overview on DPM. The research groups of Prof. Benini
at Bologna and Prof. De Micheli at Stanford have been very active in this field
and many papers are published [27, 28, 97, 95, 94]. In [96], the authors apply the
scheduling and DPM on device drivers and integrate it into RedHat Linux6.2
OS. Simunic et al [155] give an example to integrate DPM and DVS.

In [158], a power control (PC) method is added with the DPM approach to
obtain further energy savings when the system is active. Different from former
time-out, predictive or stochastic models, two new approaches are proposed to
better model the system behavior for general user request distributions [156].
These approaches are event-driven and give optimal results verified by mea-
surements.

2.2.2 Dynamic Voltage Scheduling

When the cost is system power or energy consumption, decreasing the supply
voltage is lucrative to a low power design for CMOS digital circuits, because for
current technologies and Vdd levels, the energy consumption of CMOS digital
circuits is approximately proportional to the square of the supply voltage (for
power it is cubic), though it will almost linearly slow down the cycle speed as
well.

Traditionally, the CPU works at a fixed supply voltage, no matter whether
the work load is high or low. Actually, when the work load is low, the fast
speed of the CPU is unnecessary and can be traded for a lower energy/power
consumption by reducing the supply voltage. Many papers have been published
on this method and a good overview can be found in [129, 68].

2.2. LOW-POWER AND COST CONSIDERATIONS 29

Scheduling real-time systems with DVS has been studied extensively in various
flavors, such as uniprocessor or multiprocessor, static or dynamic, etc.

Uniprocessor

Several papers were presented a few years before DVS was getting popular.
Weiser [171] suggests a practical algorithm, PAST, to integrate DVS into a task
scheduler by slicing the time into pieces and monitoring the past histogram.
Simulation is done on some dumped real-life trace data. Govil [50] extends this
work by developing several other algorithms, to better predict the work load
of the current time slice. No deadline is taken into account in either work.

Yao et al [184] propose an O(n log2 n) off-line optimal algorithm for single
processor variable voltage scaling, minimum-energy scheduling. Only convex
power functions can be handled. Two on-line heuristics were proposed as well:
AVR (average rate) and Optimal Available. The former just computes the
average rate for each task and accumulates them together for each time unit to
find the speed. Then it schedules the tasks with EDF. The latter recomputes
an optimal schedule for the problem instance consisting of the newly arrived
job and the remaining portions of all other available jobs after each arrival.
The effectiveness of AVR is studied in the rest of this paper. This work is the
basis for later off-line DVS scheduling.

Off-line scheduling algorithms for non-preemptive hard real-time tasks are dis-
cussed in [57, 66]. In [60, 66, 114], more practical variable voltage proces-
sor models are used, assuming that processor voltage cannot change instanta-
neously or continuously, which makes the problem much harder to solve. A
heuristic approach is described in [60], and a linear programming formulation
is introduced in [66]. Yao, Demers and Shenker [184] have provided an opti-
mal preemptive off-line real-time scheduling algorithm for a set of independent
tasks with arbitrary arrival times and deadlines on a variable speed processor.
This is extended in [111] to include switch overhead and discrete voltage levels.
[76] extends the work to consider non-uniform load.

In [66], a discrete supply voltage is assumed and an ILP (integer linear pro-
gramming) model is used for off-line scheduling. Some theorems presented in
this paper look interesting:

• If a processor can use only a small number of discrete voltages, the volt-
age scheduling with at most two voltages minimizes energy consumption
under any time constraints.

• Two voltages which minimize energy consumption under a time constraint
are immediate neighbors to the ideal voltage.

30 CHAPTER 2. RELATED WORK

Shin et al [152] add a simple extension to a normal fixed priority scheduler to
allow either to slow down the processor, when there is only one eligible running
task and its required execution time is less than its allowable time frame, or to
shut down the processor, when it is detected that there is no task eligible for
execution until the next arrival of a task. Then in [153], Shin et al extend it by
adding a 2-phase voltage scaling. An off-line algorithm gets the basic voltage
for a set of tasks scheduled with priority based scheduler, while the on-line
algorithm refines the off-line decision: slow it down when there is only one task
in the queue or shut it down when none is present in the queue. The on-line
scaling can partly make use of the slack time. Kim et al [72] extend this work
by adding a slack estimation heuristic.

Quan and Hu propose an off-line algorithm for fixed-priority real-time task set
with arbitrary release time and deadline [129]. Two algorithms are given. The
first one takes O(N2) time (N is the number of jobs) to find the minimum
constant speed needed to complete each job, since constant voltage tends to
result in a lower power consumption. The second algorithm, with O(N3) time
complexity, is built above the first one and it gives two results: the minimum
constant voltage (or speed) needed to complete a set of jobs and the voltage
schedule. [130] continues the previous work. A theoretical limit in terms of
energy saving is established. Two algorithms for deriving the optimal voltage
schedule are provided. The second one is built above the first while it further
reduces the computation cost.

Two on-line scheduling algorithms are given in [114, 115] when the processor
voltage is not assumed continuously variable. The static voltage scheduling
assumes that a task set is statically order-scheduled in advance (EDF, LDF...).
Then a static voltage scheduler uses an ILP like approach to find the voltage
for each task. At run time, two dynamic voltage schedulers are proposed: one
assumes it knows the arrival times and deadlines in advance while the other
does not. [115] is also a good tutorial on DVS.

Recently, several stochastical algorithms are proposed [159, 51]. In [159],
Slacked EDF algorithm is proposed for an independent arbitrary task set. It is
stochastically optimal and it tries to minimize the maximal lateness (therefore,
not for hard RT) and energy consumption by DVS. An upper bound on the
processor energy savings is also derived. Optimal RT scheduling of periodic
tasks is given. [51] takes into account task variation, length and power demand
with a statistical model. Then it schedules the “heavier” tasks later to benefit
from the slacks possibly available from the previous tasks.

Chandrakasan[21] compares several energy saving tactics concerned DVS: con-
tinuously variable supply voltage, workload averaging, quantized supply voltage
and parallelism. The latter three tactics or their combination can get as good
a result as the first one. Pering [117] has set up a benchmark to evaluate sev-

2.2. LOW-POWER AND COST CONSIDERATIONS 31

eral OS based DVS algorithm. The two interval-prediction heuristic algorithms
are found not good enough compared to the optimal solution. More thread or
workload information other than rough estimation is needed for a better result.
Grunwald et al [52] also evaluate several on-line clock scaling algorithms, which
are based on the CPU utilization information and not yet on the application
information, with an experimental pocket computer. Their conclusion is that
currently proposed algorithms consistently fail to achieve their goal of saving
power within the limit of not changing the interactive behavior of the user
applications.

Intra-Task DVS Above we have discussed the slack time that comes from
low processor utilization or execution time variation from the WCET. The
former can be handled by static DVS, while the latter is partly solved by on-
line DVS. Since these on-line DVS algorithms re-evaluate the working voltage
at the boundary of tasks, we call them “inter-task” DVS. To further exploit
the possibility of DVS, some researchers suggest to look inside the task and
do DVS at a granularity smaller than task. We call this kind of algorithms
“intra-task” DVS.

In MPEG decoding, the variance in execution time on frame basis can be
very large. Simunic et al propose a stochastic model to predict the execution
times for streaming multimedia applications on a frame-by-frame basis [155].
The prediction algorithm developed is then used as a part of a power control
strategy that merges DVS and DPM.

A combination of hierarchical Finite State Machines and Synchronous Data
Flow (SDF) actors is used in [82] to model the system. It schedules at the SDF
actor level. For each data frame, a Runtime Execution Path Identification
step is inserted to find out the actual execution path (similar to our scenario
concept in section 3.3). When one actor finishes, the scheduler is recalled to
make use of the slack time, which increases the runtime overhead a lot (some
transformation such as presented in [36] may be used to improve it).

Lee and Sakurai [81] also consider the run-time DVS to fully utilize the slack
time. They partition a task into several pieces, called time-slots, and then
dynamically control the clock frequency and the supply voltage on “time-slot
by time-slot” basis, depending on the feedback from the software execution.

In [7], the compiler generates some checkpoints at compile time. These check-
points identify places in the code where the processor speed and voltage should
be re-calculated. Checkpoints also carry user-defined time constraints. An
available power profile, changing over time, is also included. It can handle
the variation-slack-time. In [151, 170], the variation of the execution time to
WCET due to the branch selection and varying loop iteration number is ana-
lyzed and utilized, with the help of some static timing analysis tool. At compile

32 CHAPTER 2. RELATED WORK

time, the path dependent analysis results are stored. At run time, whenever a
branch or loop causes the execution time variation, the speed is reset.

Multiprocessor

Though not as many as the single processor case, recently quite a few papers
are published for multiprocessor DVS.

In [141], first a genetic GA (genetic algorithm) based algorithm is used to
obtain the mapping and scheduling of a task graph. Then an off-line heuristic
is applied to find the voltage, taking into account the power profile difference of
each task. Similarly, [98] applies a GA based algorithm to find a valid mapping
and scheduling. Then the tasks are swapped and shifted to explore the power
profile or to provide a better DVS option.

In [99], for a multiprocessor and multiple link platform with a given task and
communication mapping, a two-phase scheduling method is proposed. The
static scheduling is based on the slack time list scheduling. A critical path
analysis and task execution order refinement (rather inefficient) method is used
to find the off-line voltage scheduling for a set of periodic real-time tasks. The
run-time scheduling is similar to resource reclaiming and slack stealing, which
can make use of the variation from the worst case execution time and provide
the best-effort service to aperiodic tasks.

In [186], an EDF based multiprocessor scheduling and assignment heuristic is
given, which is shown to be better than the normal EDF (though it can guar-
antee neither the feasibility nor the optimality). After this step, an Integer
Linear Programming model is used to find the voltage scaling accurately or ap-
proximately by simply rounding the result from a Linear Programming solver.
The result is claimed within 97% accuracy. Experiments based on TGFF are
given to show the effectiveness of the proposed work.

Liu et al [92] use dynamic programming to solve the combined problem of par-
titioning, communication speed selection and processor voltage scaling. They
use data of the XScale and LXT-1000 processors (both from Intel). Experi-
ments are done with an automatic target recognition algorithm on a pipelined
homogeneous multiprocessor model.

Almost all the above DVS approaches fix the mapping and ordering (even the
voltage setting in some cases) of tasks ,found at design time. The on-line
part, if it exists, is only responsible for refining the operating voltage. This is
completely different from our approach, which allows dynamic task mapping,
ordering and voltage selection.

2.2. LOW-POWER AND COST CONSIDERATIONS 33

Other Approaches in DVS

[29] proposes that contents providers should supply the information of the exe-
cution time variations in addition to the content itself so that the RT scheduler
can use it instead of the WCET to estimate the workload accurately. It con-
siders the frame-based, soft real-time applications. A generic computation cost
model is used so that the same content specific information can be used for
different processors. A similar approach can be found in [124], where the appli-
cation informs the OS of its future workload to accurately schedule the voltage.

Im et al [65] propose to add a buffer to fully utilize the slack time. The
goal is to determine the minimum buffer size needed to achieve the maximum
energy saving. They exploit the slack time fully by buffering multiple input
data or output results so that there is always at least one runnable task on
the processor. It is intended for soft real-time applications. A fixed-priority
algorithm is used to set the order first, then the tasks are checked one by one to
utilize the slack time left before. The novel issue is the buffer size estimation.
A similar example is given in [104]. A tradeoff between the buffer size and the
latency is investigated. On- and off- line algorithms are developed to minimize
the energy when the buffer size is limited and each application has a deadline
constraint.

In [67], the processor is divided into several synchronous domains linked with
asynchronous connections. This approach allows to apply DVS separately on
each synchronous domain. Similar works can be found in [144, 143].

In [62], DVS is used with a stochastically guaranteed completion ratio. Key
assumptions include that the deadline is always less than the sum of WCET
and the probability of Best Case Execution Time is much bigger than WCET.

DVS is even used for communication connections [147]. By applying a history-
based DVS algorithm to a voltage/frequency variable data link, the authors
claimed a 3.2x average power saving at a low latency and throughput cost. The
DVS algorithm part is synthesized in hardware and tested in a 2D 8x8 network,
where random traffic is generated. This approach looks quite interesting and
the result is quite promising for really long lines where the converter overhead
is negligible.

Work at UCLA in Group of Prof. Potkonjak [57] presents an off-line
scheduling algorithm for non-preemptive hard real-time tasks. Two schedule
phases are iterated several times to find the order and the voltage: the first
phase finds the schedule and the second phase finds the voltage. Each itera-
tion of the two phases generates different solutions since the objective functions
used in the first phase to guide the search strategy are randomized by a random
offset. In [60], more general variable voltage processor models are used, assum-

34 CHAPTER 2. RELATED WORK

ing that processor voltage cannot change instantaneously or continuously. It
is based on EDF. Global design flow and system monitoring (including cache)
are included. [59] presents an on-line algorithm which considers aperiodic (not
known a priori) and periodic tasks together. An acceptance test is performed
first for every aperiodic task. [58] puts a nonpreemptive scheduling heuristic
into the frame of synthesizing a complete system, e.g., selection of processor
core, determination of instruction and data cache size.

At UCLA several techniques have been developed to also handle QoS issues.
In [126], the task scheduling to meet QoS constraints is performed for fixed
voltages. Later papers [128, 127] have addressed how to determine the voltage
and the schedule while minimizing energy within QoS constraints [128] or to
determine the required system resources (including varying voltages) to meet
QoS constraints [127]. These techniques however consider only independent
tasks.

2.2.3 Battery Life Related

Generally speaking, all the low-power methods can prolong the battery life.
Here we focus on researches where the battery life profile is taken into account
explicitly.

In [100], the scheduler is a combination of RM and EDF and the tradeoff
between the battery life and the service quality is considered. The scheduler
prefers the more critical and less energy consuming tasks by combining these
considerations into priority setting. It can not really save energy, though it can
prolong the battery life.

A very interesting battery model is given by Rakhmatov et al in [132].

2.2.4 Physical Implementation of DVS

For low-power digital circuit design, please refer to [23, 22]. In [31, 49], some
efficient DC-DC converters are described. It’s the kernel device to implement
DVS.

In [19], a real implementation of a DVS processor is presented. The system
consists of a DC-DC switching regulator, an ARM V4 microprocessor with a
16-KB cache, a bank of 64-KB SRAM ICs, and an I/O interface IC. The four
custom chips are fabricated in a standard 0.6-um 3-metal CMOS process. The
system can dynamically vary the supply voltage from 1.2 to 3.8 V in less than
70us. This provide a throughput range of 6-85 MIPS (million instructions per
second) with an energy consumption of 0.54-5.6 mW/MIP. The efficiency of
the DC-DC converter ranges rom 90% at high voltage to 80% at low voltage.

2.2. LOW-POWER AND COST CONSIDERATIONS 35

[118] describes the software implementation, including both applications and
the underlying operating system. A simple thread based EDF DVS algorithm
is used. Experimental results and scheduling overhead are given. This provides
a good example of the underlying process technology and circuit assumptions
for DPM and DVS.

2.2.5 Other Approaches

In [1] a speed-setting policy is applied based on a system model that correlates
clock speed with best case, average case, and worst case sustainable frame rates,
accounting for data dependencies in multimedia streams. It claims that energy
can be saved by only frequency scaling, even at a constant supply voltage,
because for a fast CPU many cycles are wasted to wait for the slow external
hardware (e.g., off-chip memory).

Kadayif et al use the SimplePower simulator to profile the energy consumption
[70, 71]. They assume a homogeneous multiprocessor platform and try all the
possible number of processors for each loop nest. After the profiling stage, an
ILP based optimization is triggered to find the real number of processors used
for each loop, then corresponding processors are activated and deactivated at
run-time, though the decision is done at compile time. Some overheads, e.g.
re-synchronization, are included.

Lee et al [83] have recently proposed a hot-swapping extension to the Rate
Monotonic scheduling. They use several implementations, each with different
power and execution time pairs (not Pareto optimal though), and one of them
is selected at run-time. In that sense it partly resembles our operating point
selection. At run-time, for each swap request (received or generated separately),
the scheduler checks the feasibility of swapping and makes the swap on-the-fly
when possible.

[75] assumes a multiprocessor architecture, each of which has different perfor-
mance/energy tradeoffs but shares the same instruction set (different versions
of Alpha processor in this paper). The exact processor selected for the execu-
tion of a task is decided at run time, either at time intervals or task boundaries,
aiming at reducing energy or power-delay product. A very low overhead for the
core switching is reported. [56] also considers this kind of activity migration
(hopping between duplicated units), but to reduce the power density and the
temperature.

Observing that the OS routines have a rather low instruction level parallelism,
the authors of [89] suggest to tune down the processor parallelism (e.g. from
8-issue to 1-issue) for these routines to save energy.

36 CHAPTER 2. RELATED WORK

Work at Princeton in group of Prof. Jha All the works at Princeton up
till very recently have focussed on fixed voltages. COSYN [34] is a heuristic-
based constructive co-synthesis tool. It takes periodic acyclic task graphs and
a Processing Element library as input, then generates a low-cost heterogeneous
distributed embedded-system architecture, meeting real-time constraints. For
scheduling, it employs a combination of preemptive and nonpreemptive static,
list scheduling philosophy based method. With some changes in task cluster-
ing and cluster allocation, it can take low power into consideration in a limited
way. The other works coming from the same research group include MOCSYN
[41], CORDS [39], MOGAC [40] and COHRA [32, 33]. In MOCSYN and MO-
GAC, a multiobjective, genetic algorithm based co-synthesis framework is used
to give cost-performance trade-off. MOCSYN uses a preemptive static critical
path heuristic scheduling algorithm, while MOGAC applies a nonpreemptive
slack-based list scheduling algorithm. The costs can be chip area, power, etc.,
or a combination of them. Hard real-time constraints are considered in the
co-synthesis approach. CORDS integrates the reconfigurable FPGA into the
co-synthesis approach and it uses a preemptive static critical path scheduling
algorithm with dynamic task reordering based on FPGA reconfiguration time.
In the hierarchical co-synthesis approach, COHRA, a combination of preemp-
tive and non-preemptive static scheduling is employed. Recently, the DVS
technique is also integrated into their co-synthesis work [98, 99].

Our methodology also aims to reduce the cost or power of a system, but it is
different from the above works mainly in several issues. Firstly, it is separated
into the design time and the run time phases. The design time phase is to
provide as broad design space as possible, while the run time phase is to allow
enough flexibility in the system at a low overhead. Secondly, we apply the
concept of Pareto-optimal set [116], where every solution is better than any
other one in at least one direction (e.g. either it consumes less energy or it
runs faster). This allows us to consider many different cost functions, not only
the power, in a generic way. Thirdly, all the task mapping and ordering (and
voltage selection if applicable) are done dynamically at the run time phase.
Forthly, we introduce the concept of scenario to catch the dynamic feature of
the applications.

2.3 Platform and Simulation Framework

In this section we only list some work interesting to us. It is not our intention
to be complete here. They are only elements or tools reused from external
sources that supply information or support for our methodology and do not
constitute our main focus.

Energy and performance of platform components are in many cases co-estimated.

2.3. PLATFORM AND SIMULATION FRAMEWORK 37

The execution of a system is first profiled with a simulator or other high-level
profiler. The collected data is then used to both estimate the energy consump-
tion and the performance. In accordance with this approach, we have merged
the overview of the related work on performance and energy estimation of SoC
or SiP (system in package) components. We will explicitly indicate which envi-
ronments focus on performance only. In section 2.3.2, specific timing analysis
methods applicable at the thread node level are discussed.

2.3.1 System-level Performance and Energy Models

In the context of system-synthesis, both industrial and academic co-design tools
allow to simulate multiple processors (see [46] for an overview). The main
focus of these tools is the generation of the communication interface between
the components. They provide a scalable, modular and flexible environment to
co-simulate the hardware/software of heterogeneous target architectures. This
allows to verify the functional correctness of the generated interface and to
some extent estimate the performance of the system.

Several researchers have added power estimation modules to these co-simulation
frameworks. In [45], the authors describe energy metrics which help the de-
signer to steer hardware/software partitioning. The energy consumption of the
hardware modules is estimated based on register-transfer level description of
the ASIC. Software energy consumption is estimated at the instruction-level
(see [167] or [18]). The authors of [90] and [48] propose an energy/performance
estimation framework for a single CPU with a cache memory hierarchy. In
this framework the energy and performance of each component is individually
evaluated. Only a limited interaction between the components can be taken
into account. In [157], a methodology is presented for cycle-accurate simula-
tion of energy dissipation. The methodology combines performance and en-
ergy estimation models of each system component into a single cycle-accurate
instruction-level simulator. Since the interaction between the components af-
fects directly both the performance and energy consumption, their integrated
approach is accurate within 5% although crude (but fast) energy models of the
components are used. A similar approach is followed in [77]. The energy con-
sumption of the embedded software is estimated using an enhanced instruction
set simulator. The power consumption of the remaining hardware is simulated
with either a gate-level or register-transfer level simulators that reports power
consumption on demand at the cycle-level accuracy. These tools are used to
improve the performance of the embedded software or to tune the hardware
parameters (e.g. cache size, communication parameter trade-offs). Compared
to these authors, we focus on a design with heterogeneous multiprocessor target
architectures.

38 CHAPTER 2. RELATED WORK

In the context of scientific computing community, multiprocessor simulators are
used for a long time. They allow to perform architecture studies in a reason-
able time. Rsim [63] is developed to study the influence of superscalar process-
ing nodes on the performance of shared-memory multiprocessor architectures.
Another example is SimOS[139]. This simulator is used to characterize new
architectural designs and to steer the development of operating systems and to
evaluate the performance of applications. Although embedded platform-based
design involves similar problems as the ones tackled in the scientific computing
domain, the design trade-offs are different. In the embedded system domain en-
ergy consumption plays an important role besides the performance of a system.
This axis adds extra complexity to the design of a system.

In section 4.2 of [154], the author describes how a cycle-accurate energy con-
sumption simulator is implemented. They model each component typical in
embedded systems with equivalent capacitance for each of its power states.
Energy spent per cycle is a function of equivalent capacitance, current voltage
and frequency. The equivalent capacitance allows them to easily scale energy
consumed for each component as frequency and voltage of operation change.
On each cycle of execution, the ARMulator sends out the information about
the state of the processor (“cycle type”) and its address and data busses. Based
on these data, the energy consumption of that cycle is computed. Our current
simulator takes a similar approach.

Almost all the frameworks are either cycle-accurate, which is accurate but slow,
or analytical, which is fast but not very accurate. Recently, [69] proposes a mid-
dle path between the previous two approaches. They use probabilistic models
for components, customized with application behavior. The models are at a
higher level of abstraction which results in faster simulation, at the expense of
slightly reduced accuracy. The methodology can handle multiprocessor systems
containing processors and application-specific hardware.

2.3.2 Timing Analysis and Simulation

Timing analysis results are needed for the thread node characterization in the
TCM approach. It is related to performance estimation in the sense that they
both intend to estimate the execution time, but timing analysis tends to do
that formally at a higher level, with some computation model, e.g., Petri Net.
A good review on timing analysis can be found in [64]. Here we only give a
short discussion on the most related works.

In embedded systems, the timing consumption is state and input data depen-
dent. Formal analysis of such dependencies leads to intervals rather than a
single value. [173] presents an approach to analyze the process behavior using
intervals, exploiting program segments with single paths and taking the execu-

2.3. PLATFORM AND SIMULATION FRAMEWORK 39

tion context into account. This is a potential way to perform our thread node
level timing analysis, especially when combined with the ideas of [69] .

A two-step approach is proposed in [79]. The first step applies a per-task data
analysis to get a table of useful cache block, which is believed in this paper to be
the cache-related preemption delay additional to WCET. The second step uses
a linear programming method to get the estimation of the whole task set. The
method is explained and experimented for the direct-mapped instruction cache.
Though extensions to set-associative and data cache are given, the effectiveness
and accuracy are doubtful.

Richter et al [138] propose a timing analysis frame for the heterogeneous plat-
form. It is based on static analysis and somehow conservative because it has
to use WCET estimation. A similar approach can be found in [103].

40 CHAPTER 2. RELATED WORK

Chapter 3

Model and Methodology

The key to understanding the reasons behind TCM is to realize that the only
way to handle very dynamic applications in a resource efficient way is to post-
pone some design decisions till the run-time stage. Fixing everything at design
time, according to the worst case estimation of the system, will result in either
an over-dimensioned power hungry platform or a poorly performing applica-
tion most of the time. But the minimal amount of effort should be done at
the run time to minimize the overhead. Hence defining the best position of the
interface is a key issue.

