Exploiting VLIW Schedule Slacks for Dynamic and Leakage Energy Reduction *

W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, D. Duarte, and Y-F. Tsai
Microsystems Design Lab, Pennsylvania State University, University Park, PA 16802.
mdl@cse.psu.edu

Abstract

The mobile computing device market is projected to grow
to 16.8 million units in 2004, representing an average annual
growth rate of 28% over the five year forecast period [5].
This brings the technologies that optimize system energy to
the forefront. As circuits continue to scale in future, it would
be important to optimize both leakage and dynamic energy.
Effective optimization of leakage and dynamic energy con-
sumption requires a vertical integration of techniques span-
ning from circuit to software levels.

Schedule slacks in codes executing in VLIW architectures
present an opportunity for such an integration. In this paper,
we present compiler-directed techniques that take advantage
of schedule slacks to optimize leakage and dynamic energy
consumption. The proposed techniques have been incorpo-
rated into a cycle accurate simulator using parameters ex-
tracted from circuit level simulation. Our results show that
a unified scheme that uses both dynamic and leakage energy

reduction techniques is effective in reducing energy consump-
tion.

1 Introduction

The recent trend has been to consider energy consump-
tion at all phases of hardware and software design. However,
many of the energy optimization techniques have focused on
the circuit and architectural levels. At the software level, with
a few exceptions, energy reduction has been primarily an out-
come of performance-oriented optimizations. With the grow-
ing importance of limited energy devices, it is vital to de-
sign new energy-oriented optimizations [18]. These energy-
oriented optimization techniques should focus on reducing
energy consumption while keeping performance constant or
on sacrificing some performance for much less energy con-
sumption. A recent example of such energy-oriented opti-
mizations is the exploitation of low-power operating modes
found in some memory modules.

*This work was supported in part by Grants from GSRC and NSF CA-
REER Awards 0093082 and 0093085

1072-4451/01 $10.00 © 2001 IEEE

102

An important technique to reduce energy consumption is
to exploit idleness of system components. The idleness of
a system component can be exploited using different tech-
niques. The first approach would be to exploit low-power
sleep modes [1]. The trade-off to consider for such an ap-
proach would include the time to transition to and from the
sleep state and the energy consumed during the transition
process itself. Another commonly used approach to exploit
idleness in CMOS-based devices is to prolong the operation
by reducing the supply voltage. This approach reduces the
dynamic energy consumption of the CMOS device, which is
given by CV?2 [4], where C is the switched capacitance and
V is the supply voltage. While the reduction in supply volt-
age brings a quadratic reduction in the dynamic energy con-
sumption, it also increases the circuit delay of the CMOS de-
vice. Typically, the voltage scaling approach has been shown
to provide more energy savings for CMOS devices as com-
pared to completely shutting them down [15]. However, this
trend could change as leakage energy becomes a comparable
fraction of overall energy budget! and as the benefit of supply
voltage scaling reduces with smaller supply voltages.

Many of the components in the CPU datapath in VLIW
machines are not completely utilized during the execution.
Slacks present due to lack of available instructions that ex-
ercise the specific components, data dependence relations
between instructions, and schedule-specific design decisions
are