3.1 Overview of the TCM Flow

As initial step, designers specify an embedded application at a gray-box abstrac-
tion level, which is a Multi-Task Graph (MTG) model combined with high-level
features of a Control-Data Flow (CDFG) Graph model [166]. The specifica-
tion represents concurrency, timing constraints, and interaction at either an
abstract or a more detailed level, depending on what is required to perform
good exploration decisions later. Yet, to keep the complexity at an acceptable
level, it does not contain all implementation details. Within this specification,
the application is represented as a set of thread frames. Non-determinism be-
haviors can occur only at the boundary of thread frames. Each thread frame is
a piece of code performing a specific function, which is partitioned into thread
nodes, the basic scheduling units.

The purpose of the methodology is to determine a cost-optimal (e.g. energy
consumption, deadline miss rate) constraint-driven (e.g. throughput or latency)
scheduling of various thread nodes on a set of homogeneous or heterogeneous

41

42 CHAPTER 3. MODEL AND METHODOLOGY

processors. Different kind of processors normally execute the same thread node
at different speeds and with different energy consumptions. These differences
make it possible to explore the energy-performance trade-off at the system
level.

The methodology is depicted in Figure 3.1, and it comprises several steps:

Gray-box model extraction as explained previously.

Concurrency improvement Transformations on the gray-box model are ap-
plied to improve the concurrency and to increase the opportunities for
optimization. This step is out of scope of this thesis.

Scenario characterization To avoid worst-case implementations of the ap-
plication, the dynamic behavior of each thread frame is broken into sev-
eral design-time analyzable scenarios.

Design-time scheduling is applied to every scenario of each thread frame.
Different from traditional design-time scheduling, it does not generate
a single solution but a Pareto curve consisting of different scheduling
energy-performance trade-off points.

Run-time scheduling An application-specific run-time scheduler is integrated
in the application on top of an RTOS. At run time, this scheduler iden-
tifies for each active thread frame the running scenario. On each cor-
responding Pareto curve, it selects one trade-off point to minimize the
global energy consumption of the application and to satisfy the global
timing constraints by finding a reasonable execution time distribution
among all the active scenarios. This selection is done by applying a fast
heuristic described in Chapter 4 and Chapter 5. This allows to reduce
the performance overhead of the run-time scheduler as much as possible,
without relevant penalty on the result quality.

In fact, this flow can be further extended to include the task level data access
and memory management [106], which is however not the focus of this thesis.
In the sections below, we will discuss the gray-box model, the scenario selec-
tion, the design-time and the run-time scheduling, especially with simple solid
examples. Readers are referred to [174] for further discussion on the modeling
part.

3.2 The Gray-box model

Traditionally, in the real-time community, researchers tend to represent an ap-
plication as task graphs and look tasks as black boxes. The internal operations

3.2. THE GRAY-BOX MODEL 43

Initial
gray-box
model

Improved
gray-box
model

C++ specification
of the application

Gray-box model
extraction

Concurrency
improvement

Scenario
characterization

Improved C++ specification
of the application
with RT scheduler

Scheduling

Platform Design-time scheduling
of all scenarios

E
n
e
r
g
y

Scen1 Scen2 Scen3

E
n
e
r
g
y

E
n
e
r
g
y

Exe. time Exe. time Exe. time

Platform

Timing
constraints

Run-time scheduling
of active scenarios

Processor1

Time

Processor2

Processor3

Figure 3.1: Overview of our TCM design flow.

44 CHAPTER 3. MODEL AND METHODOLOGY

and data structures of tasks are not exposed to the designers [166, 145, 135, 4].
This abstraction is at too high a level and it does not allow to expose some
important information (e.g. the number of iterations of a loop) inside the tasks.
In contrast, in the embedded system community, many papers focus on white-
box task descriptions [15, 9], which are at the operation level (e.g. CDFG).
This level is too low and has too much unnecessary details, which are typically
unavailable at the early design stage. Instead, we use a gray-box model which
is an abstraction level between the above white- and black-box models [125].

The gray-box model distinguishes the important details from the unimportant
ones. However, what details are considered as important depends on the user
and the application. The name “gray-box” denotes that the model is neither
a black view nor a white view of the application. That is, some low-level and
important details are visible while the irrelevant details are hidden in a black
box. The gray-box model is by itself an important research topic and it is
beyond the scope of this thesis to fully cover it. For an up-to-date description
of the gray-box model, please refer to [149].

We use gray-box model to capture the concurrency, control flow, synchroniza-
tion and data communication applications explicitly. Basically, applications
are constructed from Thread Nodes (TN) and Thread Frames (TF).

Definition 3.1 (Thread Node) A thread node T is a maximal set of con-
nected operations with a deterministic execution latency Λ(T) = [δ(T), ∆(T)].
δ(T) and ∆(T) are the minimum and maximum execution time of the thread
node T respectively. Associated with thread node T is the CDFG representation
of this set of operations.

Definition 3.2 (Thread Frame) A thread frame is a maximally sized piece of
functionality capable of running without intervention from the run-time sched-
uler and having a single thread of control. A thread frame has exactly one
entry control port but it may have multiple exit control ports. A thread frame
can have any number of data ports associated to it.

Applications are represented with a two-layer model. The TN is the atomic
scheduling unit of our design-time scheduler. TNs represent the intra task de-
tail and function like the conventional white-box model. Every thread node has
its associated CDFG representation, but this representation is used only when
we profile the behavior of the TN. When scheduling is considered, either at the
design-time or at the run-time stage, it is abstracted as a node with its mini-
mum/maximum execution time. Therefore, it has an abstraction level higher
than the node of conventional white-box models. Sometimes the primitive TNs
are too fine grained. In that case, they can be further clustered into scheduling
thread nodes, which are more coarse grained and are atomic to the design time

3.2. THE GRAY-BOX MODEL 45

scheduler [174]. In later parts of this thesis, unless mentioned explicitly, we use
TN to alternate the scheduling TN. The TN abstraction reduces the overhead
of the design-time scheduler because it now does not look into the node and
schedule at the operation level.

TFs are composed of TNs. By definition, the non-deterministic behaviors can
only happen at the boundaries of TFs. Basically this means that inside a
thread frame no dynamic task creation, event handling, resource contention or
synchronization exists. All these things can only happen at the borders of TFs.
To find the detail how these behaviors are modeled and depicted, please refer
to [150].

For every TF, the design-time scheduler is called to find the Pareto curve of
that TF and store the result in a predefined format. At run time, every TF
is considered as an atomic scheduling unit by the run-time scheduler 1. This
approach dramatically reduces the number of objects the run-time scheduler
has to handle. Hence, the run-time scheduling overhead is reduced. Besides
reducing the run-time overhead, making the thread frame maximally sized
also increases the design space explorable to the design-time scheduler, which
normally leads to better system scheduling.

Consider the piece of simple C-like pseudo code below.

int in[], out1[], out2[], out[]; /* shared variables */

main() {

create_task(tf_1); /* thread frame 1 */

create_task(tf_2); /* thread frame 2 */

readin_buf(&in); /* read in data to be processed */

/* the following two lines can be executed in parallel */

start_task(tf_1);

start_task(tf_2);

}

/* thread frame 1, video decoding */

tf_1() {

float c1, c2; /* local variables */

tn_1(in, &c1, &c2); /* thread node 1 */

/* due to data dependency, tn_2 and tn_3 can only start */

1There is ongoing research in IMEC to break that boundary partially to further optimize
the scheduling result.

46 CHAPTER 3. MODEL AND METHODOLOGY

/* after tn_1 finishes. however, tn_2 and tn_3 can be */

/* executed in parallel. */

tn_2(in, c1, out1); /* thread node 2 */

tn_3(in, c2, out2); /* thread node 3 */

}

/* thread frame 2, audio decoding */

tf_2() {

int buf[]; /* local variable */

/* tn_A and tn_B can be executed only sequentially */

/* due to data dependency. */

tn_A(in, buf); /* thread node A */

tn_B(buf, out); /* thread node B */

}

This is an example of an application comprising of two TFs, each of which has
3 and 2 TNs respectively. The gray-box model is depicted in Figure 3.2.

start

thread
frame 1

thread
frame 2

tn_1

tn_2 tn_3

tn_A

tn_B

Figure 3.2: The gray-box model of a simple example.

Note the two levels of parallelism: the parallelism between TNs inside a single
TF (tn 2 and tn 3 of thread frame 1) and the parallelism between TFs (thread
frame 1 and thread frame 2). The former is handled by the design-time sched-
uler, whereas the latter is managed by the run-time scheduler. The run-time

3.3. SCENARIO SELECTION 47

scheduler is also responsible for managing the non-determinism caused by event
handling, task creation, resource contention and synchronization. The behav-
ior of an application many times is also determined by the input data. This
can be handled by the scenario concept and is explained in the next section.

3.3 Scenario Selection

In many cases, dynamic behaviors will occur inside a TF because of input data
dependencies. For example, in the MPEG-2 video decoder, depending on the
image frame type, a different decoding engine will be used. Three types of
frames exist: I (intra) frame, P (predicted) frame and B (bidirectional pre-
dicted) frame. I frames are simply coded as still images, not using any past
or future information and can be decoded independently; P frames are con-
structed from the most recently reconstructed I or P frames; B frames are
predicted from the closest two I or P frames, one in the past and one in the
future. The computation powers needed for decoding these frames are signifi-
cantly different, and quite different TNs have to be executed correspondingly.
Also, some data-dependent loop boundary (while loop) can exist inside a TF. A
TN can be executed, for example, from 10 to 100 times depending on the input
data. Obviously, one single Pareto curve is not enough to represent the behav-
iors of these widely different situations, or at least it is not cost-efficient to do
that (because of the worst case assumption). To capture the data-dependent
dynamic behavior inside a TF, we introduce the scenario concept.

In our case, a scenario represents a combination of TF behaviors (for different
data-dependent parameter sets) that have a closely resembling Pareto curve.
It is extracted also based on the profiling data indicating which combinations
occur very frequently. It does not make much sense to provide separate sce-
narios (and Pareto curves) for a set of situations that seldom occur, even if
they have widely spread Pareto curves. The simple worst case consideration
is enough. Due to the rather low chance of occurrence, further refinement will
not have big impact on the system performance. It should be clear that by
representing an entire set of behaviors with a single Pareto curve we lose some
of our optimization potential. This single Pareto curve should indeed reflect
the worst-case behavior of the set it represents to ensure real-time constraints.
Nevertheless, the clustering of the entire set into one scenario gives nice (con-
trolled) trade-offs between optimization potential and the overhead to store
and scan the scenarios at run-time.

An example is given in Figure 3.3, where we have five TNs, 1 to 5, two condi-
tional bypasses (1 to 3 and 3 to 5) and a loop over node 4. Only 4 execution
sequences are possible at the TN level,

48 CHAPTER 3. MODEL AND METHODOLOGY

1

2

3

4

5

Figure 3.3: A simple example of the scenario.

1. 1, 3, 5;

2. 1, 2, 3, 5;

3. 1, 3, 4...4, 5;

4. 1, 2, 3, 4...4, 5.

If TN 2 needs much less computation power and consumes much less energy
compared to TN 1, 3 and 5, the first two execution sequences can be merged
and represented by a single Pareto curve. Actually, it is the Pareto curve of
sequence 2. If the loop boundary over TN 4 has a big variation, for instance,
from 1 to 30, and the execution time of TN 4 is comparable to the other nodes,
it will be better to split the third execution sequence into 2 (or even more)
scenarios according to its loop range (e.g, 1-10 and 11-30). Another possibility
would be that since TN 2 is executed in sequence 4, the loop range over TN 4
would be affected and be limited to, e.g., 2-6. Therefore no split is necessary
in that case. At the end we obtain only 4 scenarios: one for the first two
execution sequences combined, two for the third sequence split and one for the
last sequence. Note that the number of potentially different data-dependent
parameter combinations would be 30 ∗ 2 + 2 = 62. Clearly such an explosion is

3.4. TWO-PHASE SCHEDULING 49

avoided by the way we generate scenarios, and each of them rather accurately
depicts a representative pattern of the application.

For each scenario, we apply our design-time scheduler to get a separate Pareto
curve, which represents the trade-off characteristics of that TF much more
precisely. During the actual execution, the run-time scheduler will check the
input data, select the active scenario based on the actual input data, and
schedule it with all the other TFs. Apart from these intra-TF scenarios, we
can also define inter-TF scenarios which predict the behavior of cluster of TFs.
Similarly, some typical execution patterns of these clusters can be found and
predicted for representative input streams.

3.4 Two-phase scheduling

The design of concurrent real-time embedded systems, and embedded softwares
in particular, is a difficult problem, which is hard to perform manually due to
the complex consumer-producer relationships, the presence of various timing
constraints, the non-determinism in the specification and the sometimes tight
interaction with the underlying hardware. Our TCM provides a novel and
effective cost-oriented approach to the concurrent task scheduling problem, by
carefully distinguishing what can be modeled and optimized at design time
from what can only (or better) be done at run time.

As shown in section 3.2, we model applications with TNs and TFs. The design-
time scheduling is applied on the thread nodes inside each thread frame at
compile time, including a processor assignment decision of the TNs in the
case of multiple processing elements. On different types of processors of a
heterogeneous platform, the same TN will be executed at different speeds and
with different costs, i.e., energy consumption in this thesis. These differences
provide the possibility of exploring the cost-performance tradeoff at the system
level.

The idea of our two phase scheduling can be illustrated with the simple example
in Figure 3.2. Here we assume a dual-processor platform. For the five thread

processor 0 processor 1
1 2 3 A B 1 2 3 A B

exec. time (us) 10 30 15 20 32 20 60 30 40 64
energy (uJ) 30 86 41 75 90 8 22 10 19 23

Table 3.1: The execution time and energy consumption of TNs in Figure 3.2

nodes in that example, we assume they have different execution times and

50 CHAPTER 3. MODEL AND METHODOLOGY

energy consumptions on different processors. The numbers are summarized in
Table 3.1.

Now for every TF, the design-time scheduler will try different mapping and
ordering of the TNs of that TF, satisfying all the dependency and time con-
straints. An example is given for TF 1 in Figure 3.4, where the execution time
and energy consumption are shown also. When TN 2 and TN 3 are assigned

proc 0

proc 1

1 2 3

ex.=55, en.=157

(a)

proc 0

proc 1

1 2

3

ex.=40, en.=126

(c)

proc 0

proc 1 1 3

ex.=110, en.=40

(b)

2

proc 0

proc 1 3

ex.=100, en.=62

(d)

2

1

proc 0

proc 1

2 3

ex.=65, en.=135

(e)

1

proc 0

proc 1

ex.=70, en.=93

(f)

2

1 3

proc 0

proc 1

2

ex.=50, en.=104

(g)

1 3

proc 0

proc 1

ex.=80, en.=71

(h)

2

3

1

Figure 3.4: The design time scheduling of thread frame 1.

to the same processor (e.g. (d)), it makes no difference which one has to be
executed first. For simplicity, we show only one possible order. However, ex-
tra constraints may exist and they will further fix the order. The design-time
scheduling result can be represented as a Pareto curve and it is shown in Fig-
ure 3.5. From that figure, we can see that not all scheduling decisions are
beneficial. For instance, (a) and (e) neither run faster nor consume less energy

3.4. TWO-PHASE SCHEDULING 51

(a)

(e)

(c)

(g)

(f)

(h)
(d)

(b)

Figure 3.5: The Pareto curve of thread frame 1. Scheduling (a) and (e) are not
on the curve.

compared with all the other schedulings. We say they are dominated or they
are not on the boundary of a Pareto curve. Similar results can be obtained for
thread frame 2 (see Figure 3.6 and Figure 3.7).

proc 0

proc 1

A B

ex.=52, en.=165

(a)

proc 0

proc 1

ex.=72, en.=109

(c)

proc 0

proc 1 A

ex.=104, en.=42

(b)

B

proc 0

proc 1

ex.=84, en.=97

(d)

B

A

A

B

Figure 3.6: The design time scheduling of thread frame 2.

Here we illustrate only a simple example. With the increase of the number
of TNs/processors, complex inter-TN dependencies and time constraints, it
becomes impractical to do the design-time scheduling by hand. Therefore an
automatic tool, known as the TCM design-time scheduler, is needed [174].

Only at run time the system level information will be complete. Given the

52 CHAPTER 3. MODEL AND METHODOLOGY

(a)

(c)

(d)

(b)

Figure 3.7: The Pareto curve of thread frame 2.

number of TFs, the Pareto curve of each TF and system constraints such as the
global deadline, the run-time scheduler will select a mapping and/or ordering
decision pre-computed by the design-time scheduler for every active TF and
combine them together to get the system scheduling. For the above example,
when the global deadline is 125us, the run-time scheduler will select design-
time scheduling (g) for TF 1 and (c) for TF 2, combine them together and find
the system scheduling with the minimum energy consumption. The main goal
of this thesis is to solve the problem of how to find the global scheduling and
how to support it with implementable run-time systems on real platforms.

Given a thread frame, our design-time scheduler will try to explore different
assignment and ordering possibility, and generate a Pareto-optimal set [116],
where every point is better than any other one in at least one way, i.e., either
it consumes less energy or it executes faster. This Pareto-optimal set is usually
represented by a Pareto curve. Since the design-time scheduling is done at
compile time, computation efforts can be paid as much as necessary, provided
that it can give a better scheduling result and can reduce the computation ef-
forts of run-time scheduling in the later stage. However, if very data-dependent
behavior is present inside the TF, the design-time exploration still has to as-
sume worst-case conditions to guarantee hard real-time requirements. In order
to improve the match with the real behavior even more, we have introduced
the scenario concept as already discussed in section 3.3.

At run time, the run-time scheduler will then work at the granularity of thread
frames. Whenever new TFs are initiated, the run-time scheduler will try to
schedule them to satisfy their time constraints with an aim to minimize the
system energy consumption. The details inside a thread frame, like the execu-

3.4. TWO-PHASE SCHEDULING 53

start

thread
frame 1

thread
frame 2

tn_1

tn_2 tn_3

tn_A

tn_B

0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

execution time (us)

en
er

gy
 c

on
su

m
pt

io
n

(u
J)

0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

execution time (us)

en
er

gy
 c

on
su

m
pt

io
n

(u
J)

proc 0

proc 1

1 2

3

proc 0

proc 1

2

1 3

proc 0

proc 1

proc 0

proc 1

B

A

A

B

run-time
scheduler

proc 0

proc 1

2

1 3

B

A

Figure 3.8: When the global deadline is 125us, the run-time scheduler selects
design-time scheduling (g) for TF 1 and (c) for TF 2, combines them together
and finds the system scheduling.

tion time or data dependency of each thread node, can remain invisible to the
run-time scheduler and this reduces its complexity significantly. Only essential
features of the points on the Pareto curve will be passed to the run-time sched-
uler by the design-time scheduling results, and will be used to find a reasonable
cycle budget distribution for all the running thread frames.

In summary, we separate the task scheduling into two phases, namely design-
time and run-time scheduling, for three reasons. Firstly, it gives more run time
flexibility to the whole system. We can indeed accommodate more unforeseen
demands for more execution time by any TF, by “stealing” time from other
TFs, based on their available Pareto sets. Secondly, we can minimize energy
for a given timing constraint that usually spans several TFs by selecting the
right combination of points. Finally, it minimizes the run time computation
complexity, which reduces the energy and time penalty so that faster reaction
time can be achieved (up to 1ms). This is needed for modern multimedia and
wireless communication applications. The design-time scheduler works at the

54 CHAPTER 3. MODEL AND METHODOLOGY

gray-box level but still sees quite a lot information from the global specification.
The end result hides all the unnecessary details and the run-time scheduler can
operate mostly on the granularity of TFs, not single TNs. Only when a large
amount of slack is available between the TNs, a run-time local refinement on
the TF schedule points can result in further improvements.

This methodology can in principle be applied in many different contexts as
long as Pareto-curve like tradeoffs exist. For example, in the context of DVS,
the cost can be the energy consumption. Thus our methodology results in
an energy-efficient system. When the cost is energy and the horizontal axis
is replaced by the quality of service (QoS), the problem becomes the energy
minimization with a guaranteed QoS, as e.g. formulated in [128]. Also the
deadline miss rate can be optimized in soft hard real-time applications (e.g.
video decoding) for a given platform and a set of deadlines (see section 7.4 for
experiment results).

Chapter 4

Fast and Scalable

Run-Time Task Scheduling

As explained in Chapter 3, a run-time scheduler can efficiently explore the
design space and make system level tradeoff according to the dynamic context.
For that sake, a fast and effective heuristic is needed. In this chapter, we first
motivate the problem with a simple example, then the problem is formulated
and a greedy heuristic is described. After that, experimental results on both
randomly generated and real-life applications are explained.

4.1 Motivational Example

The advantages of our novel approach can be shown by an example generated
by Task Graph For Free (TGFF) [42]. Figure 4.1 shows an application which
requires the cooperation of five task graphs, denoted from 0 to 4. The details
of those task graphs can be found in Table 4.1, in which the first row shows

TG0 TG1 TG2 TG3 TG4
Number of nodes 8 47 12 29 21
Number of arcs 9 59 13 35 26
Exec. time(us) 284 1258 371 826 661

En. consum.(uJ) 222 1211 331 814 671

Table 4.1: Task graphs generated by TGFF.

the number of nodes in each task graph, the second row is the number of arcs,

55

56CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

t0_1

t0_2

t0_3

t1_1

t1_2

t1_3

t1_4

t2_1

t2_2

t2_3

t3_1

t3_2

t3_3

t3_4

t3_5

t3_6

t4_1

t4_2

t4_3

t4_5

t4_4

t4_6

Task

Graph 0
Task

Graph 1

Task

Graph 2

Task

Graph 4

Task

Graph 3

Figure 4.1: The task graph of the motivational example.

4.1. MOTIVATIONAL EXAMPLE 57

and the third and fourth rows give the execution time and energy consumption
respectively when the task graph is executed completely on a 3.0V processor.
We assume the application is frame based, i.e. every time frame the application
will be executed once to process the current input data. This is a reasonable
abstraction for the multimedia processing or communication application do-
main (e.g. mp3, video decoding or the physical layer of a wireless modem).
Depending on the content of the input data, not all 5 task graphs of the appli-
cation will be needed for that specific time frame. In our motivational example
we simply assume that every time frame each task graph is selected randomly.
The last assumption is that the application has to finish before a deadline,
which is normally the period of the time frame.

In this example, we investigate the single-processor task scheduling. To handle
the worst case, which happens when all 5 task graphs are selected, the CPU
has to be powerful enough to complete the application before the deadline. On
the other hand, most of the time only a few of the 5 task graphs are active and
hence DVS can be applied to save energy. The state of the art on-line inter-
task DVS algorithm [152], which is called so because the voltage scheduling
is done dynamically at the boundary of task graphs, monitors the application
execution. Whenever it sees some slack time available, it scales the working
voltage accordingly. For instance, with a deadline of 3.4ms, a CPU working
at 3.0V is just good enough to finish all the task graphs in time. Every task
graph will take exactly the execution time and energy given in Table 4.1. Now
suppose at the end of task graph 0, the inter-task DVS scheduler notices that
task graph 3 will not be active for the current time frame. Therefore a slack
of 0.826ms is available. We still have to run task graph 1, 2 and 4, which will
normally take 2.29 ms and consume 2213uJ, while the time available is 3.4ms
subtracted by 0.284ms, i.e. 3.12ms. Using the conventional equation [58], even
if the inter-task DVS reduces the CPU working voltage by 2.29/3.12=0.73, the
application can still be completed in time, but the energy consumption is now
2213*0.73*0.73=1179uJ, i.e. almost half of the original value.

The inter-task DVS technique can save much energy, but it assumes a con-
tinuous variable voltage. That requires special circuit design and processing
technology and a DC-DC converter which is not very energy efficient(80-95%,
depending on the output voltage [31]). Besides, inter-task DVS cannot see the
internal contents of the task graph, and is not able to explore the slack time
coming from that.

Our scheduler behaves quite differently from the inter-task DVS. Firstly, we
use only a limited set of discrete voltages (two for the first example, namely
3.0V and 1.0V). Secondly, the internal content of the task graph is divided
into scheduling thread nodes and scheduled at that granularity. Thirdly, we
schedule it in two phases, as already explained in Chapter 3. At design time,

58CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

Execution time(uS)

E
ne

rg
y

co
ns

um
pt

io
n(

nJ
)

Figure 4.2: The Pareto curve of task graph 2.

the task graph is scheduled at the scheduling node granularity, i.e. each node
is assigned to one of the discrete voltages and ordered in time, generating a set
of Pareto points with different execution time and energy consumption. The
Pareto curve we extract for task graph 2 is given as an example in Figure 4.2.
At run time, knowing the active (scenario-based) task graphs of the current
time frame and their Pareto curves, the run-time scheduler is able to select one
Pareto point (which represents a specific voltage assignment and ordering for
that task graph) from each active curve and can combine them together to get
the complete scheduling, taking into account the time constraints.

Our approach benefits from the fact that we know which task graph is selected
for the current time frame when we schedule the application. This is realistic
for real-life multi-media applications by inserting extra code to extract the
necessary information (i.e. the scenario that is currently present), at the start
of each frame (see e.g. [181]). If it is impossible to do so, a guess should
be made at the start of the task and then the run-time scheduling decision
should be re-evaluated as soon as that information becomes available during
the task execution. But even then, our run-time heuristic is fast enough to
accommodate that situation. This is also one of the major reasons why the
heuristic should be fast (up to 1ms), and preferably also scalable in terms of
speed versus solution quality.

4.2. RUN-TIME SCHEDULING ALGORITHM 59

We have simulated the scheduling of the above problem for 1000 frames. In each
frame the task graphs are selected randomly and the time constraint is always
3.4ms. The results are shown in Table 4.2, in which our two-Vdd scheduler

no DVS inter. PC 2 PC 3 optimal

en. cons.(uJ) 1620 1068 956 823 705

en. saving 0 34% 41% 49% 56%

Table 4.2: Energy consumption of the motivation example with different sched-
ulers.

is denoted as PC 2. For comparison, we also list the energy number for an
“optimal” scheduler which uses a continuous optimal DVS strategy. This is
not achievable in practice because it requires the full knowledge of the future
run-time behavior of the tasks. In this simple example, compared to the state-
of-the-art inter-task DVS schedulers, our approach saves 7% more energy, which
is quite good taking into account we have only two discrete voltages instead of a
continuously changeable one. When a third voltage, 1.5V, is available (PC 3),
15% more energy can be saved compared to the inter-task case. This result
also comes close (within 7%) to the theoretical (unachievable) optimal value,
which assume a priori full knowledge of the system and non-loss continuously
variable voltage.

These results show clearly the potential advantage of our method. In section 4.2
we will present a run-time scheduling heuristic on how to achieve it in practice.

4.2 Run-time Scheduling Algorithm

Section 4.1 shows the effectiveness of our two-phase, Pareto-curve-based schedul-
ing methodology. The key step of this method is the run-time scheduler. Given
a set of Pareto curves and a deadline, the run-time scheduler has to select one
and only one point from each active Pareto curve and combine them into the
final scheduling. It has to be done fast because that will allow a more frequent
(re)evaluation of the run-time scheduling decision or the handling of more tasks
in a single shot. Both will result in still more energy saving. The quality of the
solution is also important because it affects the amount of energy saved.

In this section, we will first formulate the problem in a formal mathematical
model. Then a greedy heuristic is proposed for our specific problem.

60CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

4.2.1 Application Model

We model applications as a set of interacting thread frames, which have to
be mapped to a multi/uni-processor platform. We mainly consider the frame-
based systems, which issue a set of TFs when the input data is ready (normally
it is the start of a time frame or period)1. Most typically, there is an end-to-
end deadline by which all thread frames should finish. Examples of this kind of
system include MPEG2 decoding and MP3 decoding. Therefore, we have the
following application model.

• At the beginning of every time frame, there are k TFs waiting to be
executed, each represented by a Pareo curve.

• Each thread frame i has Nij Pareto points, i.e., Nij different ways of
mapping and ordering on the given platform and they are represented
with their execution time tij and energy consumption eij .

• At any moment, only one thread frame can be executed on the given
platform. In other words, that thread frame occupies the platform exclu-
sively2.

• There is a global deadline D before which all the thread frames have to
finish.

The run-time scheduling problem can be stated as picking a mapping/ordering
pattern for every active TF and minimizing the total system energy consump-
tion while meeting the global deadline.

In most situations, dependencies exist between thread frames (e.g. TF 2 can
only start after TF 1 and TF 4 finish). These dependencies can be handled
by assigning priority levels to thread frames and the priority levels can be
decided at design time. Hence the dependencies will not impact the scheduling
algorithm we present later, though they will require the final run-time system
to identify the thread frame priority levels and react appropriately.

4.2.2 Problem Formulation

For the application given above, we can formulate our run-time scheduling as
follows. Since k thread frames exist and each of them has Ni Pareto points, we
can introduce an integer variable xij to denote whether the jth Pareto point

1Aperiodic thread frame sequence is just a special case of this model, for which we have
only to consider one time frame.

2This constraint will be removed in Chapter 5

4.2. RUN-TIME SCHEDULING ALGORITHM 61

of TF i is selected (xij equals 1) or not (xij equals 0). For each thread frame,
one and just one Pareto point can be selected, which leads to:

Ni∑

j=1

xij = 1, i = 1, . . . , k

When a Pareto point i is selected for TF j, it means execution time tij . The
total system execution time can never exceed the global deadline D for real-
time systems. Therefore we have:

k∑

i=1

Ni∑

j=1

tijxij ≤ D

The goal of our run-time scheduler is to reduce the total system energy con-
sumption as much as possible. This can be represented as:

minimize : z =
k∑

i=1

Ni∑

j=1

eijxij

Putting the above equations together, we have a constrained minimization
problem.

minimize : z =
∑k

i=1

∑Ni

j=1
eijxij (4.1)

subject to
∑k

i=1

∑Ni

j=1
tijxij ≤ D, (4.2)

∑Ni

j=1
xij = 1, i = 1, . . . , k, (4.3)

xij is 0 or 1, i = 1, . . . , k, j = 1, . . . , Ni. (4.4)

The total number of Pareto points can be denoted by n, n =
∑k

i=1
Ni.

The minimization problem can be transformed into a different form [110]. Tak-
ing into account that each Pareto curve is an ordered set, we can substitute eij

with sij as
sij = (ei0 − eij), sij ≥ 0. (4.5)

Thus Eqn. 4.1 becomes a maximization problem:

maximize : z
′

=

k∑

i=1

Ni∑

j=1

sijxij (4.6)

With the same set of constraints, this is a classic Multiple Choice Knapsack
Problem (MCKP) and it is known as NP hard [107].

When of limited size, MCKP can be solved optimally in pseudo-polynomial time
through dynamic programming. For bigger instances, it is generally solved by
a dynamic programming (DP) algorithm constructed from the exact solution
of its linear relaxation, LMCKP, by replacing Eq. 4.4 with

0 ≤ xij ≤ 1, i = 1, . . . , k, j = 1, . . . , Ni. (4.7)

62CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

Several exact algorithms have been proposed to solve the reduced LMCKP
problem in O(n) time [107]. To evaluate the result of our algorithm, we use
the DP algorithm presented in [119]. However, the worst case computation
complexity of DP is still exponential, which is not acceptable as an on-line
algorithm for medium problem size. Another issue is that the computation
time of DP is nondeterministic, which is undesirable for real-time systems.

Several approximate algorithms exist for MCKP but all have limitations or are
not suitable for our problem. Current heuristics are designed for big problems,
which can not be solved easily by any accurate algorithm due to the problem’s
NP-hard feature. They rival each other in which can get a solution closer to the
optimal value or which can handle a bigger (or more difficult) problem. Exe-
cution time is only the second or the third concern to them, which makes them
unsuitable to work as an on-line algorithm. In addition, most of the heuristics
do not recognize that in our case, all points are already Pareto optimal and
ordered. That can save quite extra computation effort.

The goal of our heuristic is to find a good enough solution in as short as
possible time for a typical problem size. It is not our major interest to improve
the solution by 1% if it means 2 times longer execution time. Moreover, the
heuristic should be constructive, which improves the solution incrementally in
every iteration so that it can be interrupted if the time slot assigned to the
run-time scheduler expires. Then it returns its best solution at that moment.
This can guarantee a deterministic computation time of the heuristic.

4.2.3 Greedy Heuristic

We have developed a fast and effective greedy heuristic with the above consid-
erations in mind. Algorithm 1 consists of two stages, the initialization (line 2 to
16) and the iteration stage (line 18 to 41). Every point i of our Pareto curve m
is denoted by two basic parameters, tm,i and em,i, standing for the execution
time and energy consumption if that point is selected by the scheduler (the
corresponding concepts in MCKP are weight and profit). D is the deadline.
In the initialization stage, we compute the changes of t and e if we move to
the right (from point i to i + 1, see Figure 4.3) or to the left (from point i to
point i−1) and the corresponding slopes (line 5 to 12). Here a superscript “+”
means the rightward direction and “-” means the leftward direction. The initial
solution is found at line 13 and 14: a portion of the deadline(sm) is assigned
to a curve proportional to the execution time of its leftmost point. Therefore
it guarantees a valid initial solution can always be found for that curve. For
finding the initial solution we use an on-the-fly strategy. The difference be-
tween the time assigned to curve m and the actual execution time of its initial
solution will be accumulated in the variable slack and added to the available

4.2. RUN-TIME SCHEDULING ALGORITHM 63

i

i-1

i+1δem,i
+

δem,i
−

δt m,i
+

δt m,i
−

t

e
thread frame m

Figure 4.3: The Pareto curve of thread frame m.

time of the following curves.

After the initialization, we explore the chances of finer tuning the solution in
two steps, step1 and step2. step1 checks the possibility of moving the operating
point on one curve to the right and the operating point on another curve to
the left in pair. At line 19, all curves are sorted according to the slopes of
their current solutions, slope+ descendingly and slope− ascendingly. Then the
algorithm will try to find two curves m and n, which satisfy the time constraint
and reduce the energy consumption most, when the solution of m is changed
from i to i + 1 and the solution of n from j to j − 1 (Figure 4.4). When no
such kind of tuning is possible, the algorithm will enter the next step.

step2 does the final tuning by finding any curve m which can still satisfy the
time constraint if we move its current solution from i to i + 1. It is possible
to switch the order of these two steps. However, our experiments show the
current order is faster and generally leads to better solutions. Another option
is to move the operating point to the right as much as possible in step2. In
that case, if step2 is done before step1, this will cause the heuristic to converge
in fewer iterations but deteriorate the optimality of the final solution.

Assuming k curves and l points are present on each curve, the complexity of
the initialization step is O(k log l) because for every curve we have only to do
an ordered search (line 14). The complexity of the iterative stage is also very
low. In step1 every iteration takes maximally O(k2) operations, while in step2
O(k) operations. The heuristic ends when no improvement is possible, but we
can interrupt the iteration at any moment to finish the run-time scheduling

64CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

Algorithm 1 The greedy heuristic algorithm.

1: INITIALIZATION
2: step 0:
3: slack=0;
4: for all curve m do
5: for all point i on curve m do
6: δe+

m,i = em,i − em,i+1;

7: δe−m,i = em,i−1 − em,i;

8: δt+m,i = tm,i+1 − tm,i;

9: δt−m,i = tm,i − tm,i−1;

10: slope+

m,i = δe+

m,i/δt+m,i;

11: slope−m,i = δe−m,i/δt−m,i;
12: end for
13: sm = tm,0D/

∑k−1

l=0
tl,0;

14: search for maximal j with tm,j ≤ (sm + slack);
15: update slack;
16: end for
17: ITERATIVE IMPROVEMENT
18: step 1:
19: sort slope+ descendingly and slope− ascendingly;
20: for all curve m in slope+ do
21: for all curve n in slope− and m 6= n do
22: if slope+

m ≤ slope−n then
23: goto step 2;
24: end if
25: if δe+

m > δe−n andδt+m < δt−n + slack then
26: change solution of curve m from i to i + 1;
27: change solution of curve n from j to j − 1;
28: update slack;
29: goto step 1;
30: end if
31: end for
32: end for
33: step 2:
34: sort slope+ descendingly;
35: for all curve m in slope+ do
36: if δt+m < slack then
37: change solution of curve m from i to i + 1;
38: update slack;
39: goto step 2;
40: end if
41: end for

4.3. EXPERIMENTAL RESULTS 65

i

i+1
δem,i

+

δt m,i
+

t

e

j

j-1

δen,j
−

δt n,j
−

t

e
thread frame m thread frame n

Figure 4.4: Incremental improvement step 1, when the operating points change
from (i, j) to (i + 1, j − 1). δt+m,i < δt−n,j + slack and δe+

m,i > δe−n,j have to be
satisfied to get a valid and meaningful solution.

in a predefined time slot. In that case the algorithm just returns the best
available solution. This capability is very important for a real-time system
where bounded and deterministic service is always desirable. The performance
of our greedy heuristic is illustrated in Section 4.3.

4.3 Experimental Results

We have implemented the greedy algorithm in C and tested it with both ran-
domly generated and real-life applications. They are discussed separately in
the following sections.

4.3.1 Randomly Generated Test Cases

The first test set we have used is the task graphs generated by TGFF. For
each task graph, a Genetic Algorithm [183] is used to extract the Pareto curve,
on an architecture like the one we used in section 4.1. Finally the heuristic is
applied to find the on-line task scheduling within a given deadline. A dynamic
programming (DP) optimal algorithm [119] is used in this step to check the
speed and quality of our heuristic.

We have generated three task sets with TGFF, containing 5, 10, and 20 task
graphs respectively. For every task graph, we have extracted two Pareto curves,
one with 5 points and the other with 9 points. The former is just a subset of the
latter. The points are distributed almost uniformly, in the sense of execution

66CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

time, between the lowest and highest possible values. Different deadlines are
then tried on the same task set and the same Pareto curves and the results are
summarized in Table 4.3 and Table 4.4.

no. av. max. av. max. av. max. av. max.
of init. init. init. init.
cv. sp. up sp. up error error sp. up sp. up error error
5 14.9 24.0 1.2% 5.2% 44.0 58.7 4.1% 9.1%
10 8.8 13.2 1.0% 2.9% 42.9 53.3 6.8% 13.4%
20 3.9 7.3 1.0% 2.0% 24.0 50.2 4.5% 8.7%

Table 4.3: The performance of the greedy algorithm compared to DP, 5 points
per curve.

no. av. max. av. max. av. max. av. max.
of init. init. init. init.
cv. sp. up sp. up error error sp. up sp. up error error
5 15.4 24.9 0.6% 3.5% 46.0 65.1 3.4% 10.3%
10 8.4 14.5 0.8% 2.1% 34.5 55.6 4.1% 8.7%
20 4.3 7.7 0.9% 1.9% 26.2 43.4 3.5% 7.0%

Table 4.4: The performance of the greedy algorithm compared to DP, 9 points
per curve.

The performance of our heuristic can be evaluated in two ways: the execution
time and the quality of the result. Table 4.3 and Table 4.4 give the overview of
the result. In the tables, the first column is the number of curves; the second
column is the average speedup of the execution time of the greedy heuristic
against the DP solver; the third column is the maximum speedup; the fourth
column gives the average error between the heuristic and DP solution and the
fifth column is the maximum error. The next four columns are just the same
but for the initial solution given by step0 of Alg. 1.

The results show that our heuristic has an up to 15 times average speedup
against the optimal solver, while maintaining a very high solution quality (er-
ror within 1.2% on average). If the initial solution is considered, the average
speedup is up to 46 times while the solution error is up to 6.8%, on average.
This is quite acceptable for an on-line scheduling algorithm, because if the op-
timal solution means an energy reduction from 1000nJ to 500nJ, a 10% error
just means the energy is reduced to 550nJ, which is already a big improvement
compared to the original value, especially if we take into account the high speed
to find the initial solution.

4.3. EXPERIMENTAL RESULTS 67

For the on-line scheduling stage, the time spent on the scheduler itself will not
contribute to executing the application functionality. So it has to be minimized
or bounded, even though we can have a separate CPU to run the scheduler in
some architectures. Our heuristic provides the capability of improving the
initial solution iteratively until the time slot assigned to the scheduler depletes.
This is especially important for big problem sizes, when the scheduler could
not run to its end and still has to find a solution in a short time slot. Table 4.5
shows an example of the iterative improvement of our heuristic. This example

iter. # time (cycles) energy (nJ)
0 11554 39366
1 36909 39102
2 48201 38857
3 59389 38695
4 70700 38640
5 81939 38556
6 93502 38538
7 103381 38526
8 113225 38463
9 119312 38443

Table 4.5: The iterative improvement of the heuristic for a 20 curves, 9 points
case.

is for the 9 points per curve, 20 curves case because it is the worst case in our
experiment with respect to the execution time. The optimal result is 37836nJ
and it takes the DP 232k processor cycles to find it. With the heuristic, to
find the final solution 38443nJ, it takes 119k cycles, which may be too long.
However, the final solution is only 1.6% from the optimal one and we are usually
already satisfied with solutions which are not that good but can be found rather
fast. If we assume we have 50k (100k) cycles available for the scheduler, which
is 0.25ms (0.5ms) on a 200MHz processor, the result we can find is 38857nJ
(38538nJ) and it is only 2.7% (1.9%) away from the optimal solution. Even
the initial solution is acceptable in this case, which can be found in less than
12k cycles. Given the fact that the run-time scheduler is triggered by external
events (e.g. user related) at the frequency of tens of ms, this result is quite
good.

4.3.2 Real-Life Applications

We have also tried our heuristic on some real-life applications. One example
is the quality of service (QoS) adjustment algorithm of a 3D image rendering

68CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

17,53

14,32

6,211 6,171

17,53

14,65

9,487 9,469

0

2

4

6

8

10

12

14

16

18

20

no DVS inter-task DVS greedy heur. DP

e
n

e
rg

y
(J

)

fps=5 fps=10

Figure 4.5: The energy consumption of QoS adjustment algorithm for 1000
frames.

application which will be explained in section 6.1.1 in detail. Every time frame,
depending on the number of visible objects and which kind of objects they
are, the QoS controller will adjust the number of vertices assigned to each
object, in order to provide the best quality at a fixed computation power.
Figure 4.5 illustrates the energy consumption of QoS adjustment algorithm for
1000 frames, with a frame rate of 5fps (frame per second) or 10fps. From this
figure it is obvious that our run-time scheduler can achieve a very high energy
saving (65% for 5fps and 46% for 10fps). The inter-task DVS does not work
very well here because the number of task graphs and the execution time of
each task graph varies dramatically in this application. Having to assume the
worst case for the unscheduled task graphs, the inter-task DVS scheduler has a
limited chance to scale the voltage. Another observation is that the difference
between the greedy heuristic and the DP is very small. This is because, during
most of the frames, the heuristic can easily find the optimal solution due to the
limited problem size.

Another real-life application we have experimented on is the Visual Texture
Coding (VTC) decoder of the MPEG-4 standard. Similar to the QoS example,
it is frame based. However, unlike the varying number of objects in QoS, the
number of blocks to be decoded is fixed (3 in this experiment) for every frame,
though the workload of each block varies from frame to frame (see [101] for
further discussion). As shown in Figure 4.6, this example gives less space for
voltage scaling because of its relative high and less varying work load. This

4.4. CONCLUSION 69

14,39

11,97

10,55 10,5

14,39

12,37

10,89 10,89

0

2

4

6

8

10

12

14

16

no DVS inter-task DVS greedy heur. DP

e
n

e
rg

y
(J

)

fps=8 fps=10

Figure 4.6: The energy consumption of the VTC decoder for 1365 frames.

is mainly due to the sequential feature of the initial task graph3. In spite of
that, our heuristic still outperforms the inter-task DVS and provides an energy
saving of 27%. Again the results from the heuristic and DP are very close.

4.4 Conclusion

In this chapter we have modeled the Pareto-optimization-based run-time task
scheduling as the Multiple Choice Knapsack Problem and have proposed a
greedy heuristic for it. Results from randomly generated and real-life applica-
tions prove that our heuristic is fast (speedup of more than 10) and accurate
(suboptimality less than 5%). The incremental and scalable feature makes the
heuristic well suitable for our on-line task scheduling context.

3It can be removed after applying TCM transformation step.

70CHAPTER 4. FAST AND SCALABLE RUN-TIME TASK SCHEDULING

Chapter 5

Run-Time Algorithm for

Overlapping Task Schedules

With the semiconductor processing technology entering into the deep sub-
micron era, it is now possible to put multiple processors on a single chip and
it has been recognized that the heterogeneous multiprocessor is the most per-
formance and power efficient platform. How to schedule tasks at run time to
best benefit from such a platform is a novel problem in the scheduling research
community where homogeneous cases are the norm now. In this chapter, we
first illustrate the advantage that heterogeneous platforms can bring. Then we
model the run time task scheduling as a multi-mode project scheduling prob-
lem and a Tabu search based heuristic is proposed. Compared to the algorithm
in the previous chapter, the new heuristic allows several applications to share
the same multiprocessor platform simultaneously and thus normally results in
a better scheduling result.

5.1 Motivational Example

5.1.1 The Heterogeneous Platform

A heterogeneous multiprocessor platform comprises several types of processor,
on each of which the same TN can be executed at different speed with different
energy consumption. Due to its characteristics, a TN can be more efficiently
executed on one type of processor than the others. For instance, if it contains a
lot of instruction level parallelism, it makes sense to run it on a VLIW processor
because more than one operations can be issued per cycle. However, if it has

71

72CHAPTER 5. RUN-TIME ALGORITHM FOR OVERLAPPING TASK SCHEDULES

a lower level of parallelism (like a section of control dominated code), it will
not run much faster on a VLIW compared to a simple processor core such as
ARM, but it may consume much more energy. Conventionally this kind of
partitioning and mapping is performed at design time. In this chapter we will
show an approach to partly postpone that step so that the part of the decisions,
which is very dependent on the dynamic behavior, can be explored at run time.
Then much more relevant information is available about the dynamic system
context, so the quality of the decisions can be highly improved. Compared to
the inspector-executor method [43], our approach is still more effective because
of the thorough design time exploration in each task that still precedes the run
time phase.

The heterogeneous multiprocessor platform we use in this chapter as a repre-
sentative example comprises two ARM 940T cores and two TI 6701 DSPs. Ac-
cording to TI’s datasheet, the power consumptions of 6701 running at 167MHz
are 1.33W and 0.57W for the high activity and the low activity cases respec-
tively. Here high activity means all its 8 function units are in use, typically for
highly optimized data dominated TNs. When it is running at low activity, only
2 of its 8 function units are occupied. The ARM core has a much lower power
consumption, which is only 0.8mW/MHz, but also a much lower parallelism po-
tential. This gives a power consumption of 134mW at 167MHz. All the above
power numbers include the processor core and the attached local memory (used
as cache or fast internal memory) but exclude the power consumption on the
bus, the external memory or other peripherals. Taking into account that the
TI DSP keeps two function units busy even at low activity, we can assume it is
1.5 times faster than ARM in that situation. The last assumption we make is
about floating point operation. The TI 6701 is able to do floating point com-
putation, which is not supported by ARM but can be emulated in software.
Therefore, when TNs containing floating point computation are considered, we
assume TI has an extra 2-fold speedup.

Putting all the above discussion together, we have the execution time and
energy consumption in different situations in Table 5.1, where H (L) represents
high (low) activity TNs and I (F) stands for integral (floating point) code
sections. An interesting observation is, though in all the other cases the TI
DSP is faster but more power hungry, it consumes even less energy than the
ARM when highly optimized floating point computation is considered.

5.1.2 Design Space Exploration

Any TF can be separated into smaller TNs, implementing individual functions
such as image compressing or user interface handling, and the TF can be repre-
sented as a task graph. Every node on that graph is a TN and can be classified

5.1. MOTIVATIONAL EXAMPLE 73

flavor processor execution energy
type time(ms) (mJ)

L/I 6701 8 4.56
ARM 12 1.61

L/F 6701 4 2.28
ARM 12 1.61

H/I 6701 2 2.66
ARM 12 1.61

H/F 6701 1 1.33
ARM 12 1.61

Table 5.1: The execution time and energy consumption in different situations.

0

1

2

5

7

4

3
8

6 9

34
L/I

35
L/I

44
L/I 35

L/I

28
H/I

21
H/F

40
H/F

40
L/F

39
H/I

15
L/I

Figure 5.1: An example of the task graph.

as one of the four flavors we discussed previously. The directed arc indicates
the precedence relations among the nodes. Figure 5.1 gives an example of task
graphs. Besides the flavor of the node, the execution time on the ARM proces-
sor is also shown. Given such a task graph and a set of available processors,
how to map and order the nodes is a classic scheduling problem. Different
decisions can result in the tradeoff among the speed, the energy consumption
and the number of resources used, which is known as design space exploration.
For our example, Table 5.2 lists several possible solutions.

5.1.3 Run-Time Scheduling

Traditionally, design space exploration is fully done at design time. Whenever
a solution is selected, it is fixed and can never be changed. For example, if a
TF has been mapped to an implementation with 1 ARM and 1 TI, it is im-
possible to change to an implementation with 2 ARM and 2 TI at run time,
though this change may bring some extra benefit. Our approach is different in
that we also explore that design space at design time but we postpone the final
decision-making stage till run time to better tune the system to the changing

74CHAPTER 5. RUN-TIME ALGORITHM FOR OVERLAPPING TASK SCHEDULES

mapping # ARM # TI execution energy
choice time(ms) (mJ)

1 1 0 331 44.35
2 2 0 204 44.35
3 0 1 146 94.95
4 0 2 93 94.95
5 1 1 106 77.73
6 180 56.25
7 270 42.94
8 2 2 181 42.94

Table 5.2: The different mapping choices of the task graph on Figure 5.1.

requirements of the dynamic system context. As a very simple example, sup-
pose we have a time budget of 181ms to run the TF on Figure 5.1. To minimize
the energy consumption, it is best to select the mapping choice 8 (2 ARM, 2 TI)
from Table 5.2. At some unpredictable time, another TF instance pops up and
we are required to complete both of them in the same time budget. Then we
have to change to the mapping choice 6 and run them simultaneously (each
TF uses 1 ARM and 1 TI) to be most energy efficient within the real-time
constraint.

To maximize the flexibility, we use a hierarchical model to represent the system.
A system comprises several TFs and they are represented by a directed arc
graph (see Figure 5.2). Every TF has its internal structure and can be further
divided into TNs. A design space exploration step can be applied independently
to every type of TF to find different mapping choices, as we have discussed.
Due to the dynamic feature of the system, only at run time we are able to
know how many TFs present, what their types are and what their precedence
relations are. A deadline is also given by which all TFs have to finish. The
goal of the run-time scheduler is to select a mapping choice for every TF and
order them in time so that it can satisfy all the constraints and minimize the
energy. This is a combined scheduling and optimization problem.

We can certainly apply the heuristic presented in Chapter 4, which will be
referred as the sequential heuristic in this thesis, for the run time scheduling
problem. However, that heuristic assumes a sequential execution of all the
TFs. Whenever a TF is executing, it occupies the complete multiprocessor
platform exclusively and no other TFs can be executed at the same time. This
simplification is fine when the platform comprises only a few (typically 2 or
3) processors. It will not cause a serious problem because the parallelism in-
side a TF will keep the processors busy most of the time. However, when
more processors are added into the system, the chance that a processor is idle

5.2. RUN-TIME SCHEDULING HEURISTIC 75

t0_1

t0_2

t0_3

t1_1

t1_2

t1_3

t1_4

t2_1

t2_2

t2_3

t3_1

t3_2

t3_3

t3_4

t3_5

t3_6

t4_1

t4_2

t4_3

t4_5

t4_4

t4_6

Task

Graph 0
Task

Graph 1

Task

Graph 2

Task

Graph 4

Task

Graph 3

Figure 5.2: A system with 5 task graphs.

is increasing. To solve that problem, we propose a new run-time scheduling
heuristic, which allows parallel execution of several TFs. As depicted in Fig-
ure 5.3, the execution time of TF0 and TF1 are overlapped partly, and that
is why it is called the “overlapping” heuristic. The internal sub-tasks (thread
nodes) are not interleaved though, partly to limit the exploration space at run
time. There is ongoing research to reconsider that restriction [101].

For the system shown in Figure 5.2 and deadline 1200ms, our run-time sched-
uler will find a scheduling with energy consumption 541mJ (denoted as over-
lapping in Figure 5.3), while our reference case (sequential heuristic) consumes
701mJ energy. This clearly motivates our research focus.

5.2 Run-time Scheduling Heuristic

A problem related to our overlapping run-time scheduling is the multi-mode
resource constrained project scheduling problem (MRCPSP), which is notori-
ously hard to solve [74, 73]. However, MRCPSP tries to minimize the makespan

76CHAPTER 5. RUN-TIME ALGORITHM FOR OVERLAPPING TASK SCHEDULES

ARM1

TI1

TI2

ARM2

TF0

TF1

TF3

TF4

ARM1

TI1

TI2

ARM2

TF1 TF0 TF3 TF4

overlapping scheduling

sequential scheduling

TF2

TF2

execution time : 1189ms
energy consumption: 541mJ

execution time : 1192ms
energy consumption: 701mJ

Figure 5.3: Overlapping and sequential scheduling give different results for the
same task set and the platform.

5.2. RUN-TIME SCHEDULING HEURISTIC 77

(i.e., the completion time of the system)1, while we have a given deadline for
the system completion time and another objective to optimize. This makes
our problem even harder to solve since we have to satisfy both the resource
and the time constraints. For MRCPSP, several heuristics are proposed, but
most of them are based on genetic algorithm, simulated annealing or branch
and bound and are therefore not applicable as a run-time heuristic [54, 73].

Our problem is unique in several ways. Firstly, we consider a heterogeneous
platform. Secondly, every TF can be executed in different mapping choices,
each of which occupies different number/type of processors for a different period
of time, consuming certain amount of energy. Thirdly, precedence relations
exist among the TFs. Forthly, the run-time scheduler tries to minimize the
total system energy consumption while satisfying all the constraints. To our
best knowledge, this is the first work trying to solve that combined scheduling
and optimization problem.

We consider a system which consists of J TFs labeled j = 1, ..., J . Precedence
relations exist between some of the TFs. These precedence relations are given
by sets of immediate predecessors Pj indicating that an TF j may not be started
before all of its predecessors are completed. Each TF can be performed in one
of several different flavors of accomplishment (or mapping choices), each of
which requires a combination of different type and number of resources (ARM
and TI processors in our case). TF j may be executed in Mj different mapping
choices. Every mapping choice has the resource requirement, an execution
time tjm and energy consumption ejm. We have to select a mapping choice for
every TF, schedule the TFs with the given precedence relations and resources,
and meet an explicit deadline. The objective is to minimize the total energy
consumption.

In this chapter, we propose a Tabu Search based heuristic. Tabu Search is
essentially a local search algorithm [73]. That is, it evaluates all solutions of the
neighborhood and choose the one most potentially improving the solution. This
concept, however, bears the possibility of cycling, that is, one may always move
back to the same local optimum one has just left. In order to avoid this problem,
a tabu list is set up as a form of memory for the search process. Usually, the
tabu list is used to forbid those neighborhood moves that might cancel the
effect of recently performed moves and might thus lead back to a recently
visited solution. The scheme of our heuristic is illustrated in Algorithm 2. At
first a ParallelSGS is called (explained later) to generate the initial solution.
Then the local search is started. If it succeeds in finding a better solution, the
current scheduling is updated. Otherwise the unsuccessful try is put into the
tabu list to prevent it from being tried again in the near future. At the end of

1Other objectives are considered by a few researchers, but in no case known to the authors
an explicit deadline is taken into account.

78CHAPTER 5. RUN-TIME ALGORITHM FOR OVERLAPPING TASK SCHEDULES

every iteration, the tabu list is updated to unfreeze the outdated tabu items.
That is, these moves are again possible choices. The constants N and K limit
the number of evaluations.

Algorithm 2 The Tabu Search heuristic.

1: INITIALIZATION
2: ParallelSGS;
3: TABU SEARCH
4: num try=0;
5: A: num fail=0;
6: while num try < N and num fail < K do
7: select one potential move m which changes the TF j from mapping choice

js to jt and is not in the tabu list;
8: if ParallelSGS(m) succeed then
9: update the solution;

10: goto A:;
11: else
12: put move m into the tabu list;
13: num fail++;
14: end if
15: num try++;
16: update the tabu list;
17: end while

In the Tabu heuristic, we apply the standard parallel scheduling scheme (Par-
allelSGS) to generate a scheduling, which is presented in Algorithm 3. For each
iteration g a schedule time tg is chosen. TFs which have been scheduled up to
g are either element of the complete set Cg or of the active set Ag. The eligible
set Dg comprises all TFs which can be precedence-and resource-feasibly started
at tg. Each TF has a finish time Fj . The algorithm generates a scheduling in
at most J steps, where J is the number of TFs.

On line 8 and 9 of Algorithm 3, two decisions have to be made: how to select
a TF from the eligible set and how to select a mapping for the chosen TF. For
the ParallelSGS in the initialization stage of Algorithm 2 (line 2), we apply two
heuristics. We select an TF with the maximum number of direct succeeding
nodes and choose the mapping with the shortest execution time. According
to the numerical experiment in [73], this tends to give a good initial solution.
Whereas for the ParallelSGS in the Tabu Search stage of Algorithm 2 (line
8), the mapping choice has already been fixed. For the TF, we select the one
which consumes most resources, hoping the completion of it will release more
resources for other TFs. This is similar to the best fit heuristic. After the
scheduling, every TF j is given a mapping choice number jm and a finish time

5.3. EXPERIMENTAL RESULTS 79

Algorithm 3 The ParallelSGS algorithm.

1: INITIALIZATION
2: g=0,tg=0,A0=0,C0=0;
3: while | Ag ∪ Cg |≤ n do
4: g = g + 1;
5: tg = minj∈Ag

{Fj};
6: calculate Cg, Ag, Dg and remaining resources;
7: while Dg 6= 0 do
8: select one j ∈ Dg;
9: select mapping choice jm for j;

10: Fj = tg + pjm;
11: calculate Ag, Dg and remaining resources;
12: end while
13: end while

Fj . For any two TF i and j, if they satisfy Fi < Fj − tjm and Fj < Fi − tim, no
precedence relation is present between them and enough resources (processors
in our case) exist to let them run in parallel for an overlapped period.

5.3 Experimental Results

For our experiments, we need tens of task graphs to perform a reasonable evalu-
ation. Due to the lack of appropriate task graphs from real life applications, we
have decided to use TGFF (Task Graph For Fee, a tool from Princeton [42])
to generate them randomly. This is also used by many other researchers in
the scheduling community [186]. We have generated three sets of task graphs,
comprising 5, 5 and 10 task graphs respectively. These task graphs have node
numbers varying from 10 to 21. Every node is assigned an execution time
(on ARM) and a flavor number (L/I, L/F, H/I or H/F, as explained in Sec-
tion 5.1.1) randomly. For every task graph, a Genetic Algorithm is used to
generate a set of schedulings for every possible mapping choice with different
number of ARM and TI processors. The results from this design space explo-
ration step are similar to Table 5.2 and are pre-stored for every task graph.
This is done at design time. Only at run time, the system is able to be aware
of how many task graphs present, what they are and what the precedence re-
lations among them look like. Then, given a deadline, our Tabu Search based
heuristic selects a mapping choice for every task graph in the current system,
schedules them according to their precedence relations and makes sure they
satisfy both the resource and the time constraints. At the same time, it tries
to reduce the system energy as much as possible.

80CHAPTER 5. RUN-TIME ALGORITHM FOR OVERLAPPING TASK SCHEDULES

0

100

200

300

400

500

600

700

800

900

1000

300 800 1300 1800 2300 2800

time budget (ms)

e
n

e
rg

y
(m

J
)

overlapping sequential

0

200

400

600

800

1000

1200

1400

1600

700 1200 1700 2200 2700 3200

time budget (ms)

e
n

e
rg

y
(m

J
)

overlapping sequential

Figure 5.4: Result for set of 5 (top) and 10 TFs (bottom).

Because of the complexity of our problem, it is difficult to find the optimal
solution to compare with. Moreover, as we discuss above, no earlier algorithms
address the same problem with hybrid design and run time decision for op-
timization under real-time constraints. Consequently, we only compare our
result with the heuristic presented in Chapter 4, which also makes tradeoffs at
run time but it only considers a sequential task scheduling on the architecture
with 2 ARM and 2 TI. The difference between them can be found on Figure 5.3.
That heuristic has been proven efficient and effective in reducing the system
energy and other cost. Since our Tabu Search based heuristic allows different
TFs to overlap in the time axis and share the platform simultaneously, we refer
it as the “overlapping” heuristic later in this thesis. The other one is called the
“sequential” heuristic (see Section 5.1.3 for a more detailed discussion).

5.3. EXPERIMENTAL RESULTS 81

We have first generated two sets of TFs, one with 5 TFs and the other with
10 TFs. After applying the Genetic Algorithm for design space exploration,
we execute our overlapping heuristic for different deadlines and compare it to
the result from the sequential heuristic (see Figure 5.4). For these two sets of
task graphs, the overlapping heuristic performs quite well. The first observa-
tion from the result is that the overlapping heuristic allows the system to meet
a tighter deadline even when the same set of TFs is executed. In particular
33% reduction is observed for the 10 TF case. Moreover, if the same deadlines
are assumed, the overlapping heuristic always defeats the sequential heuristic
in terms of energy consumption, giving energy savings up to 24% and 34%
respectively (when the leftmost point of the sequential scheduling is consid-
ered). With the deadline becoming less severe, the energy saving compared to
the sequential scheduling drops because the potential energy saving space (the
difference to the most time relaxed case) decreases. When the deadline is so
loose that every code section is able to run at its most energy efficient way, no
energy saving space is left for either heuristic.

0

100

200

300

400

500

600

700

400 500 600 700 800 900 1000 1100

time budget (ms)

e
n

e
rg

y
(m

J
)

overlapping sequential

Figure 5.5: Result for another set of 5 TFs.

We have done the same experiment on another set of 5 TFs and the result
is shown on Figure 5.5. Here we can also observe an energy saving up to
21% when the deadline is tight. However, as the deadline is loosened to some
point, the overlapping solution is even a little worse than the sequential case.
This is because the overlapping problem is intrinsically much harder to solve
than the sequential problem. For some special cases, the result given by our
current Tabu Search heuristic is a little farther from the optimal solution while
the sequential heuristic still manages to give a good result. Also, the current

82CHAPTER 5. RUN-TIME ALGORITHM FOR OVERLAPPING TASK SCHEDULES

overlapping heuristic is tens of times slower than the sequential heuristic, due
to the hardness of the problem. Hence, it is suggested that the overlapping
heuristic should be mainly used for tight deadline constraints, where it can gain
higher energy savings, while the sequential heuristic is used for loose deadline
constraints, where it exhibits low overhead and good quality.

5.4 Conclusion

In this chapter we have illustrated that a heterogeneous multiprocessor platform
can provide a wide design exploration space. Instead of fixing one point in that
space at design time, we propose to postpone that decision making partly till
run time to better tune the system to its dynamic context. In combination with
further exploring the parallelism of multiprocessor platforms, we have modeled
the problem as a multi-mode project scheduling problem and have developed a
heuristic using Tabu search. Results from randomly generated task sets show
energy savings up to 34% compared to the sequential heuristic presented in the
previous chapter.

Chapter 6

Validating the

Methodology with

Demonstrators

We have validated our complete TCM design flow with two real-life demon-
strators. The 3D QoS adjustment application is integrated with our run-time
scheduler on top of the Virtuoso RTOS and then is simulated on a Windows
PC. The PocketGL is implemented on a real XScale board with Linux and all
the energy numbers are measured and recorded at real time. Moreover, the
software is able to change the processor supplying voltage and frequency by
APIs provided by the enhanced operating system. Both applications consider
a uniprocessor architecture with discretely changeable supplying voltage. A
multiprocessor experiment can be found in Chapter 7 .

6.1 3D rendering QoS Control Demonstrator

6.1.1 The QoS Application

To test the effectiveness of our approach, a real-life application, the QoS (Qual-
ity of Service) control part of a 3D rendering algorithm developed in the
MPEG21 context, is used.

Figure 6.1 shows how 3D decoding/rendering is typically performed: a 2D
texture and a 3D mesh are first decoded and then mapped together to give the
illusion of a scene with 3D objects. This kind of 3D rendering requires that

83

84CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

each frame of the rendering process is recalculated completely. The required

Figure 6.1: 3D rendering consists of 2D texture and 3D mesh decoding.

computation power depends significantly on its number of triangles. When the
available resources are not enough to render the object, instead of letting the
system break down (totally stop the decoding and rendering during a period
of time), the corresponding mesh of the object can be gracefully degraded to
decrease resource requirement, while maintaining the maximal possible quality.

The number of triangles that are used to describe a mesh can be scaled up
or down. This can be achieved by performing edge collapses and vertex splits
respectively, as shown in Figure 6.2. To perform an edge collapse, and thus
remove the edge (Vs, Vt), we first remove the triangles which Vs and Vt have
in common, and replace Vt with Vs in the triangles adjacent to Vt. We then
recenter Vs, to keep the appearance of the new set of triangles as close as pos-
sible to the former one. The new set of triangles represents the same object
with less detail but also with less triangles. The same principle but in a re-
versed direction is used to perform a vertex split. The edge collapse and vertex
split approaches can be used repeatedly till a desired number of triangles are
achieved.

For a 3D object, the more triangles that are used to represent its mesh, the

6.1. 3D RENDERING QOS CONTROL DEMONSTRATOR 85

Vt

Vs

Vs

edge
collapse

vertex
split

Figure 6.2: Edge collapse and vertex split.

more precise the description of the object. This increases the perceived qual-
ity. However, it slows down the geometry and rasterizing stages because more
computation has to be done there. Consequently it decreases the number of
frames that can be generated each second (FPS, frame per second), while most
videos or 3D game applications desire a fixed FPS. Another issue that we have
to consider here is that the same application can be run on different platforms,
e.g., a desktop PC or a PDA, which provides completely different computation
ability and power consumption features. Hence different qualities of the same
service have to be supplied to achieve a similar FPS. For a given computation
platform and a desired FPS, the number of triangles it can handle in one frame
is almost fixed. Based on the number of objects in the current frame and what
these objects are, the QoS controller will assign the triangles to each object so
that the user can get the best-of-effort visual quality at a fixed frame rate.

6.1.2 Virtuoso RTOS

Virtuoso (now known as VSPWorks from Windriver) is a commercial RTOS,
which features a high-performance kernel design with small memory footprint,
and an advanced virtual single-processor (VSP) architecture for the develop-
ment of embedded multiprocessor and distributed applications. The VSP com-
bines the power of parallel processing with the simplicity of traditional multi-
tasking programming. It implements a multilevel architecture (see Figure 6.3)
to combine fast interrupt handling with scalable multi-tasking. At the heart
of the system is a highly optimized nanokernel with very low context over-
head. Below the nanokernel are the Interrupt Service Routines dedicated to

86CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

Figure 6.3: Virtuoso multilevel architecture.

high-speed interrupt handling, while the microkernel sits above the nanokernel
and handles preemptive multitasking C/C++ tasks. Normally the nanokernel
services take about 10 to 20 times less time than equivalent services at the mi-
crokernel level. This is not only due to the difference in number of registers that
have to be swapped but mainly because of the much richer semantic context
of the microkernel services. Each nanokernel process starts up and finishes as
an assembly routine, and is scheduled as prioritized round-robin (preemption
is not supported).

In this experiment, we have only used the microkernel level model and we there-
fore give some more information about it here. The microkernel level provides a
virtual single processor model, which hides the detail of the low level HW and
allows the programmer to use the normal multitasking programming model.
It is based on the concept of microkernel objects, which are data structures
with specific operations. Tasks, semaphores, mailboxes are all objects and are
identified uniquely at the system-wide level. At a later node binding stage,
the objects will be mapped to different processing nodes (processors) and be
accessed transparently from the viewpoint of the application programmer. All
the objects are allocated and bound at compile time and can not be moved
around at run time. However, it is quite easy to try different bindings because
of the available VSP model. Preemptive priority scheduling is provided at this
level, but it is the responsibility of the user to guarantee the real-time feature,
if it is required, and this step is always tricky. At compile time, the neces-

6.1. 3D RENDERING QOS CONTROL DEMONSTRATOR 87

sary components of the RTOS will be compiled and linked together with the
application, generating loadable image files.

6.1.3 Applying the TCM Methodology

For the 3D rendering QoS application introduced in section 6.1.1, we have ap-
plied our complete design flow, from modeling to scenario selection to schedul-
ing, and then compared the result to a few reference cases, by using our simu-
lation environment.

The complete flow is depicted in Figure 6.4. The 3D QoS code is first profiled
by the ARM simulator, ARMulator (enhanced with an energy model similar
to [154]), to identify thread nodes and to extract execution time and energy
consumption data. These results are passed to the design-time scheduler to
generate Pareto curves. On the other hand, the code is transformed into a
multi-threaded version manually (work is ongoing to deliver this at least semi-
automatically later on). The multi-threaded code is then executed on a PC.
The run-time data obtained by simulating the code on the PC gives the run-
time scheduler important information such as the number of running threads
and the type of them. Set on top of Virtuoso, the run-time scheduler makes
decisions with the run-time data and pre-computed Pareto curves and feeds
back the decisions to the PC simulator. At the same time, the run-time part
collects data such as the energy consumption and deadline misses.

An inconsistency can be noted in the above approach. On one hand, the code is
profiled and scheduled at design time based on its execution on ARMulatore,
which uses the ARM instruction set; on the other hand, the same code is
executed on a PC simulator to generate the run-time data. Two reasons are
present for that. Firstly, Virtuoso has not been ported to the ARM platform.
It will take considerable effort to develop a new board support package and it
is not interesting to us. Secondly, we need OpenGL library support to render
the scenes on a monitor. That library is not available for ARM. Nevertheless,
that inconsistency will not damage the effectiveness of the way we validate
our design methodology. In fact, the PC simulator is used here to generate
the run-time data (the TFs and their scenarios), which is used by our run-
time scheduler to find the appropriate scheduling. When the above practical
constraints are removed, as in the PocketGL demonstrator in section 6.2 and
the integration experiments in Chapter 7, we can apply the same methodology
and obtain similar results.

8
8
C

H
A

P
T

E
R

6
.

V
A

L
ID

A
T

IN
G

T
H

E
M

E
T

H
O

D
O

L
O

G
Y

W
IT

H
D

E
M

O
N

S
T

R
A
T

O
R

S

3D QoS

profiling

ARMulator
+

energy model

Pareto curves

design-time
scheduling

multi-threaded
3D QoS

transformation

PC simulation

running

run-time scheduler

Virtuoso RTOS

run-time
data

run-time
scheduling

collecting
data

deadline miss,
energy, ...

F
ig

u
re

6
.4

:
A

p
p
ly

th
e

T
C

M
d
esig

n
fl
ow

to
th

e
3
D

Q
o
S

a
p
p
lica

tio
n
.

6.1. 3D RENDERING QOS CONTROL DEMONSTRATOR 89

Gray-box model

For every scene, we have to consider one SceneUpdate thread frame and several
AdjustObject thread frames. The exact number of the latter depends on the
output of the SceneUpdate thread frame of that scene and it varies from 2 to
12. This raises some problem to our run-time scheduler because it even does not
know how many thread frames are in the current scene when it has to make
scheduling. We solve that problem by considering the AdjustObject thread
frames from scene i and the SceneUpdate thread frame from scene i+1 for one
scheduling frame, as shown in Figure 6.5. In that case, the run-time scheduler

scene
update

adjust
object 1

adjust
object m

scene
update

adjust
object 1

adjust
object n

stream
frame i

stream
frame i+1

scheduling
frame i

Figure 6.5: The run-time scheduler schedules the AdjustObject thread frames
from scene i and the SceneUpdate thread frame from scene i + 1 together.

has to make sure that the SceneUpdate thread frame can only start when all
the AdjustObject thread frames of the previous scene have finished. This can
be done by giving the AdjustObject thread frames priority levels higher than

90CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

Figure 6.6: The gray-box model of the AdjustObject thread frame.

the SceneUpdate thread frame.

The SceneUpdate TF is quite static and only consumes a small part of the
total execution time. Therefore, we look it as a thread frame consisting of only
one thread node. The gray-box model of the AdjustObject thread frame is
explained as below.

In the QoS kernel, for each visible object on the scene, a separate thread frame
will be triggered, in which the number of triangles is adjusted to the number
specified by the QoS algorithm. The gray-box model of that thread frame is
shown in Figure 6.6, where all the internal TNs are numbered as well. Table 6.1
gives the profiled execution time and energy consumption of each TN on a 2.4V
StrongARM processor.

6.1. 3D RENDERING QOS CONTROL DEMONSTRATOR 91

Thread Ex. Time En. Cons.
Node (us) (uJ)

1 35.6 52.2
2 1120.2 1475.3
3 2819.5 4173.4
4 4963.9 8698
5 8037.8 14112.6
6 1619.7 2840.1
7 3.2 4.3
8 761.1 1080.9
9 794.9 1180
10 63.7 113.1
11 432.2 638.1
12 0.2 0.1
13 68.1 120.3
14 705.5 1045.9
15 0.2 0.2

Table 6.1: Execution time and energy consumption of the TNs of the
AdjustObject thread frame.

Scenario selection

From the gray-box model, we can see that based on whether each object is
the first time visible, which is true only once during the whole stream for each
object, one of the branches will be taken. If it is the first time visible, the
mesh and texture have to be parsed, generated and bounded (TNs 1 to 9). If
it is not, the current number of faces will be compared to the desired number
of faces to decide whether to collapse edges (TNs 10, 11 and 12) or to split
more vertices (TNs 13, 14 and 15). The edge collapse and the vertex split are
done in a progressive and iterative way to avoid abrupt changes of the object
shape with a while loop over TN 10 or 13. The iteration number of this loop
depends on the difference between the current and desired number of faces of
that object, and it varies from 2 to 1000 based on the profiling data.

Clearly, only one Pareto curve is not enough to represent these highly dynamic
contexts. We have to distinguish first-time-visible or not-first-time-visible and
the while loop iteration numbers. For the latter, if we fail to differentiate the
iteration number over the loop body, we would have to consider the imple-
mentation for the worst case, which is 1000 iterations and much bigger than
the average case. To avoid that, we have introduced the concept of “scenario
selection” (see section 3.3) where different Pareto curves are assigned (in an

92CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

analysis step at design time) to run-time cases that motivate a set of different
implementations. Based on this analysis, we have decided to use 9 different
scenario’s and hence also 9 Pareto curves in the QoS application to represent
the run-time behavior of one object: the first one is when the object is first
time visible; the others are when it is not and has to be collapsed or split. For
“collapse” and “split”, each are assigned four curves with different implemen-
tations, corresponding to different iteration sub-ranges. For example, the first
curve of “collapse” will be selected if the actual iteration number falls between
2 and 12. Therefore, we only have to consider the worst case of that sub-range,
which is 12 in this example, not the worst case of the whole range, which is
1000. Extra code has been inserted to enable this. We have selected these
ranges based on the profiling data from the application and they are illustrated
in Table 6.2.

first time collapse range of
visible or split iteration

scenario 0 yes
scenario 1 no collapse 2-12
scenario 2 no collapse 13-30
scenario 3 no collapse 31-180
scenario 4 no collapse 181-1000
scenario 5 no split 2-4
scenario 6 no split 5-12
scenario 7 no split 13-60
scenario 8 no split 61-1000

Table 6.2: Scenario selection.

6.1.4 Implementation

Our run-time scheduler is implemented on top of the already discussed Virtuoso
scheduler, which is priority-based and preemptive. Each task has an entry
point and a priority level (as in almost all RTOSes, a lower value means a
higher priority) assigned to it. At any time, the task with the highest priority
is executed, unless

1. it is waiting for a semaphore or other system resources;

2. it has been stopped by another task;

3. it has reached its end point.

6.1. 3D RENDERING QOS CONTROL DEMONSTRATOR 93

The priority can be changed at run time. The entry point is the point where a
task will start execution whenever it is started, automatically (if it belongs to
the EXE task type) or explicitly (Virtuoso kernel calls function start()), and
it can also be changed at run-time. Since Virtuoso does not support run-time
task creation and deletion, we have to allocate enough tasks when we initialize
the application, then connect it to the code we want to run (setting the entry
point) at run time and start it.

The detail of the implementation is shown in Figure 6.7, where all the solid
horizontal arrows represent a context switch and all the vertical arrows or
blocks represent a period of time. In the figure, we also give the name of tasks,
where you can find them in the files and the priority assigned to each of them.

We have used four task entry points in this experiment. TCM QoS is the whole
application code excluding the scene update and QoS adjustment sections.
Actually it works like a shell or wrapper in this implementation, and it sends
out semaphores to synchronize the other tasks. rt schedule is our run-time
scheduler code. It checks the number and type of tasks it has to run, reads in
the corresponding Pareto curves, selects the operation point for each task, then
starts them. Both TCM QoS and rt schedule are Virtuoso EXE tasks, which
means they will be started automatically when the application starts. do scene
is the code of SceneUpdate TF; do qos is the code of AdjustObject TF. For
each stream frame, there are one do scene task, and a number of do qos tasks.
The exact number depends on how many objects are visible in that stream
frame.

At the start point of the application, both TCM QoS and rt scheduler are
runnable. The latter will execute first because it has a higher priority. Af-
ter the scheduler initialization, it then waits for semaphore SCHEDULE and
passes the control to TCM QoS. TCM QoS initializes the application first and
calls do scene directly for stream frame 0. This is different from the other
frames and we will explain it later. After that, TCM QoS triggers semaphore
SCHEDULE and rt scheduler is activated and get the control. rt scheduler ac-
tually works on the AdjustObject TFs of stream frame i and the SceneUpdate
TF of stream frame i+1, because we can not have the necessary information,
such as how many AdjustObject TFs exist in frame i and the computation
requirement of each TF, to direct the scheduling of the QoS TFs till we finish
the SceneUpdate TF of stream frame i. Having selected the operation point
for each TF based on the best known run-time knowledge of the stream frame,
rt scheduler starts do qos and do scene and waits for semaphore SCHEDULE
again. At that moment, do qos get the control because they have higher pri-
orities, doing the real QoS adjustment for each visible object. When all the
do qos finish, do scene starts, but it has to wait for semaphore SCN UPDATE
first to make sure that the current stream frame has finished and the next

9
4
C

H
A

P
T

E
R

6
.

V
A

L
ID

A
T

IN
G

T
H

E
M

E
T

H
O

D
O

L
O

G
Y

W
IT

H
D

E
M

O
N

S
T

R
A
T

O
R

S

task

file

priority

TCM_QoS (EXE)

:TCM_caller.cpp

rt_schedule (EXE)

:rt_scheduler.cpp

(10) (5)

do_scene

:do_scene.cpp

(9)

do_qos

:do_qos.cpp

(8)

initialization

frame 0

scene update

frame 0

qos

frame 1

scene update

SCHEDULE

TestW(SCHEDULE)

scheduling

TestW(SCHEDULE)

start()

start()

...

TestW(SCN_UPDATE)

SCN_UPDATE

SCHEDULE

frame 1

qos

o
n

e
 ru

n
 o

f th
e

 ru
n

-tim
e

 s
c
h

e
d

u
lin

g
.

re
p

e
a

te
d

F
ig

u
re

6
.7

:
T

h
e

im
p
lem

en
ta

tio
n

o
f
th

e
3
D

Q
o
S

a
p
p
lica

tio
n

sch
ed

u
lin

g
.

6.1. 3D RENDERING QOS CONTROL DEMONSTRATOR 95

stream frame is ready to start. Since rt schedule and do scene are waiting for
semaphores and do qos have finished their runs, TCM QoS is the only ready
task. It cleans up the current frame, prepares data for the next frame, then
sends semaphore SCN UPDATE and is preempted by do scene immediately.
This is the point where a new stream frame starts. TCM QoS gets the control
again after the SceneUpdate TF finishing its work, and activates the run-time
scheduler by semaphore SCHEDULE. From that point on, the same sequence
is repeated till the end of the application.

6.1.5 Reference Cases for Comparison

In the QoS kernel, which is typical for future object-based multi-media applica-
tions, we know at the beginning of each frame the characteristics of its content.
In that case we know how many objects we have to render and also (in our
approach) the best matched scenario of each object. Each scenario is repre-
sented by a Pareto curve computed at design time. From these, the run-time
scheduler uses the heuristic algorithm of Section 4.2 [178] to select an operating
point from each curve and activates it with the help of the RTOS. We have
run the application for 1000 scenes and collected the data as a representative
experiment.

For comparison reasons, we have also generated a reference case, REF2, to
show how well a state-of-the-art slack-based DVS scheduler (like [153]) can do.
We assume it has full access to the available application parameters at run-time
too, but it does not exploit the scenario selection concept. In other words, it
knows the number of objects it is going to render in that frame, but it does not
exploit the scenarios. Therefore, it has to take an implementation that matches
the worst case (TN 13 loops for 1000 times and the execution time is 68ms) for
each object. However when one object finishes, the slack time (the difference
between the real execution time and the worst case) will be reclaimed and used
by the scheduler for the subsequent tasks (i.e. slack stealing [153] is exploited).
Whenever the estimated remaining execution time is smaller than the desired
deadline, a continuous DVS method is used to save energy.

Another reference case, REF1, is also generated, where all code is executed on
the highest voltage processor. This is also the outcome if no information of
the application is passed to the run-time manager, i.e. neither the number nor
the kinds of the objects are known. Since we have a very dynamic application
(the number of objects varies from 2 to 20), to handle the worst case and
still meet the stringent deadline, the code has to be run completely on the
high voltage processor. The majority of earlier techniques (see e.g. [68] for an
overview) that use pre-characterized task data in terms of WCET times and
corresponding energy, would lead to the REF1 result for applications with a

96CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

very dynamic behavior. Only a few would come close to REF2, as currently
none of them combines all of the ingredients that were used to compose REF2
(see Chapter 2).

REF1 REF2 TCM TCM
(1 CPU, 1 Vdd) (1 CPU, 2 Vdd) (1 CPU, 2 Vdd) (4 CPU, 4 Vdd)

fps=5 17.53J 14.32J 6.21J 4.93J

fps=10 17.53J 14.65J 9.49J 6.22J

Table 6.3: Energy consumption of the QoS application.

REF1 REF2 TCM TCM
(1 CPU, 1 Vdd) (1 CPU, 2 Vdd) (1 CPU, 2 Vdd) (4 CPU, 4 Vdd)

fps=5 5 5 5 0

fps=10 26 26 26 1

Table 6.4: Deadline miss number of the QoS application.

6.1.6 Discussion of all results

The energy consumptions for all cases are shown in Table 6.3 and the num-
ber of deadline misses are shown in Table 6.4. All results are collected after
the application has been run for 1000 sequential scenes and for different frame
per second (FPS) requirements. The voltages we have used here are Vdd=1.2
and 2.4V for the two voltage case and Vdd=1.2, 1.6, 2.0 and 2.4V for the four
voltage case. Normally, with a higher FPS, to satisfy a more stringent time
constraint, parts of the code that are executed at lower voltages have to be
moved to a higher voltage, resulting in the increase of the energy consumption.
Also, the chance that a deadline is missed increases correspondingly. Compared
to REF1, for the single processor situation, the TCM approach consumes much
less energy (saving of 65% when fps is 5 and 46% when fps is 10), while the
deadline miss ratio remains the same. The latter is easy to understand because
when the time constraint is really stringent, the TCM method will automati-
cally schedule all thread nodes to the highest possible voltage processor, which
is just what REF1 does. When the time constraint is less tight, a much cheaper
solution will be found by our TCM method. Comparing REF2 and REF1 you
will find that for this type of dynamic multi-media applications, state-of-the-
art DVS cannot gain much because it does not exploit different combinations
of TF realizations. From the result we can also see that by increasing the num-
ber of processors, we can reduce the energy consumption even more while now
meeting nearly all the deadlines.

6.2. POCKETGL DEMONSTRATOR ON XSCALE BOARD 97

Figure 6.8: The distribution of the scenarios activation.

The distribution of the scenario selection is given in Figure 6.8, while Figure 6.9
gives the distribution of the selected Pareto points in scenario 6, both when fps
is 5. From the figures we can see that the TCM scheduler activates different
scenarios dynamically and selects the optimal Pareto point from the activated
scenario depending on the run-time situations, i.e. the resource available and
the number of competitors. Most of the time, scenario 1 and 5, which are the
least time consuming ones, will be selected. Therefore, we avoid the worst case
estimation and have more opportunities to scale down the voltage, compared
to REF2. In scenario 6, the least energy consuming solution, Pareto point 5,
is selected as long as it is possible; otherwise a more expensive one is chosen
to meet the time constraint. The combination of the scenario and the Pareto
point selection gives us the advantage of heavily exploring the design space at
design time and finding the most energy efficient solution in accordance with
the system’s dynamic context at run time.

6.2 PocketGL Demonstrator on XScale Board

6.2.1 Overview

Up to now, the effectiveness of our approach was only conceptually shown based
on simulations. In this experiment, our energy-aware dynamic task scheduling
is applied to a 3D rendering application, showing a 3D animation on the screen.

98CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

Figure 6.9: The distribution of the Pareto points activation in scenario 6.

This application is running on the Xingu development board of Acunia [2],
with an embedded Intel XScale 80200 processor that allows two supply voltages
(1.5V and ∼1V). Our run-time scheduler is integrated on top of a Linux RTOS.
The board is also connected to an external power measurement device, to
measure the total power consumed by the board without the LCD screen. With
our approach, the supply voltage is dynamically adapted taking the variations
in the scene, the number of visible objects, and the object complexity into
account, to minimize the energy consumption while meeting the user-specified
frame rate. This means, when the number of objects in the animation is low,
the supply voltage is lowered; but when the number of objects becomes higher,
or when these objects become more complex, more performance is required, and
the supply voltage is raised. Compared with a standard implementation of the
application where the clock frequency and the supply voltage of the platform
processors remain constant, drastic energy reductions are possible. For this
demonstrator, where the measured maximum energy gain is 53% (when the
voltage is permanently lowered to 1V), the measured average energy gain for
our scheduling is 40% compared with state-of-the-art DVS techniques.

6.2. POCKETGL DEMONSTRATOR ON XSCALE BOARD 99

Figure 6.10: Acunia board connected to the power measurement de-
vice.

6.2.2 Demonstrator Setup

Target Platform

The target platform is the Xingu development board of Acunia [2], with an
embedded Intel XScale 80200 processor [176]. This processor is a derivative
of the ARM processor, and it has a cache memory of 32kB. It allows dynamic
voltage and frequency scaling. Its default supply voltage is 1.5V, whereas its
default clock frequency is 593.1MHz. The board has an LCD screen of 800∗600
pixels. It has also an external SDRAM memory, which is 64-bit wide, has a
size of 64MB and runs at 100MHz, with a supply voltage of 3V.

DVS allows either a supply voltage of 1.5V with a clock frequency of 726MHz,
or a supply voltage of ∼1V with a clock frequency of 528MHz. A Vdd switch
takes on average 675usec before the board is completely stabilized.

To measure the power consumption, an external power measurement device is
connected to the Acunia board. It measures the total power consumed by the
board without the LCD screen. Indeed, this LCD screen normally consumes
much more power than the XScale processor. The total power includes the
idle power (i.e. the power consumed by the board when the processor is
not active, including all the peripherals), the dynamic power consumed by the
processor, the cache, and the SDRAM. The Acunia board connected to this
device is shown in Figure 6.10. The idle power when the LCD screen is off is
3.688592W.

100CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

Figure 6.11: Input scene for the application.

The dynamic power consumed by a processor is modeled by:
P = C ∗ Freq ∗ V 2

dd, (6.1)

where C is the effective capacitance of the processor, Freq its clock frequency,
and Vdd its supply voltage.

PocketGL 3D Rendering Demonstrator

The real-life application used in this experiment is a real-time 3D Pocket GL
rendering application, showing a 3D animation on the screen. Pocket GL [120]
is a 3D graphic library for pocket PC, allowing to draw 3D objects and manage
3D transformations. The application runs on top of a Linux RTOS. To allow
dynamic voltage and frequency scaling, a compact-flash card with the correct
Linux kernel must be introduced into the board, and a kernel module xscale.o
that contains the needed ioctl functions, must be loaded. In the application,
the rendering function is a task executed at each frame for each visible object.
Hence the number of active tasks per frame depends on the number of visible
objects. The complexity of each active task depends significantly on the object
complexity (i.e. the number of its vertices), and the complexity of the object
part to be rendered on the screen (i.e. the number of its visible triangles).

The input scene, illustrated in Figure 6.11, is a small roundabout, like the
ones we find on fairs. Four objects hang on a pole: two highly detailed ones
(the duck and the helicopter) and two low-complexity vehicles (the fire truck
and the train). Two objects are also used to render the background of the

6.2. POCKETGL DEMONSTRATOR ON XSCALE BOARD 101

Scene object Total number of Total number of
(Mesh) triangles vertices

Duck 52587 9941
Helicopter 41728 10404
Fire truck 6093 2117

Train 4952 1852
Background1 936 470
Background2 648 326

Complete scene 106944 25110

Table 6.5: Scene complexity.

0 50 100 150 200
Frame ID

2000

4000

6000

8000
10000

N
um

be
r

of
 v

is
ib

le
 t

ri
an

gl
es

Figure 6.12: Scene load variation.

roundabout. While the camera positioned in the middle of the roundabout is
rotating, the complexity of the objects to be rendered on the screen is changing.
The complexity of these objects (called meshes in Pocket GL), characterized
by their total number of vertices and triangles, is given in Table 6.5. From the
106944 triangles of the complete scene, the number of visible triangles per frame
varies between 1721 and 10804 (see Figure 6.12), implying a load difference up
to a factor 6.3 in the scene rendering. The maximum frame rate that can be
achieved by running this application on the Acunia board is 11.75 Frame Per
Second (FPS). In that case, the total power consumed by the board is 5.126W
on average. The total power consumed by the SDRAM for this application is
0.208W on average.

102CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

6.2.3 Applying the TCM Approach

Gray Box Model Extraction

In the considered 3D application, for each visible object (i.e. mesh) on the
scene, a separate thread frame, called RenderMesh, is activated. Its gray-box
model is shown in Figure 6.13. TransformMeshVertex is a thread node trans-
forming all vertex coordinates of the mesh depending on the camera position.
RenderSimpleMesh (resp. RenderComplexMesh) is a thread node checking 1100
(resp. 5000) triangles at a time and drawing the visible ones on the screen.

Scenario characterization

Duck Helic. Truck Train Backgr1 Backgr2

4 4 5 5 1 1

Table 6.6: Number of scenarios per mesh.

From the gray-box model, we observe that: (1) the executed branch depends on
the mesh complexity; (2) the number of thread nodes executed in this branch
depends on the number of mesh triangles; (3) the complexity of these thread
nodes depends on the number of non-visible triangles, the number of visible
triangles but being out of the screen, and the number of visible triangles that
will be drawn on the screen. These parameters are used to characterize all
possible scenarios for this dynamic behavior of RenderMesh. For the input
scene of Figure 6.11, 20 scenarios in total can be activated. Their distribution
per mesh is shown in Table 6.6. To check the relevance of these scenarios, the
application is profiled to verify for all thread nodes that the difference between
worst, best, and average execution times are small.

For the design-time scheduling step, each scenario must be characterized with
the average execution time and energy consumption of each thread node . In our
case, this happens on the XScale processor of the Acunia board at the default
supply voltage (1.5V) and clock frequency (593.1MHz). This is illustrated in
Table 6.7 for one scenario of the Helicopter mesh. This is a complex mesh of
41728 triangles. Hence the thread node RenderComplexMesh is called 9 times.
The reported average execution time is derived by profiling the application,
whereas the average energy consumption is derived from the power model of
the XScale processor (See Eq. 6.1).

6.2. POCKETGL DEMONSTRATOR ON XSCALE BOARD 103

Figure 6.13: Gray box model of thread frame RenderMesh.

104CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

Thread node Avg exe. time Avg energy
(usec) (uJ)

TransformMeshVertex 7344.31 5978.48
RenderComplexMesh 1 8437.25 6868.17
RenderComplexMesh 2 9631.79 7840.56
RenderComplexMesh 3 5444.63 4432.09
RenderComplexMesh 4 4411.97 3591.47
RenderComplexMesh 5 4440.55 3614.74
RenderComplexMesh 6 5920.69 4819.62
RenderComplexMesh 7 2718.05 2212.57
RenderComplexMesh 8 2370.17 1929.39
RenderComplexMesh 9 984.85 801.698

Table 6.7: One scenario characterization for Helicopter.

Design-time scheduling

The design-time scheduler is applied to each scenario of each mesh, taking into
account: (1) the gray-box model restricted to the scenario; (2) the average
execution time and energy consumption of each thread node as derived at the
previous step; (3) the set of allowed supply voltages and corresponding clock
frequencies, i.e. (1.5V, 726MHZ) and (1.09V, 528MHZ); (4) the average time
to complete a Vdd switch on the board, i.e. 675usec.

The design-time scheduler explores different (Vdd, clock frequency) assign-
ments to each thread node of the scenario and generates a Pareto curve, where
every point is better than any other one in at least one way, i.e. either it
consumes less energy or it executes faster. Since the design-time scheduler is
performed at compile time, computation efforts can be paid as much as nec-
essary, provided that it can give a better scheduling result and reduce the
computation efforts of the run-time scheduler in the later step. E.g., for the
scenario characterized in Table 6.7, the generated Pareto curve is shown on
Figure 6.14. For instance, the Pareto point (0.056sec, 0.028J) assigns (1.5V,
726MHz) to thread nodes RenderComplexMesh i, 6 ≤ i ≤ 9 and (1V, 528MHz)
to the other ones.

Run-time scheduling

At run time, at the beginning of each frame, the meshes that will be visible on
the screen are first identified together with the RenderMesh scenario that will be
activated. Then the run-time scheduler schedules all these active scenarios to
satisfy the given frame rate and minimize the application energy consumption.

6.2. POCKETGL DEMONSTRATOR ON XSCALE BOARD 105

0.04 0.05 0.06
Execution time (sec)

0.02

0.03

0.04

E
ne

rg
y

(J
)

Figure 6.14: One Pareto curve for RenderMesh(Helicopter).

Only some essential features of the points on the Pareto curves are passed
to the run-time scheduler and are used to find a reasonable execution time
distribution among all active scenarios. For each point on a Pareto curve,
these features are: the execution time and energy consumption, and the (Vdd,
clock frequency) assignment to each thread node. These features are stored in
data structures whose size is (8+k ∗24+k ∗ l ∗20+k ∗ l ∗n∗8) bytes, assuming
n thread nodes per scenario. Whenever a thread node function is called, the
Linux function ioctl(int d, int r, ...) is executed, where d is the open
file descriptor DEVICE FILE NAME, r is the request, and the third argument is
either an input parameter or an output one. The request IOCTL SET VOLTAGE

allows to set the Vdd, whereas the request IOCTL SET FREQUENCY allows to set
the clock frequency.

We have run the application for different frame rate requirements, and usleep

is called to put the processor to sleep whenever the scene is completely rendered
and some slack time is available. We have run the application (1) using our
scheduling; (2) using a state-of-the-art slack-stealing inter-task DVS [153]. This
DVS scales the voltage according to the frame rate requirement, the worst case
execution time of the scene rendering, and the slack time at the previous frame;
(3) without any DVS, where the processor works at the fixed supply voltage
1.5V.

6.2.4 Experimental results

The average energy per frame for different frame rates and for a given leakage
temperature is reported in Figure 6.15. It has been derived from: (1) the av-

106CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

Figure 6.15: Average energy per frame.

0 50 100 150 200
Frame ID

0.02

0.04

0.06

0.08

0.10

E
ne

rg
y

pe
r

fr
am

e
(J

)

Our approach
Inter-task DVS

Figure 6.16: Energy per frame during one roundabout rotation.

6.2. POCKETGL DEMONSTRATOR ON XSCALE BOARD 107

No DVS Inter-task Our approach
DVS

Max. frame rate 11.75FPS 11.71FPS 11.62FPS
at 1.5V

Perf. overhead 0% 0.34% 1.1%
Executable size 2.43MB 2.44MB 2.46MB

Overhead 0% 0.57% 1.14%

Table 6.8: Scheduling overhead.

erage processor power, i.e. the average total power consumed by the Acunia
board without the LCD screen, and measured by the external device, minus
the average power consumed by the SDRAM for this application (i.e. 0.208W,
see Section 6.2.2), minus the idle power (i.e. 3.688592W, see Section 6.2.2);
(2) the average execution time to render the scene. With higher frame rates,
parts of the application code that are executed at lower voltages have to be
moved to a higher voltage, resulting in the increase of the energy consump-
tion. When the timing constraint is less tight, a much cheaper solution is
found by our approach. E.g. when FPS = 8.33, the average energy gain is
40%, compared with the inter-task DVS. One observation is that, for this tar-
get platform, the measured maximum energy gain is 53% occurring when the
voltage is permanently lowered to 1V 1. Several reasons explain the difference
between this average energy gain and the maximum one. Mainly, the low Vdd
may not always be assigned without violating the frame rate requirement. The
energy gain depends on the scene complexity. Energy consumption during one
roundabout rotation for FPS = 8.33 is reported in Figure 6.16, where we see
that the energy gain varies between 10.6% and 48.1%. Finally, some energy
penalty is due to Vdd switch overhead (675usec) and to the run-time scheduler
overhead. However this latter is quite small, as illustrated in Table 6.8. The
size of data structures storing all Pareto curve information in our approach is
6908 bytes.

The state-of-the-art inter-task DVS cannot gain much for this FPS because it
does not exploit different (Vdd, clock frequency) assignments to thread nodes
in RenderMesh. Compared to our approach, it gives rise to a larger slack time
after each scene rendering. This is illustrated in Figure 6.17. For more relaxed
(resp. aggressive) frame rates, the energy consumption in both approaches
becomes the same. This is easy to understand because both schedulers will
automatically schedules all thread nodes to the lowest (resp. highest) possible
Vdd.

1Average energy per frame with constant Vdd at 1.5V (resp. ∼1V) is 0.1046666J (resp.
0.0485006J). Hence (0.1046666-0.0485006)/0.1046666 = 0.5366 ∼ (1.52

− 1)/1.52.

108CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

Figure 6.17: Slack times for two successive frames.

The occurrence percentage of the 20 possible scenarios for our input scene
when FPS is 8.3 is shown in Figure 6.18. For each visible mesh, the run-time
scheduler activates different scenarios dynamically. E.g., for Background1 and
Background2 which are always visible, the only possible scenarios for these
meshes are of course always activated. But for Duck, which is visible in 50.3% of
the frames, Scenario 2 is only activated in 12.2% of the frames. Its Pareto curve
consists of three points 2 , whose occurrence percentage is shown in Figure 6.19.
Whenever this scenario is activated, the run-time scheduler selects the optimal
Pareto point from the active scenario depending on the run-time situation, i.e.
the number of visible meshes and their rendering complexity. In Scenario 2,
the least energy consuming solution, Pareto point 2, is selected as long as it is
possible; otherwise a more expensive one is chosen to meet the frame rate. The
combination of scenario and Pareto point selection gives us the advantage of
heavily exploring the design space at design time and finding the most energy
efficient solution in accordance with the system’s dynamic context at run time.

2Pareto point 0 ∼ (0.051sec, 0.051J), Pareto point 1 ∼ (0.64sec, 0.036J), Pareto point 2
∼ (0.07sec, 0.027J).

6.2. POCKETGL DEMONSTRATOR ON XSCALE BOARD 109

0 4 91011 15
Scenario ID

 10
5

100

O
cc

ur
re

nc
e

pe
rc

en
ta

ge
Duck scen.
Train scen.
Backgr1 scen.
Backgr2 scen.
Helic. scen.
Truck scen.

Figure 6.18: Scenario distribution.

0 1 2
Pareto point ID

13

4

83

O
cc

ur
re

nc
e

pe
rc

en
ta

ge

Figure 6.19: Distribution of Pareto points in Scenario 2.

110CHAPTER 6. VALIDATING THE METHODOLOGY WITH DEMONSTRATORS

6.3 Conclusion

In this chapter, we have validated our complete TCM design flow with two
real-life demonstrators, using a Windows PC simulation or a real XScale board.
Results from both demonstrators prove the effectiveness of our design method-
ology and illustrate how to integrate our design flow with applications and
RTOSes. We consider only uniprocessor architecture for these two demonstra-
tors. However, in Chapter 7, we will further show how to map and order tasks
dynamically for a multiprocessor platform. New demonstrators are under devel-
opment to fully explore the voltage scaling and (heterogeneous) multiprocessor
features for new multimedia and wireless communication applications.

Chapter 7

Mapping and Ordering

Tasks Dynamically on

Multiprocessors

It has been realized that the large scale use of software programmable embedded
processors will emerge as a key means to improve flexibility and productivity
[102]. A range of processors will be used, to achieve different tradeoffs in time-
to-market versus power, area or speed. For these heterogeneous multiprocessor
system-on-chip (MP-SoC) platforms, a common key problem is the difficulty
in refining and mapping the application to the platform.

The MP-SoC platform is different from traditional multiprocessor systems,
which can be classified as multicomputer and multiprocessor as in [165]. Mul-
ticomputers are loosely coupled computer systems. Most typically, every com-
puter has its own private memory space and its own (even different) operating
systems. These computers exchange data by network and use protocols such
as Remote Process Call to get service from other processors. Client and Server
and Local Area Network systems are just two examples. Simply to say, it is a
network-oriented system and the overhead to exchange data is very high. Mul-
tiprocessor systems are different in that they mainly exchange data by shared
memory, which could be accessed by all or a few processors. In the extreme
case, there is not even private memory and all memories are shared. Therefore
these processors are tightly coupled together to complete difficult jobs such as
scientific computation. Examples of multiprocessor systems include the IBM
RP3.

Embedded MP-SoC systems are extremely tightly coupled and extremely cost

111

112CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

and power sensitive. Not like the general purpose multicomputer or multipro-
cessor systems, they are designed for a specific domain of applications. These
characteristics decide it can not use the programming model designed for previ-
ous decoupled multiple processor systems. For instance, the Cache Consistency
Protocol is very effective for multiprocessor systems and it removes the burden
of keeping private copies of the same data consistent from the programmers.
However, it is not practical to use the same protocol on embedded systems
because it is extremely energy hungry. Instead, we can avoid that by smartly
and carefully managing the data ourselves (see [105]).

The parallel programming models for embedded systems are still a challenge to
the industry and are under research. Some people suggest a Network-on-Chip
architecture and to use component based protocols such as CORBA and Java
Remote Method Invocation [102]. The effectiveness of that approach is still to
be proved. Here we do not assume any model but manage the inter-processor
and inter-process communications by ourselves.

In previous chapters, we have discussed how to model a concurrent and dynamic
application, how to apply the design-time and run-time scheduling. However,
a middleware like layer is still needed to integrate the application with the
RTOS and the hardware below. This integration should be generic enough so
that it can be ported to almost all RTOSes; it should also be specifically embed-
ded on the MP-SoC to avoid the high overhead of conventional multiprocessor
programming model.

7.1 Dynamic Mapping and Ordering

After a Pareto point is selected by the run-time scheduler, the next problem is
to find a systematic and generic way to map and order the TNs as decided at
design time. Selecting the voltage in DVS is quite simple and for that purpose
we do not need any special mechanism (only supporting APIs from the OS are
needed). But to map and order TNs and TFs in an efficient and generic way
is not that straightforward.

Consider the piece of C code below.

/* thread frame 1, video decoding */

int in[], out1[], out2[];

tf_1() {

float c1, c2;

tn_1(in, &c1, &c2);

tn_2(in, c1, out1);

tn_3(in, c2, out2);

7.1. DYNAMIC MAPPING AND ORDERING 113

}

/* thread frame 2, audio decoding */

int out[];

tf_2() {

int buf[];

tn_A(in, buf);

tn_B(buf, out);

}

This is an example of two TFs, which have 3 and 2 TNs respectively. Their
CDFG representation can be found in Figure 7.1. Notice that no dependency

start

thread
frame 1

thread
frame 2

tn_1

tn_2 tn_3

tn_A

tn_B

Figure 7.1: The gray-box model of a simple example.

exists between tn 2 and tn 3 of thread frame 1 and thus they can be executed in
parallel. To compile the code to a dual-processor platform, we want to achieve
several goals: a) the code is written in plain ANSI C (not any concurrent
C dialect, e.g. SystemC); b) it should be compiled and linked by a normal
compiler; c) only at run-time we will decide the execution order of the TNs
and on which processor to execute them.

This is not easy remembering all the codes are compiled and linked statically,
which in fact fixes the addresses of all the functions and global variables. More-
over, embedded multiprocessor programming requires well synchronized code

114CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

and protected data. It becomes even worse when we assume a dynamic and
open system, which allows new TFs to come and join the running applications
at any moment (however, the new coming TFs will wait till the next scheduling
point to be scheduled and executed). One obvious solution is to wrap every
TF and TN in a process/thread structure provided by the RTOS and to apply
the tricky and error-prone multiprocess programming method. However, this
will cause frequent switches between the process space and the RTOS space
and frequent context switches among processes. It also requires inter and/or
remote process communication mechanisms. All these are expensive, especially
for multiprocessor platforms.

To handle the problems in a systematic and generic way, we have wrapped
every TF into an object, which contains an initializer, a scheduler and a TF
specific data structure. The scheduler keeps a set of function pointers. Every
Pareto point just means a different set of values of these pointers. Whenever
a new TF enters the system, its initializer is first called to register itself to the
system. Then for a given Pareto point, the scheduler resets its pointers to the
desired TNs in the appropriate order. Therefore, the scheduler can execute the
TNs by referring to the function pointers in the given order, and map them
accordingly. Figure 7.2 shows the execution scenario of one possible scheduling
decision of our example.

tn_A()

signal wait

tn_B()

signalwait

initialize tf_2

terminate tf_2

tn_1()

signal wait

tn_2()

signalwait

initialize tf_1

terminate tf_1

tn_3()

Figure 7.2: One possible run time mapping of the simple example.

7.2. EXPERIMENTAL SYSTEM SETUP 115

Our approach has a low overhead because the complete code is held in one
single process space and no unnecessary context switch involved. Meanwhile,
it provides an easy solution to achieve a flexible and open system.

7.2 Experimental System Setup

In this section the conceptual approach of Section 7.1 will be demonstrated
with a real platform and a RTOS.

7.2.1 The Experimental Platform

As shown below (Figure 7.3), the board consists of two TI C6202 DSPs, each

SDRAM

TI C6202

internal
memory

TI C6202

internal
memory

Figure 7.3: The experiment board.

with a 128KB on-chip memory. The on-chip memory is divided into two halves,
one for stack and the other is program addressable and free for use. An off-
chip 32MB SDRAM is also available. It holds the program codes, private data
and a piece of shared memory. The DSPs and the SDRAM are connected
by a bus. No data cache is present, either on chip or off chip, which means:
a) slower data access speed. However, we can either implement a memory
allocator, handling the internal on-chip memory as a full software-controlled
cache, or simply address and maintain it ourselves in the program. b) no costly
overhead is paid to obtain cache consistency and coherency which are anyhow

116CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

mainly useful for big multiprocessor systems running general-purpose software.
The embedded software designer typically has better knowledge and full control
over his system, enabling him to avoid and manage data conflicts in a more
efficient way.

On every DSP, a copy of the Virtuoso Real-Time Operating System (RTOS)
[172] is running. The RTOS provides the run-time environment, memory and
task management, IO control and interrupt handling. However, Virtuoso is
more a stand-alone OS than a tightly-coupled OS, in the meaning that every
processor runs independently, communicating and changing data with its peers
only when explicitly asked to do that.

7.2.2 The Run-time System

Our run-time system module runs like a middleware layer (Figure 7.4). It
clearly separates the application from the lower level RTOS, giving the same
APIs even on different operating systems. It is compatible with most current
RTOS implementations as long as they have well defined APIs for task activa-
tion and synchronization. Therefore, it is easy to be ported and can be used
as an integration component in a heterogeneous multiprocessor platform.

CPU type 0

RTOS

Run-time
system

CPU type 1

RTOS

Run-time
system

Application

Figure 7.4: Our run-time system separates the application from the RTOS and
the hardware below.

The run-time system performs the run-time scheduling hierarchically (Fig-
ure 7.5): the system side is responsible for managing Pareto curves, finding
a Pareto point and dispatching the TFs, while the TF side does the real map-
ping and ordering based on the Pareto point selected by the run-time system.
Whenever a new TF enters the system, it first registers itself to the run-time
manager. At the next scheduling point, triggered by an interrupt from a timer
or other application related events, the system side scheduler, taking into ac-
count the Pareto curves of all active TFs and running the algorithms presented

7.3. IMPLEMENTATION 117

manager

scheduler

dispatcher

run time system

external
or

internal
event

register

dispatch

scheduler

initializer

1

2

3

1

2

3

scheduler

initializer

1

2

3

1

2

3

scheduler

initializer

1

2

3

1

2

3

TF scheduler

initializer

1

2

3

1

2

3

thread frame 1

thread frame n

Figure 7.5: The run-time system.

in Chapter 4 and Chapter 5, finds when and which TF will be executed. Basi-
cally, this involves ordering the TFs, e.g. based on their priority, and selecting
a Pareto point from the Pareto curve accompanying every TF, given the system
restriction (e.g. the number of a specific resource) and an objective to optimize
(e.g. the energy consumption or quality of service). Having decided the order
and selected the option, the system dispatcher just calls the TF side schedulers
one by one, passing the selected Pareto point to the TF. Accordingly, the TF
side scheduler selects the appropriate implementation of its functions.

The hierarchical scheduling makes the system more dynamic, reusable and
flexible. The run-time system does not have to know the TFs, which can be
any TF, as long as they have a uniform API. The run-time system does not
have to worry how to map and order the internal components of each specific
TF. They are done by the TF code itself, which is generated at compile time
with all the necessary details to achieve this.

Different to normal task scheduling, our implementation avoids the expensive
task management service provided by the RTOS. Actually, except to the back-
ground managing thread, only one thread is running on each processor.

7.3 Implementation

We use two data structures to encapsulate the necessary data, as shown below.

/* system level management data structure */

typedef struct {

118CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

/* data */

int n_tfs; // number of thread frames

TF_QItem *head; // the head of the thread frame queue

/* function pointer */

TCM_Sys_Sched sys_scheduler; // pointer to the system side scheduler

} TCM_Sys;

/* thread frame interface */

typedef struct {

/* data */

int tf_id; // thread frame id

int prio; // thread frame priority

int n_tn; // number of thread node

void * data; // pointer to thread frame specific shared data

P_Curve *pc; // Pareto curve of the thread frame

/* function pointer */

TF_Init tf_initializer; // pointer to the thread frame initializer

TF_Sched tf_scheduler; // pointer to the thread frame scheduler

} TF_If;

TCM Sys stores the system level information, including the number of TFs,
a pointer to the TF queue and a system level scheduler. Every thread frame
is an instance of the TF If, which keeps a function pointer to the initializer
and a function pointer to the thread frame scheduler besides important data
such as the priority level and the Pareto curve of that thread frame. Every TF
can have its specific data. This data is shared between the TNs of that thread
frame and mapped to the external shared memory so that it can be accessed
from either processor.

There are totally three threads running in the system (see Figure 7.6). Thread
background management is responsible for the system level management. It
calls the initializers of the TFs, executes the Pareto curve based run-time
scheduling, stores the scheduling decision and then calls the thread frame side
scheduler. Thread node 0 and node 1 are the threads to implement the functions
of the thread frame schedulers, the detail of which is given later. Thread back-
ground management and node 0 are mapped to processor 0 while thread node
1 is mapped to processor 1. For the run-time scheduling shown in Figure 3.8,
we obtain the execution sequence as shown in Figure 7.6.

The thread frame side scheduler is coded as follows.

tf1_scheduler() { // the scheduler of thread frame 1

7.3. IMPLEMENTATION 119

background
management node0 node1

thread
frame 1

initialization

thread
frame 2

initialization

system
level

scheduling

tn_1

tn_2 tn_3

tn_A

tn_B

thread
frame 1

scheduling

thread
frame 2

scheduling

proc 0 proc 1

Figure 7.6: The execution sequence of the example shown in Figure 3.8. Thread
background management and node 0 are mapped to processor 0 while thread
node 1 is mapped to processor 1.

120CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

if (node0) { // if it is executed in thread node 0

switch(Pareto point) {

case 0:

semaphore_wait(GOON0);

tn_2(); // execute thread node 2

case 1:

tn_1(); // execute thread node 1

semaphore_signal(GOON1);

tn_3(); // execute thread node 3

case 2:

...

...

case k:

...

}

} else { // if it is executed in thread node 1

case 0:

tn_1(); // execute thread node 1

semaphore_signal(GOON0);

tn_3(); // execute thread node 3

case 1:

semaphore_wait(GOON1);

tn_2(); // execute thread node 2

case 2:

...

...

case k:

...

}

}

Thread node 0 and node 1 both call the function tf1 scheduler. However, they
will execute different sections of that function. Depending on the Pareto point
set by the system level scheduler, tf1 scheduler changes the mapping and or-
dering of the TNs accordingly (compare case 0 and case 1 in the code). This
implementation is generic enough to work on any processor and RTOS, as long
as priority-based scheduling is supported and the inter-processor and inter-
process communication is allowed. It could also work on heterogeneous plat-
forms, though more low-level integration problems may need to be solved, which
we still have to find out.

7.4. EXPERIMENTS AND RESULTS 121

7.4 Experiments and Results

We have applied our methodology and implemented it for two applications on
the platform introduced in section 7.2.1. In all of our experiments, the codes
are not deliberately optimized for our TI C6000 VLIW architecture. We are not
discussing how to optimize the code at the instruction or data size level, which
is out of the scope of this thesis and can be done with other state-of-the-art
approaches. Here we consider only the task level parallelism. All the results
shown later are free of instruction and data level parallelism optimization. In
fact, the contents inside the bubbles on Figure 7.7 are untouched compared to
the original MediaBench code. So the TNs are indeed “atomic” as intended by
our gray box approach. However, this will not reduce the effectiveness of the
methodology we describe here.

7.4.1 Experiment to Explore the Overhead

The first simple example we have investigated on our dual-TI platform is based
on the DCT encoder from MediaBench [109]. This simple code has been used
in an experiment designed deliberately to explore the overhead behind our
run-time system.

The DCT encoder uses the discrete cosine transform (DCT) to compress a
pixel image by a factor of 4:1 while preserving its information content. The
encoder divides the image into blocks, each containing 8x8 pixels, as shown in
Figure 7.7. For every block, the encoder reads the image into a buffer, finds its

read
image

find
DCT

scale
and
pack

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 pixels

8

p
i
x
e
l
s

Figure 7.7: The DCT encoder.

DCT, then finally scales and packs it to the output buffer.

The original code (dct in Table 7.1) takes 1.7 million cycles to compress an

122CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

image of 32x32 pixels (4x4 blocks). This number is high for two reasons. Firstly,
the TI C6202 has no floating point units, while the encoder involves a lot of
floating point computation. Secondly, the DSPs are configured to work without
program and data cache.

Next, we have adapted the encoder to our framework. A TF wrapper is gen-
erated for every image block. As shown in Figure 7.8, every TF of dct tf has
three TNs, R, F and S (representing the three bubbles in Figure 7.7). It has two
possible schedulings, namely scheduling0 and scheduling1. If scheduling0 is
selected by the system-level scheduler, the TF will first execute TN R on DSP0,
then TN F on DSP1 and finally TN S on DSP0. The decision looks artificial and
arbitrary, but it can verify whether our run-time system is running functionally
correct and it can give us the overhead number behind our run-time system.
Since one image block is put into one TF, an image of size 4x4 blocks will
generate 16 TF wrappers, i.e. 16 Pareto curves, each with two Pareto points.
The execution time of dct tf, including all the overhead of our framework, is
2.18 million cycles (Table 7.1) for the 4x4 image.

In dct tf, at any moment, only one DSP is running the functional TN, due
to the sequential feature of the block compressing. To take advantage of the
multiprocessor architecture, dct dual wraps the TNs of every two block into
one TF (Figure 7.8, R0 means the R TN of block 0, totally 6 TNs in one
TF), which allows the TF scheduler to explore the task level parallelism and
improve the performance accordingly. Again the schedulings given here are
decided arbitrarily. For the same 4x4 image, it now takes only 1.43 million
cycles, which is a 17% improvement over the original code.

As shown in Figure 7.8, different compositions of the TFs have been tried. We
have also tried a bigger image with 8x8 blocks and the results are summarized
in Table 7.1.

4x4 blocks 8x8 blocks
no. of exec. time no. of exec. time
TFs (M cycles) TFs (M cycles)

dct 1 1.71 1 6.56
dct tf 16 2.18 64 7.50
dct tf2 8 2.08 32 7.16
dct tf4 4 2.04 16 6.98
dct tf8 2 2.02 8 6.89

dct dual 8 1.43 32 4.52
dct dual2 4 1.29 16 3.98
dct dual4 2 1.26 8 3.83

Table 7.1: Execution time of different TF compositions of the DCT encoder.

7.4. EXPERIMENTS AND RESULTS 123

R0

F0

S0

DSP0 DSP1

scheduling 0

R1

F1

S1

DSP0 DSP1

scheduling 1

dct_dual

R0

F0

S0

R1

F1

S1

R0

F0

S0

DSP0 DSP1

scheduling 0

DSP0 DSP1

scheduling 1

dct_dual2

R1

F1

S1

R2

F2

S2

R3

F3

S3

R2

F2

S2

R3

F3

S3

R0

F0

S0

R1

F1

S1

R

F

S

DSP0 DSP1

scheduling 0

R

F

S

DSP0 DSP1

scheduling 1

dct_tf

R0

F0

S0

DSP0 DSP1

scheduling 0

R0

F0

S0

DSP0 DSP1

scheduling 1

dct_tf2

R1

F1

S1

R1

F1

S1

Figure 7.8: Different TF compositions of the DCT encoder.

From this table, we can see that the overhead of our run-time scheduling layer
constantly drops with the decrease of the number of TFs, in both the dct tf
and dct dual series for the same input image. In fact, this overhead can be
decomposed into two components: the overhead per system and the overhead
per TF (see Table 7.2). The former comes from the initialization and the
booking of the system, and it is more or less the same for every system. For
every TF running on the system, we also have to pay some overhead to start it,
send data to it and synchronize it. Hence, the total overhead can be expressed
as n ∗ a + b, where n is the number of TFs (see Table 7.2). One obvious
observation from it is that the per TF overhead of dct dual is more than two
times higher than dct tf. This can be explained by Figure 7.8: dct dual TFs
have twice the amount of data communication and synchronization as dct tf.

The per TF overhead is only 11K cycles in the dct tf series and 29K cycles in
the dct dual series. This is acceptably low if the TF code is big enough, which

124CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

dct tf series dct dual series
4x4 8x8 4x4 8x8

a(per TF overhead) 11.19 10.88 29.11 29.50
b(per system overhead) 282 247 333 281

Table 7.2: The decomposition of the overhead, in K cycles.

is not the case here for this simple illustration but is true for any real-life
application that we would consider like the H.263 test case in the next section.

Another interesting issue is the performance improvement from the dct dual
cases, which takes advantage of the task level parallelism exposed by our design
methodology. For an image size of 4x4 blocks, the dct dual and dct dual4
improve the performance by 17% and 27% respectively. For an image size of
8x8, the improvements are 31% and 42%, which is already close to the 50%
theoretical upper bound.

7.4.2 The Realistic H.263 Test Case

We have also investigated the ITU-T H.263 application, which is an interna-
tional standard for video conference and other low-bit-rate video streams.

We have used the Telenor C exemplary implementation code, tmn-1.7. Except
to necessary changes to enable our approach, we made no more optimization,
neither the algorithm level nor the instruction level. In that code, the stream
can basically have 3 different kinds of video frame: I, P, and PB. I frame is
also called intra-frame because it is encoded only using the information of that
video frame and does not depend on any other frame. From time to time,
we have to insert an I frame because either we have a completely new video
stream (e.g, the editing) or we have to get rid of the accumulated noise from
predicting. P frame is forwardly predicted from another I or P video frame, by
using Motion Compensation. PB frame actually contains the information of
two frames. First a P frame (frame i+2) can be decoded from its previous I/P
frame (frame i), then another frame, frame i+1, can be predicted forwardly
from frame i and backwardly from frame i+2 and inserted between them. One
sequence is that for the next period the processor can be idle because in the
previous period it has already generated the video frames for both the previous
and current period. For every I, P or PB frame, the code can be separated into
two nodes, the decoding node and the conversion node. The decoding node does
all the work related to reading in the data, entropy decoding, rescaling, idct
and motion compensation, finally generating data in YUV format. To really
show the video, we still have to convert it from YUV format to RGB (which
is understandable by the display) and store it in the display memory, which is

7.4. EXPERIMENTS AND RESULTS 125

done by the conversion node. Depending on the type of frame (I/P/PB) and
the size of image, these two nodes will take a different number of processor
cycles.

Figure 7.9: The I, P, and PB frame of H.263.

To simulate the dynamic behaviors of future applications (e.g. Philips’ WWICE
interface), we manipulate 5 video streams simultaneously where the frame size
of each stream typically differs. Strm0 is the combination of different CIF clips
from the standard benchmark Akiyo, Coastguard, Container, Foreman and Hall
video streams. Every clip lasts for 100 frames. This is used to simulate the
main video stream one is watching. At the same time, we have four streams
(Strm1, Strm2, Strm3 and Strm4), which are generated from shorter video clips
(5-50 frames each) in QCIF format. These streams are used to simulate the
user triggered events. For instance, when a user is watching TV, he may talk
to another person by the video phone and browsing on line, all on the same
platform. For Strm1-4, between clips we randomly inserted 2-12 idle frames,
to simulate the idle time of the user.

At the beginning of every period, the applications read in the frame headers
of all the five streams, to see what kind of frames it is going to handle for
the current period, then maps and orders these nodes on our experimental
board. We have used streams of 1000 periods and the results are summarized
in Table7.3.

We have compared the result of our dynamic mapping and ordering approach
to 3 reference cases. In the first case (single in Table 7.3) we put all the nodes
onto a single processor. It is used to give a reference on how a single processor
performs. In the fixed 0 4 case, we put nodes of Strm0 on one processor (it
is in CIF format and requires much more execution time) and Strm1-4 on
another processor. In the fixed 1 3 case, we put both Strm0 and Strm1 on one
processor, and Strm2-4 on another processor. When the frame rate is 20, case
“single” will cause 524 deadline misses, which is more than half of the periods,
while case fixed 0 4 and fixed 1 3 cause 245 and 131 deadline misses, which are
better but still more than 10% of the periods are hardly usable. Under the same

126CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

condition, our dynamic case will cause only 39 deadline misses, which is only
3.9% of the total periods. When the frame rate is relaxed to 15, the deadline
misses caused by the fixed 0 4 and fixed 1 3 are 53 and 1, while our dynamic
case meets all the deadlines. We can notice that fixed 1 3 performs much better
than fixed 0 4, but the exact number of deadline misses of fixed 1 3 depends on
the input streams and can be worse than what we show here. For both frame
rates, our solution is always best because it can adapt to the real need of that
period. In all cases, the results of our dynamic solution have already included
the implementation and scheduling overhead.

fps=20 fps=15
deadline miss energy(J) deadline miss energy(J)

single 524 14.71(no DVS) 265 14.71(no DVS)
fixed 0 4 245 10.75 53 9.17
fixed 1 3 131 10.14 1 8.07
dynamic 39 9.12 0 7.34

Table 7.3: The deadline miss and energy consumption for 1000 period.

Another advantage of our dynamic mapping and ordering approach is that it
can increase the energy saving impact of DVS. Since the board we use does not
support DVS, we have only simulated the effects of DVS on a PC by checking
the available slack time of every period. As long as a DVS-compatible processor
(e.g. XScale) is on our experimental board, we can really implement it with
the same approach.

According to TI’s datasheet, the power consumption of the 300MHz C6202
CPU core is 300mW. We assume the working frequency can be continuously
slowed down to as low as 200MHz, and the supplying voltage will proportionally
scale down from 1.5V to 1.0V. This assumption is commonly taken also by
other academic researchers [152]. Since the frame header of each stream is
decoded first at the beginning of every period, it enables us to make an accurate
estimation about the execution time of every TN to be executed in that period.
With the above assumptions, we have applied DVS on fixed 0 4, fixed 1 3 and
our dynamic case. The results (Table 7.3) show that our dynamic approach
has 10% (fps=20) and 9% (fps=15) energy savings even compared to fixed 1 3,
which is the best possible result if the tasks are mapped statically by the state-
of-the-art DVS technique [7]. Compared to the non-DVS original case, the
energy saving is 38% (fps=20) and 50% (fps=15).

7.5. CONCLUSION 127

7.5 Conclusion

In this chapter we have presented a systematic approach on how to insert a
middleware layer between the application and the RTOS to map and order
tasks dynamically for multiprocessor platforms. Two experiments have been
done on a real dual-TI experimental board. This practical proof is one contri-
bution compared to the normal simulation approach taken by other researchers.
A simple DCT example is used to illustrate the overhead introduced by our
middleware layer. An H.263 example shows the large impact of our approach
on real-life applications, where the deadline miss rate is dramatically reduced.
When DVS is considered, an 10% energy saving has been achieved compared
to the state-of-the-art approach.

128CHAPTER 7. MAPPING AND ORDERING TASKS DYNAMICALLY ON MULTIPROCESSORS

Chapter 8

Conclusions and Future

Work

This doctoral research has been performed in the context of the Task Concur-
rency Management (TCM) project at IMEC, which aims to provide a system-
atic methodology and design flow for the complex embedded software design
for highly concurrent and highly dynamic applications.

The merging of computers, consumer and communication disciplines gives rise
to very fast growing markets for personal communication, multimedia and
broadband networks. Technology advances lead to platforms with enormous
processing capacity that are however not matched with the required increase
in system design productivity. One of the most critical bottlenecks is the very
dynamic and concurrent behaviors of many nowadays multimedia applications.
Normally first specified in software oriented languages (like Java, UML, SDL,
C++), these applications have to be executed at real time in a cost/energy-
sensitive way, most probably on heterogeneous System-on-Chip platforms. A
systematic way of mapping these software specifications onto embedded mul-
tiprocessor platforms is required. The fully design-time based solutions, as
proposed earlier in the compiler and system synthesis communities, can not
handle the problem properly. They can only solve the problem by assuming
the worst case situations, which results in very costly designs.

In order to deal with these new dynamic applications where tasks and com-
plex data types are created and deleted at run-time based on non-deterministic
events (typically at the rate of tens of ms), a novel system design paradigm
is required. TCM tackles this problem by first describing the system with a
MTG* based gray-box model [150]. This allows us to expose the key dynamic

129

130 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

and concurrent features of the system while hide all unnecessary details. Then
a transformation step can be applied to improve and optimize the system con-
currency. After that, a two-phase scheduling approach is proposed to allocate,
map and order the tasks of the system onto the multiprocessor platforms. The
design-time scheduler explores the design space and pre-stores the exploration
results, while the run-time scheduler is used to optimize the system perfor-
mance/cost according to the system dynamic context and the pre-computed
information.

In this thesis, we mainly focus on the algorithms that the run-time scheduler
needs to make system-level dynamic tradeoffs and the implementation of such
a scheduler on top of normal RTOSes. Two real-life demonstrators are also
used to verify the effectiveness of the complete design flow.

8.1 Contributions

The main contributions of this thesis work are the following:

1. In Chapter 3, the complete TCM design methodology has been defined.
This is the cooperation work with several other PhD students in the TCM
team, in particular Chun Wong, Paul Marchal, Stefaan Himpe and Agge-
liki Prayati [180, 183, 175, 169, 106]. In this methodology, an application
is first modeled with the MTG* based gray-box model. Then a transfor-
mation step is used to further increase and expose the parallelism of the
application so that it can be better mapped to the multiprocessor plat-
forms. After that, a hybrid design time and run time scheduling approach
is proposed mainly for three reasons. First, this scheme better optimizes
the embedded software design. Second, it gives the entire system more
runtime flexibility. Third, it reduces runtime computation complexity.

2. In Chapter 4 and Chapter 5, two algorithms are proposed for the run-time
scheduling. The first algorithm schedules the applications sequentially
while exploring the tradeoffs dynamically [178]. This algorithm is best
used for systems with fewer processors (e.g. less than 4) because of its
speed and solution quality. When the system comprises a larger number
of processors, the second algorithm allows several applications to run
simultaneously, each using a part of the platform. This typically leads
to better usage of the processors available in the system and results in
shorter completion time or less energy cost. However, its computation
overhead is higher than the first algorithm.

3. In Chapter 6, two real-life demonstrators are used to verify the effec-
tiveness of our TCM design methodology. The first is a 3D Quality of

8.2. FUTURE WORK 131

Service application and it is simulated on PC [181, 182]. The second is a
3D rendering application implemented on a real XScale board. Dynamic
voltage scaling is enabled by the enhanced Linux operating system and
the system power consumption is monitored at real time.

4. In Chapter 7, a middleware-like module is developed to map and order
tasks dynamically on a multiprocessor platform, as decided by the run-
time scheduler [179]. This module provides a generic method to integrate
the application, the run-time scheduler and the Real-Time Operating
System at a low overhead. Applicability of this module is tested by a real
dual-DSP platform with applications such as DCT and H.263.

8.2 Future Work

Many opportunities exist to further extend the TCM research, making it more
efficient, applicable to more situations and more easily to use. Below is an
overview of some interesting topics for further research.

• Currently, the TCM approach is done step by step, most of the time
manually. The result of the previous step has to be interpreted and
transformed by the designers, helped with some tools, to make it un-
derstandable and usable to the next step. An integrated automatic or
self-automatic tool chain is highly desirable to alleviate the effort and the
involvement of the users and to improve the quality of the design. Work
is ongoing to achieve this in the TCM alpha team at IMEC.

• We have developed demonstrators for uniprocessor and homogeneous
multiprocessor platforms. To further verify our methodology and to pro-
vide more space for design exploration, demonstrators on real heteroge-
neous multiprocessor platforms are needed. The possibility of integrating
several different RTOSes on the same multiprocessor platform is also in-
teresting.

• The quality of the overlapping run-time heuristic can still be improved.
New techniques are needed to prune the local search space and let the
heuristic converge faster. When the global deadline is loose, an extra
heuristic may be added to further improve the solution quality.

• For applications running on heterogeneous multiprocessor platforms, many
idle time periods may exist on some processors, due to data/control de-
pendencies and/or intra thread frame time constraints. To reduce these
idle periods, interleaving of thread nodes from different thread frames is
a promising solution. However, this will break the boundary of thread

132 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

frames and further work is needed to make sure it will not reduce the
benefits which cause us to separate applications into thread frames and
thread nodes. Currently Zhe Ma is working on this [101].

• At the run time scheduling stage, we assume we can have the full knowl-
edge of the system dynamic context at that moment. It is also possible
we have only partial knowledge of that dynamic context but are still re-
quired to make a schedule. In that case, we may schedule the system first
based on the partial knowledge and our prediction and then refine the
scheduling later when the full knowledge is finally available.

• In this thesis we have only discussed the task scheduling issues. In fact,
the task level data access and memory management for highly dynamic
applications is also an interesting topic, especially when it is integrated
with our TCM approach [106, 3].

Appendix A

List of Publications

Journal Papers

1. P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins. “Energy-aware Runtime Scheduling for Embedded
Multiprocessor SoCs”, IEEE Design & Test of Computers, 18(5):46–58,
Sept. 2001.

2. P. Marchal, M. Jayapala, S. De Souza, P. Yang, F. Catthoor, and G. De-
coninck. “Matador: an exploration environment for system-design”, Jour-
nal of Circuits, Systems and Computers, 11(5):503–535, 2002.

Book Chapter

1. P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J. Vounckx,
and R. Lauwereins. “Cost-efficient Mapping of Dynamic Concurrent
Tasks in Embedded Real-Time Multimedia Systems”, in Multi-Processor
System on Chip, Morgan Kaufman, 2004.

Conference Papers

1. P. Yang, D. Desmet, F. Catthoor, and D. Verkest. “Dynamic Scheduling
of Concurrent Tasks with Cost Performance Trade-off”, in Int. Conf.
Compilers, Architectures, and Synthesis for Embedded Systems, pages
103–109, San Jose, CA, 2000.

133

134 APPENDIX A. LIST OF PUBLICATIONS

2. D. Verkest, P. Yang, C. Wong, and P. Marchal. “Optimisation Problems
for Dynamic Concurrent Task-based Systems”, in IEEE/ACM Interna-
tional Conference on Computer-Aided Design, embedded tutorial, pages
265–268, San Jose, Nov. 2001.

3. C. Wong, P. Marchal, P. Yang, A. Prayati, N. Cossement, F. Catthoor,
R. Lauwereins, D. Verkest, and H. De Man. “Task Concurrency Man-
agement Methodology to Schedule the MPEG4 IM1 Player on a Highly
Parallel Processor Platform”, in Proceedings of the International Work-
shop on Hardware/Software Codesign(CODES), pages 170–175, 2001.

4. P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J. Vounckx,
and R. Lauwereins. “Managing Dynamic Concurrent Tasks in Embedded
Real-Time Multimedia Systems”, in Proceedings of International Sympo-
sium on System Synthesis, invited paper, pages 112–119, Kyoto, Japan,
Oct. 2002.

5. P. Yang and F. Catthoor. “Pareto-Optimization-Based Run-Time Task
Scheduling for Embedded Systems”, in ISSS+CODES, pages 120–125,
Newport Beach, CA, 2003.

6. P. Yang and F. Catthoor. “Dynamic Mapping and Ordering Tasks of
Embedded Real-Time Systems on Multiprocessor Platforms”, in Proc.
8th Int. Workshop on Software and Compilers for Embedded Systems
(SCOPES), Amsterdam, the Netherland, 2004.

Appendix B

Abbreviations

API Application Program Interface
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction Processor
CDFG Control Data Flow Graph
CPU Central Processing Unit
DCT Discrete Cosine Transform
DP Dynamic Programming
DPM Dynamic Power Management
DSP Digital Signal Processing
DTSE Data Transfer and Storage Exploration
DVS Dynamic Voltage Scaling
EDF Earliest Deadline First
IC Integrated Circuit
ILP Integer Linear Programming
MCKP Multiple Choice Knapsack Problem
MILP Mixed Integer Linear Programming
MIPS Million Intruction Per Second
MPEG Moving Picture Expert Group
MTG Multi Task Graph
PBD Platform Based Design
QoS Quality of Service
RM Rate Monotonic
RT Real Time
RTOS Real Time Operating System
SoC System on Chip
TCM Task Concurrency Management
TF Thread Frame

135

136 APPENDIX B. ABBREVIATIONS

TN Thread Node
VLIW Very Long Instruction Word
WCET Worst Case Execution Time

Bibliography

[1] A. Acquaviva, L. Benini, and B. Ricco. Software-Controlled Processor Speed
Setting for Low-Power Streaming Multimedia. IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, 20(11):1283–1292, Nov. 2001.

[2] Acunia. http://www.acunia.com.

[3] D. Atienza, S. Mamagkakis, F. Catthoor, J. Mendias, and D. Soudris. Dy-
namic memory management design methodology for reduced memory footprint
in multimedia and wireless network applications. In Proceedings of the Design
Automation and Test in Europe, pages 532–537, Paris, France, Feb. 2004.

[4] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Fixed Priority Pre-
emptive Scheduling: an Historical Perspective. Real-Time Systems, 8(2):173–
198, 1995.

[5] N. Audsley, K. Tindell, and A. Burns. The end of the line for static cyclic
scheduling? In Proceedings of the 5th Euromicro Workshop on Real-Time Sys-
tem, pages 36–41. Oulu, Finland, 1993.

[6] N. C. Audsley. Optimal Priority Assignment and Feasibility of Static Priority
Tasks with Arbitrary Start Times. Technical Report YCS 164, Deptartment of
Computer Science, University of York, UK, 1991.

[7] A. Azevedo et al. Profile-based dynamic voltage scheduling using program
checkpoints. In Proceedings of the Design Automation and Test in Europe,
pages 168–175, 2002.

[8] T. P. Baker. Stack-Based Scheduling of Realtime Processes. Real-Time Systems,
3(1):67–99, 1991.

[9] F. Balarin et al. Hardware-Software Co-Design of Embedded Systems: the PO-
LIS Approach. Kluwer Academic Publishers, 1997.

[10] S. Baruah et al. On the Competitiveness of On-line Real-time Scheduling. In
Proceedings of the IEEE Real-Time System Symposium, pages 106–115, Dec.
1991.

[11] L. Benini, A. Bogliolo, and G. De Micheli. A Survey of Design Techniques for
system-Level Dynamic Power Management. IEEE Transactions on Very Large
Scale Integration(VLSI) Systems, 8(3):299–316, June 2000.

137

138 BIBLIOGRAPHY

[12] L. Benini and G. De Micheli. Dynamic Power Management: Design Techniques
and CAD Tools. Kluwer Academic Publishers, Boston, 1997.

[13] L. Benini and G. De Micheli. System-level Power Optimization Techniques
and Tools. ACM Transactions on Design Automation of Electronic Systems,
5(2):115–192, Apr. 2000.

[14] L. Benini and G. De Micheli. Powering Networks on Chips. In Proceedings of
International Symposium on System Synthesis, pages 33–38, Montreal, Quebec,
Canada, Oct.1-3 2001.

[15] T. Benner and R. Ernst. An Approach to Mixed Systems Co-Synthesis.
In Proceedings of the International Workshop on Hardware/Software Code-
sign(CODES), pages 9–14, 1997.

[16] B. A. Blake and K. Schwan. Experimental Evaluation of a Real-time Sched-
uler for a Multiprocessor System. IEEE Transactions on Software Engineering,
17(1):34–44, Jan. 1991.

[17] J. Borel. Design automation in MEDEA: Present and Future. IEEE Micro,
19(5):71–79, Sept. 1999.

[18] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. An Instruction-level
Functionality-based Energy Estimation Model for 32-bits Microprocessors. In
Proceedings of the 37th Design Automation Conference, pages 346–350, June
2000.

[19] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen. A Dy-
namic Voltage Scaled Microprocessor System. IEEE J. Solid-State Circuits,
35(11):1571–1580, Nov. 2000.

[20] G. C. Buttazzo and F. Sensini. Optimal Deadline Assignment for Scheduling
Soft Aperiodic Tasks in Hard Real-Time Environments. IEEE Transactions on
Computers, 48(10):1035–1051, Oct. 1999.

[21] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data Driven Signal Pro-
cessing: An Approach for Energy Efficient Computing. In Proceedings of Inter-
national Symposium on Low Power Electronic Device, pages 347–352, 1996.

[22] A. P. Chandrakasan and R. W. Brodersen. Minimizing Power Consumption in
Digital CMOS Circuits. Proceedings of the IEEE, 83(4):498–523, Apr. 1995.

[23] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-Power CMOS Digital
Design. IEEE Journal of Solid-State Circuits, 27(4):473–484, Apr. 1992.

[24] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd. Surviving
the SOC Revolution: A Guide to Platform-Based Design. Kluwer Academic
Publishers, 1999.

[25] H. Chetto and M. Chetto. Some Results of the Earliest Deadline Scheduling
Algorithm. IEEE Transactions on Software Engineering, 15(10):1261–1269,
Oct. 1989.

[26] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic Scheduling of Real-Time
Tasks Under Precedence Constraints. Real-Time Systems, 2(3):181–194, Sept.
1990.

BIBLIOGRAPHY 139

[27] E.-Y. Chung, L. Benini, A. Bogliolo, and G. De Micheli. Dynamic Power Man-
agement for Non-Stationary Service Requests. In Proceedings of the Design
Automation and Test in Europe, pages 77–81, 1999.

[28] E.-Y. Chung, L. Benini, and G. De Micheli. Dynamic Power Management
Using Adaptive Learning Tree. In IEEE/ACM International Conference on
Computer-Aided Design, pages 274–279, 1999.

[29] E.-Y. Chung, L. Benini, and G. De Micheli. Contents Provider-Assisted Dy-
namic Voltage Scaling for Low Energy Multimedia Applications. In Proceed-
ings of International Symposium on Low Power Electronic Device, pages 42–47,
Monterey, CA, USA, Aug. 2002.

[30] T. Claasen. High Speed: Not the Only Way to Exploit the Intrinsic Computa-
tional Power of Silicon. In Proc. Int. Solid-State Circuits Conf., pages 22–25,
San Fransisco, CA, Feb. 1999.

[31] A. P. Dancy, R. Amirtharajah, and A. P. Chandrakasan. High-Efficiency
Multiple-Output DC-DC Conversion for Low-Voltage Systems. IEEE Trans-
actions on Very Large Scale Integration(VLSI) Systems, 8(3):252–263, June
2000.

[32] B. P. Dave and N. K. Jha. COHRA: Hardware-Software Co-Synthesis of Hi-
erarchical Distributed Embedded System Architectures. In Proceedings of the
International Conference on VLSI Design, pages 347–354, 1997.

[33] B. P. Dave and N. K. Jha. COHRA: Hardware-Software Co-Synthesis of Hi-
erarchical Heterogeneous Distributed Embedded Systems. IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, 17(10):900–919,
Oct. 1998.

[34] B. P. Dave, G. Lakshminarayana, and N. K. Jha. COSYN: Hardware-Software
Co-Synthesis of heterogeneous Distributed Embedded Systems. IEEE Transac-
tions on Very Large Scale Integration(VLSI) Systems, 7(1):92–104, Mar. 1999.

[35] R. I. Davis. Scheduling Slack Time in Fixed Priority Preemptive Systems.
Technical Report YCS 216, Dept. of Comp. Sci., Univ. of York, UK, 1993.

[36] E. A. de Kock. Multiprocessor Mapping of Process Networks: A JPEG Decod-
ing Case Study. In Proceedings of International Symposium on System Synthe-
sis, pages 68–73, Kyoto, Japan, Oct. 2002.

[37] H. De Man. On Nanoscale Integration and Gigascale Complexity in the Post
.com World. In Proceedings of the Design Automation and Test in Europe, 2002.
keynote speech.

[38] M. L. Dertouzos and A. K. lau Mok. Multiprocessor on-line scheduling of hard-
real-time tasks. IEEE Transactions on Software Engineering, 15(12):1497–1506,
Dec. 1989.

[39] R. P. Dick and N. K. Jha. CORDS: Hardware-Software Co-Synthesis of Recon-
figurable Real-Time Distributed Embedded Systems. In IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 62–68, 1998.

140 BIBLIOGRAPHY

[40] R. P. Dick and N. K. Jha. MOGAC: A Multiobjective Genetic Algorithm
for Hardware-Software Cosynthesis of Distributed Embedded Systems. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems,
17(10):920–935, Oct. 1998.

[41] R. P. Dick and N. K. Jha. MOCSYN: Multiobjective Core-Based Single-Chip
System Synthesis. In Proceedings of the Design Automation and Test in Europe,
pages 263–270, Mar. 1999.

[42] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: Task Graphs for Free.
In Proceedings of the International Workshop on Hardware/Software Code-
sign(CODES), pages 97–101, 1998.

[43] C. Ding and K. Kennedy. Improving Cache Performance in Dynamic Applica-
tions through Data and Computation Reorganization at Run-time. In Proc. of
Programming Language Design and Implementation, pages 229–241, 1999.

[44] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Scheduling of Condi-
tional Process Graphs for the Synthesis of Embedded Systems. In Proceedings
of the Design Automation and Test in Europe, pages 132–138, 1998.

[45] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano. Power Estimation of
Embedded Systems: A Hardware/Software Codesign Approach. IEEE Trans-
actions on Very Large Scale Integration(VLSI) Systems, 6(2):267–275, June
1998.

[46] P. Gerin, S. Yoo, G. Nicolescu, and A. Jerraya. Scalable and Flexible Cosimula-
tion of SoC Designs with Heterogeneous Multi-Processor Target Architectures.
In Proc. Asia South Pacific Design Automation Conference, pages 63–68, 2001.

[47] S. Gertphol et al. A Metric and Mixed-Integer-Programming-Based Approach
for Resource Allocation in Dynamic Real-Time Systems. In Proceedings of
International Parallel and Distributed Processing Symposium, 2002.

[48] T. Givargis, J. Henkel, and F. Vahid. Interface and Cache Power Exploration
for Core-Based Embedded System Design. In IEEE/ACM International Con-
ference on Computer-Aided Design, pages 270–275, Oct. 1999.

[49] J. Goodman, A. Chandrakasan, and A. P. Dancy. Design and Implementation
of a Scalable Encryption Processor with Embedded Variable DC/DC Converter.
In Proceedings of the 36th Design Automation Conference, pages 855–860, 1999.

[50] K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for dynamic
speed-setting of a low-power CPU. In Proc. the First Annual Int. Conf. on
Mobile Computing and Networking, pages 13–25, New York, NY, USA, 1995.

[51] F. Gruian and K. Kuchcinski. Uncertainty-Based Scheduling: Energy-Efficient
Ordering for Tasks with Variable Execution Time. In Proceedings of Interna-
tional Symposium on Low Power Electronic Device, pages 465–468, Aug.25-27
2003.

[52] D. Grunwald, C. B. Morrey III, et al. Policies for Dynamic Clock Scheduling.
In Proc. Symp. Operating Systems Design and Implementation, pages 13–25,
Oct. 2000.

BIBLIOGRAPHY 141

[53] S. Ha and E. A. Lee. Compile-Time Scheduling of Dynamic Constructs in
Dataflow Program Graphs. IEEE Transactions on Computers, 46(7):768–778,
July 1997.

[54] S. Hartmann. Project scheduling with multiple modes: A genetic algorithm.
Annals of Operations Research, 102:111–135, 2001.

[55] T. Hegazy and B. Ravindran. Using Application Benefit for Proactive Resource
Allocation in Asynchronous Real-Time Distributed Systems. IEEE Transac-
tions on Computers, 51(8):945–962, Aug. 2002.

[56] S. Heo, K. Barr, and K. Asanovic. Reducing Power Density through Activity
Migration. In Proceedings of International Symposium on Low Power Electronic
Device, pages 217–222, Seoul, Korea, Aug.25-27 2003.

[57] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power
Optimization of Variable Voltage Core-Based Systems. In Proceedings of the
35th Design Automation Conference, pages 176–181, San Francisco, CA, 1998.

[58] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power
Optimization of Variable Voltage Core-Based Systems. IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, 18(12):1702–1714,
Dec. 1999.

[59] I. Hong, M. Potkonjak, and M. B. Srivastava. On-Line Scheduling of Hard
Real-Time Tasks on Variable Voltage Processor. In IEEE/ACM International
Conference on Computer-Aided Design, pages 653–656, San Jose, CA, 1998.

[60] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis Techniques
for Low-Power Hard Real-Time Systems on Variable Voltage Processors. In
Proceedings of the IEEE Real-Time System Symposium, pages 178–187, 1998.

[61] C.-J. Hou and K. G. Shin. Load Sharing with Considerations of Future Arrivals
in Heterogeneous Distributed Real-time Systems. In Proceedings of the IEEE
Real-Time System Symposium, pages 94–103, Dec. 1991.

[62] S. Hua, G. Qu, and S. S. Bhattacharyya. Energy Reduction Techniques for
Multimedia Applications with Tolerance to Deadline Misses. In Proceedings of
the 40th Design Automation Conference, pages 131–136, Anaheim, CA, USA,
June 2003.

[63] C. Hughes, V. Pai, P. Ranganathan, and S. Adve. Rsim: Simulating Shared-
Memory Multiorcessors with ILP Processors. IEEE Computer, 35(2):40–49,
Feb. 2002.

[64] H. Hulgaard and S. M. Burns. Bounded Delay Timing Analysis of a Class of
CSP Programs. Formal Methods in System Design, 11:265–294, 1997.

[65] C. Im, H. Kim, and S. Ha. Dynamic Voltage Scheduling Technique for Low-
Power Multimedia Applications Using Buffers. In Proceedings of International
Symposium on Low Power Electronic Device, pages 34–39, 2001.

[66] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for Dynamically Vari-
able Voltage Processors. In Proceedings of International Symposium on Low
Power Electronic Device, pages 197–202, 1998.

142 BIBLIOGRAPHY

[67] A. Iyer and D. Marculescu. Power and Performance Evaluation of Globally
Asynchronous Locally Synchronous Processors. In International Symposium on
Computer Architecture, pages 158–168, 2002.

[68] N. K. Jha. Low Power System Scheduling and Synthesis. In IEEE/ACM In-
ternational Conference on Computer-Aided Design, pages 259–263, 2001.

[69] C. Joshi, A. Kumar, and M. Balakrishnan. A New Performance Evaluation Ap-
proach for System Level Design Space Exploration. In Proceedings of Interna-
tional Symposium on System Synthesis, pages 180–185, Kyoto, Japan, Oct.2-4
2002.

[70] I. Kadayif, M. Kandemir, and M. Karakoy. An Energy Saving Strategy Based
on Adaptive Loop Parallelization. In Proceedings of the 39th Design Automation
Conference, pages 195–200, New Orleans(LA), USA, June10-14 2002.

[71] I. Kadayif, M. Kandemir, and M. U. Sezer. An Integer Linear Programming
Based Approach for Parallelizing Applications in On-Chip Multiprocessors. In
Proceedings of the 39th Design Automation Conference, pages 703–708, New
Orleans(LA), USA, June10-14 2002.

[72] W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling Algorithm for
Dynamic-Priority Hard Real-Time Systems Using Slack Time Analysis. In Pro-
ceedings of the Design Automation and Test in Europe, pages 788–794, 2002.

[73] R. Kolisch and S. Hartmann. Project scheduling: Recent models, algo-
rithms and applications, chapter Heuristic Algorithms for Solving the Resource-
Constrainted Project Scheduling Problem: Classification and Compuptational
Analysis, pages 147–178. Kluwer Academic Publishers, Amsterdam, the Nether-
lands, 1999.

[74] R. Kolisch and R. Padman. An integrated perspective of project scheduling.
Technical Report 463, Manuskripte aus den Instituten fur Betriebswirtschaft-
slehre der Universitat Kiel, 1997.

[75] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Proces-
sor Power Reduction. In Proc. International Symposium on Microarchitecture,
pages 81–92, Dec. 2003.

[76] W.-C. Kwon and T. Kim. Optimal Voltage Allocation Techniques for Dynami-
cally Variable Voltage Processors. In Proceedings of the 40th Design Automation
Conference, pages 125–130, Aneheim (CA), USA, June2-6 2003.

[77] M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno. Efficient Power Co-
estimation Techniques for System-on-Chip Design. In Proceedings of the Design
Automation and Test in Europe, pages 27–34, Mar. 2000.

[78] C. Lee, M. Potkonjak, and W. Wolf. Synthesis of Hard Real-Time Application
Specific Systems. Design Automation for Embedded System, 4(4):216–242, Oct.
1999.

[79] C.-G. Lee, J. Hahn, et al. Analysis of Cache-Related Preemption Delay in Fixed-
Priority Preemptive Scheduling. IEEE Transactions on Computers, 47(6):700–
713, June 1998.

BIBLIOGRAPHY 143

[80] E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. IEEE Transactions on Computers, C-
36(1):24–35, Jan. 1987.

[81] S. Lee and T. Sakurai. Run-Time Voltage Hopping for Low-Power Real-Time
Systems. In Proceedings of the 38th Design Automation Conference, pages 806–
809, Los Angeles, CA, 2000.

[82] S. Lee, S. Yoo, and K. Choi. An Intra-task Dynamic Voltage Scaling Method
for SoC Design with Hierarchical FSM and Synchronous Dataflow Model. In
Proceedings of International Symposium on Low Power Electronic Device, pages
84–87, Monterey, CA, USA, Aug. 2002.

[83] T.-M. Lee, J. Henkel, and W. Wolf. Dynamic Runtime Re-Scheduling Allowing
Multiple Implementations of a Task for Platform-based Design. In Proceedings
of the Design Automation and Test in Europe, pages 296–301, 2002.

[84] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Scheduling
Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems. In Proceedings of
the IEEE Real-Time System Symposium, pages 110–123, 1992.

[85] J. P. Lehoczky, L. Sha, and Y. Ding. The Rate Monotone Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In Proceedings of the IEEE
Real-Time System Symposium, pages 166–171, Dec. 1989.

[86] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced Aperiodic Responsive-
ness in Hard Real-Time Environments. In Proceedings of the IEEE Real-Time
System Symposium, pages 261–270, 1987.

[87] J. A. Leijten, J. L. van Meerbergen, A. H. Timmer, and J. A. Jess. Stream Com-
munication between Real-Time Tasks in a High-Performance Multiprocessor. In
Proceedings of the Design Automation and Test in Europe, pages 125–131, 1998.

[88] J.-T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling
of Periodic Real-Time Tasks. Performance Evaluation, 2:237–250, 1982.

[89] T. Li and L. K. John. Routine Based OS-aware Microprocessor Resource Adap-
tation for Run-time Operating System Power Saving. In Proceedings of Inter-
national Symposium on Low Power Electronic Device, pages 241–246, Seoul,
Korea, Aug.25-27 2003.

[90] Y. Li and J. Henkel. A Framework for Estimating and Minimizing Energy
Dissipation of Embedded HW/SW Systems. In Proceedings of the 35 Design
Automation Conference, pages 188–193, June 1998.

[91] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment. Journal of the Association for Computing
Machinery, 20(1):46–61, Jan. 1973.

[92] J. Liu, P. H. Chou, and N. Bagherzadeh. Combined Functional Partitioning
and Communication Speed Selection for Networked Voltage-Scalable Proces-
sors. In Proceedings of International Symposium on System Synthesis, pages
14–19, Kyoto, Japan, Oct. 2002.

[93] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD
thesis, Carnegie Mellon Univ., Pittsburgh, PA, May 1985.

144 BIBLIOGRAPHY

[94] Y.-H. Lu, L. Benini, and G. De Micheli. Low-Power Task Scheduling for
Multiple Devices. In Proceedings of the International Workshop on Hard-
ware/Software Codesign(CODES), pages 39–43, 2000.

[95] Y.-H. Lu, L. Benini, and G. De Micheli. Operating-System Directed Power
Reduction. In Proceedings of International Symposium on Low Power Electronic
Device, pages 37–42, 2000.

[96] Y.-H. Lu, L. Benini, and G. De Micheli. Power-aware Operating System for
Interactive System. IEEE Transactions on Very Large Scale Integration(VLSI)
Systems, 10(2):119–34, Apr. 2002.

[97] Y.-H. Lu, T. Simunic, and G. De Micheli. Software Controlled Power Man-
agement. In Proceedings of the International Workshop on Hardware/Software
Codesign(CODES), pages 157–161, 1999.

[98] J. Luo and N. Jha. Battery-Aware Static Scheduling for Distributed Real-Time
Embedded Systems. In Proceedings of the 38th Design Automation Conference,
pages 444–449, June18-22 2001.

[99] J. Luo and N. Jha. Static and Dynamic Variable Voltage Scheduling Algorithms
for Real-Time Heterogeneous Distributed Embedded Systems. In 7th ASPDAC
and 15th Int’l Conf. on VLSI Design, pages 719–726, Jan. 2002.

[100] T. C.-L. Ma and K. G. Shin. A User-Customizable Energy-Adaptive Combined
Static/Dynamic Scheduler for Mobile Applications. In Proceedings of the IEEE
Real-Time System Symposium, pages 227–236, 2000.

[101] Z. Ma, C. Wong, E. Delfosse, J. Vounckx, F. Catthoor, S. Himpe, and G. Decon-
inck. Task Concurrency Analysis and Exploration of Visual Texture Decoder
on a Heterogeneous Platform. In IEEE Workshop on Signal Processing Systems
(SIPS), pages 245–250, Soul, South Korea, 2003.

[102] P. Magarshack and P. G. Paulin. System-on-chip beyond the nanometer wall.
In Proceedings of the Design Automation and Test in Europe, pages 419–424,
2003.

[103] S. Malik and M. Martonosi. Static Timing Analysis of Embedded Software. In
Proceedings of the 34th Design Automation Conference, pages 147–152, 1997.

[104] A. Manzak and C. Chakrabarti. Voltage Scaling for Energy Minimization with
QoS Constraints. In ICDD, pages 438–443, 2001.

[105] P. Marchal, J. Gomez, L. Pinuel, D. Bruni, L. Benini, F. Catthoor, and H. Cor-
poraal. SDRAM-energy-aware Data Allocation for Dynamic Multi-media Appli-
cations on Multiprocessor Platforms. In Proceedings of the Design Automation
and Test in Europe, pages 516–521, Munich, Germany, Mar. 2002.

[106] P. Marchal, M. Jayapala, S. D. Souza, P. Yang, F. Catthoor, and G. Deconinck.
Matador: an exploration environment for system-design. Journal of Circuits,
Systems and Computers, 11(5):503–535, 2002.

[107] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. John Wiley and Sons, 1990.

BIBLIOGRAPHY 145

[108] G. Martin and H. Chang, editors. Winning the SoC Revolution: Experiences
in Real Design. Kluwer Academic Publishers, 2003.

[109] MediaBench. http://cares.icsl.ucla.edu/MediaBench.

[110] P. Mejia-Alvarez, E. Levner, and D. Mosse. Power-Optimized Scheduling Server
for Real-Time Tasks. In Proceedings of the 8th IEEE Real-Time and Embedded
technology and Applications Symposium, pages 239–250, 2002.

[111] B. Mochocki, X. S. Hu, and G. Quan. A Realistic Variable Voltage Scheduling
Model for Real-Time Applications. In IEEE/ACM International Conference on
Computer-Aided Design, pages 726–731, 2002.

[112] A. K. Mok and M. L. Dertouzos. Multiprocessor Scheduling in a Hard Real-
time Environment. In Proc. 7th Texas Computing Conf. Computing Systems,
1978.

[113] T. Mudge. Power: A first class design constraint for future architectures. In
HiPC 2000, pages 215–224, Bangalore, India, Dec. 2000.

[114] T. Okuma, T. Ishihara, and H. Yasuura. Real-Time Task Scheduling for a Vari-
able Voltage Processor. In Proceedings of International Symposium on System
Synthesis, pages 24–29, 1999.

[115] T. Okuma, H. Yasuura, and T. Ishihara. Software Energy Reduction Techniques
for Variable-Voltage Processors. IEEE Design & Test of Computers, 18(2):31–
41, March-April 2001.

[116] V. Pareto. Manuale di Economia Politica. Piccola Biblioteca Scientifica, Milan,
1906. Translated into English by Ann S. Schwier (1971), Manual of Political
Economy, MacMillan, London.

[117] T. Pering, T. Burd, and R. Brodersen. The Simulation and Evaluation of Dy-
namic Voltage Scaling Algorithms. In Proceedings of International Symposium
on Low Power Electronic Device, pages 76–81, 1998.

[118] T. Pering, T. Burd, and R. Brodersen. Voltage Scheduling in the IpARM
Microprocessor System. In Proceedings of International Symposium on Low
Power Electronic Device, pages 96–101, Rapallo, Italy, 2000.

[119] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, Dept. of Computer
Science, University of Copenhagen, Denmark, 1995.

[120] PocketGL. http://www.pocketpcdn.com/libraries/pocketgl.html.

[121] P. Pop, P. Eles, and Z. Peng. Bus Access Optimization for Distributed Embed-
ded Systems Based on Schedulability Analysis. In Proceedings of the Design
Automation and Test in Europe, pages 567–574, 2000.

[122] T. Pop, P. Eles, and Z. Peng. Design Optimization of Mixed Timer/Even-
Triggered Distributed Embedded Systems. In First IEEE/ACM/IFIP Int.
Conf. Hardware/Software Codesign & System Synthesis (CODES+ISSS), pages
31–36, Oct.1-3 2003.

[123] T. Pop, P. Eles, and Z. Peng. Schedulability Analysis for Distributed Hetero-
geous Time/Event Triggered Real-Time Systems. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 257–266, 2003.

146 BIBLIOGRAPHY

[124] J. Pouwelse, K. Langendoen, and H. Sips. Energy Priority Scheduling for Vari-
able Voltage Processors. In Proceedings of International Symposium on Low
Power Electronic Device, pages 28–33, 2001.

[125] A. Prayati, C. Wong, P. Marchal, et al. Task Concurrency Management Ex-
periment for Power-efficient Speed-up of Embedded MPEG4 IM1 Player. In
International Conference on Parallel Processing, pages 453–460, 2000.

[126] G. Qu and M. Potkonjak. System Synthesis of Synchronous Multimedia Appli-
cations. In Proceedings of International Symposium on System Synthesis, pages
128–133, San Jose, CA, USA, Dec. 1999.

[127] G. Qu and M. Potkonjak. Achieving utility arbitrarily close to the optimal
with limited energy. In Proceedings of International Symposium on Low Power
Electronic Device, pages 125–130, Rapallo, Italy, Aug. 2000.

[128] G. Qu and M. Potkonjak. Energy Minimization with Guaranteed Quality of
Service. In Proceedings of International Symposium on Low Power Electronic
Device, pages 43–48, Rapallo, Italy, Aug. 2000.

[129] G. Quan and X. Hu. Energy Efficient Fixed-Priority Scheduling for Real-Time
Systems on Variable Voltage Processors. In Proceedings of the 38th Design
Automation Conference, pages 828–833, 2001.

[130] G. Quan and X. S. Hu. Minimum Energy Fixed-Priority Scheduling for Vari-
able Voltage Processors. In Proceedings of the Design Automation and Test in
Europe, pages 782–787, 2002.

[131] J. Rabaey. Design in the Late-Silicon Age. In DesignCon, 2004. keynote speech.

[132] D. Rakhmatov, S. Vrudhula, and C. Chakrabarti. Battery-conscious task se-
quencing for portable devices including voltage/clock scaling. In Proceedings
of the 39th Design Automation Conference, pages 189–194, New Orleans(LA),
USA, June10-14 2002.

[133] K. Ramamritham. Allocation and Scheduling of Complex Periodic Tasks.
In 10th Int. Conf. on Distributed Computing Systems, pages 108–115, Paris,
France, June 1990.

[134] K. Ramamritham, G. Fohler, and J. M. Adan. Issues in the Static Allocation
and Scheduling of Complex Periodic Tasks. In 10th IEEE Workshop on Real-
Time Operating Systems and Software, pages 11–16, May 1993.

[135] K. Ramamritham and J. A. Stankovic. Scheduling Algorithms and Operation
Systems Support for Real-Time Systems. Proceedings of the IEEE, 82(1):55–67,
Jan. 1994.

[136] K. Ramamritham, J. A. Stankovic, and P. Shiah. Efficient Scheduling Algo-
rithams for Real-time Multiprocessor Systems. IEEE Transactions on Parallel
and Distributed Systems, 1(2):184–194, Apr. 1990.

[137] S. Ramos-Thuel and J. P. Lehoczky. On-Line Scheduling of Hard Deadline
Aperiodic Tasks in Fixed-Priority Systems. In Proceedings of the IEEE Real-
Time System Symposium, pages 160–171, 1993.

BIBLIOGRAPHY 147

[138] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model Composition for
Scheduling Analysis in Platform Design. In Proceedings of the 39th Design
Automation Conference, pages 287–292, New Orleans(LA), USA, June10-14
2002.

[139] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod. Using the SimOS Ma-
chine Simulator to Study Complex Computer Systems. ACM Trans. on Mod-
eling and Computer Simulation, 7(1):78–103, Jan. 1997.

[140] A. Sangiovanni-Vincentelli and G. Martin. Platform-Based Design and Soft-
ware Design Methodology for Embedded Systems. IEEE Design & Test of
Computers, 18(6):23–33, November-December 2001.

[141] M. T. Schmitz and B. M. Al-Hashimi. Considering Power Variations of DVS
Processing Elements for Energy Minimisation in Distributed Systems. In Pro-
ceedings of International Symposium on System Synthesis, pages 250–255, 2001.

[142] K. Schwan and H. Zhou. Dynamic Scheduling of Hard Real-Time Tasks and
Real-Time Threads. IEEE Transactions on Software Engineering, 18(8):736–
748, Aug. 1992.

[143] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis, S. Dwarkadas, and
M. L. Scott. Dynamic Frequency and Voltage Control for a Multiple Clock
Domain Microarchitecture. In Proc. International Symposium on Microarchi-
tecture, pages 356–367, Feb. 2002.

[144] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
and M. L. Scott. Energy-Efficient Processor Design Using Multiple Clock Do-
mains with Dynamic Voltage and Frequency Scaling. In Int. Symp. High-
Performance Computer Architecture, pages 29–40, 2002.

[145] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Transactions on Computers,
39(9):1175–1185, Sept. 1990.

[146] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized Rate-Monotonic Schedul-
ing Theory: A Framework for Developing Real-Time Systems. Proceedings of
the IEEE, 82(1):68–82, Jan. 1994.

[147] L. Shang and N. K. Jha. Hardware-Software Co-Synthesis of Low Power Real-
Time Distributed Embedded Systems with Dynamically Reconfigurable FP-
GAs. In 7th ASPDAC and 15th Int’l Conf. on VLSI Design, pages 345–352,
Jan. 2002.

[148] C. Shen, K. Ramamritham, and J. A. Stankovic. Resource Reclaiming in Mul-
tiprocessor Real-Time Systems. IEEE Transactions on Parallel and Distributed
Systems, 4(4):382–397, Apr. 1993.

[149] S.Himpe. MTG* and Gray-box: A Modern Bible for TCM Methodologies.
Technical report, Katholieke Universiteit Leuven, July 2003.

[150] S.Himpe, G.Deconinck, F.Catthoor, and J.Meerbergen. MTG* and Grey-
Box: Modeling Dynamic Multimedia Applications with Concurrency and Non-
determinism. In Proc. Forum on Design Languages(FDL), Marseille, France,
Sept. 2002.

148 BIBLIOGRAPHY

[151] D. Shin, J. Kim, and S. Lee. Low-Energy Intra-Task Voltage Scheduling Using
Static Timing Analysis. In Proceedings of the 38th Design Automation Confer-
ence, pages 438–443, 2001.

[152] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard
Real-Time Systems. In Proceedings of the 36th Design Automation Conference,
pages 134–139, 1999.

[153] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-Time Embedded
Systems on Variable Speed Processors. In IEEE/ACM International Conference
on Computer-Aided Design, pages 365–368, 2000.

[154] T. Simunic. Energy Efficient System Design and Utilization. PhD thesis, Dept.
of Electrical Engineering, Stanford University, 2001.

[155] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli. Dynamic
Voltage Scaling and Power Management for Portable Systems. In Proceedings
of the 38th Design Automation Conference, pages 524–529, 2001.

[156] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Event-Driven Power Man-
agement. IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, 20(7):840–857, July 2001.

[157] T. Simunic, L. Benini, and G. D. Micheli. Cycle-Accurate Simulation of En-
ergy Consumption in Embedded Systems. In Proceedings of the 36th Design
Automation Conference, pages 867–872, June 1999.

[158] T. Simunic, H. Vikalo, P. Glynn, and G. De Micheli. Energy Efficient Design of
Portable Wireless Systems. In Proceedings of International Symposium on Low
Power Electronic Device, pages 49–54, 2000.

[159] A. Sinha and A. P. Chandrakasan. Energy Efficient Real-Time Scheduling. In
IEEE/ACM International Conference on Computer-Aided Design, pages 458–
463, 2001.

[160] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Scheduling for Hard-Real-
Time Systems. Real-Time Systems, 1:27–60, 1989.

[161] M. Spuri and G. C. Buttazzo. Efficient Aperiodicc Service under Earliest Dead-
line Scheduling. In Proceedings of the IEEE Real-Time System Symposium,
pages 2–11, 1994.

[162] M. Spuri and G. C. Buttazzo. Scheduling Aperiodic Tasks in Dynamic Priority
Systems. Real-Time Systems, 10(2):179–210, 1996.

[163] W. Stalling. Operating Systems: Internals and Design Principles. Prentice Hall,
1998.

[164] I. Stoica et al. A Proportional Share Resource Allocation Algorithm for Real-
Time, Time-Shared Systems. In Proceedings of the IEEE Real-Time System
Symposium, pages 288–299, 1996.

[165] A. S. Tanenbaum. Distributed Operating Systems. Prentice-Hall Inc., 1995.

[166] F. Thoen and F. Catthoor. Modeling, Verification and Exploration of Task-level
Concurrency in Real-Time Embedded Systems. Kluwer Academic Publishers,
1999.

BIBLIOGRAPHY 149

[167] V. Tiwari, S. Malik, A. Wolfe, and M. Lee. Instruction-Level Power Analysis.
Journal of VLSI Signal Processing, (1):223–238, 1996.

[168] B. Vassileios. Evaluation of Real Time Operating Systems. Technical report,
ADT, IMEC, 2001.

[169] D. Verkest, P. Yang, C. Wong, and P. Marchal. Optimisation problems for dy-
namic concurrent task-based systems. In IEEE/ACM International Conference
on Computer-Aided Design, pages 265–268, San Jose, Nov. 2001.

[170] B. Walsh, R. van Engelen, K. Gallivan, J. Birch, and Y. Shou. Parametric Intra-
Task Dynamic Voltage Scheduling. In Workshop on Compilers and Operating
Systems for Low Power (COLP’03), 2003.

[171] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for Reduced CPU
Energy. In Proc. Symposium on Operating Systems Design and Implementation,
pages 13–23, 1994.

[172] Windver. VSPWorks. www.windriver.com/products/vspworks/index.html.

[173] F. Wolf and R. Ernst. Intervals in Software Execution Cost Analysis. In Pro-
ceedings of International Symposium on System Synthesis, pages 130–135, 2000.

[174] C. Wong. Design-Time Sub-Task Scheduling for Embedded Multimedia and
Telecom Systems. PhD thesis, Katholieke Universiteit Leuven, Dep. Elec. Eng.,
Sept. 2003.

[175] C. Wong, P. Marchal, P. Yang, A. Prayati, N. Cossement, F. Catthoor, R. Lauw-
ereins, D. Verkest, and H. De Man. Task Concurrency Management Methodol-
ogy to Schedule the MPEG4 IM1 Player on a Highly Parallel Processor Plat-
form. In Proceedings of the International Workshop on Hardware/Software
Codesign(CODES), pages 170–175, 2001.

[176] XScale 80200. http://www.intel.com/design/pca/applicationsprocessors.

[177] J. Xu and D. L. Parnas. Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations. IEEE Transactions on Software Engi-
neering, 16(3):360–369, Mar. 1990.

[178] P. Yang and F. Catthoor. Pareto-Optimization-Based Run-Time Task Schedul-
ing for Embedded Systems. In ISSS+CODES, pages 120–125, Newport Beach,
CA, 2003.

[179] P. Yang and F. Catthoor. Dynamic Mapping and Ordering Tasks of Embedded
Real-Time Systems on Multiprocessor Platforms. In Proc. 8th Int. Workshop
on Software and Compilers for Embedded Systems (SCOPES), Amsterdam, the
Netherland, 2004.

[180] P. Yang, D. Desmet, F. Catthoor, and D. Verkest. Dynamic Scheduling of
Concurrent Tasks with Cost Performance Trade-off. In Int. Conf. Compilers,
Architectures, and Synthesis for Embedded Systems, pages 103–109, San Jose,
CA, 2000.

[181] P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J. Vounckx,
and R. Lauwereins. Managing Dynamic Concurrent Tasks in Embedded Real-
Time Multimedia Systems. In Proceedings of International Symposium on Sys-
tem Synthesis, pages 112–119, Kyoto, Japan, Oct. 2002.

150 BIBLIOGRAPHY

[182] P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J. Vounckx,
and R. Lauwereins. Multi-Processor System on Chip, chapter Cost-efficient
Mapping of Dynamic Concurrent Tasks in Embedded Real-Time Multimedia
Systems. Morgan Kaufman, 2004.

[183] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest, and
R. Lauwereins. Energy-aware Runtime Scheduling for Embedded Multipro-
cessor SoCs. IEEE Design & Test of Computers, 18(5):46–58, Sept. 2001.

[184] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU
Energy. In Proc. 36th Annual Symposium on Foundations of Computer Science,
pages 374–382, 1995.

[185] T. T. Ye, L. Benini, and G. De Micheli. Analysis of Power Consumption on
Switch Fabrics in Network Routers. In Proceedings of the 39th Design Automa-
tion Conference, pages 524–529, 2002.

[186] Y. Zhang, X. S. Hu, and D. Z. Chen. Task Scheduling and Voltage Selec-
tion for Energy Minimization. In Proceedings of the 39th Design Automation
Conference, pages 183–188, 2002.

[187] D. Ziegenbein, J. Uerpmann, and R. Ernst. Dynamic Response Time Optimiza-
tion for SDF Graphs. In IEEE/ACM International Conference on Computer-
Aided Design, pages 135–40, 2000.

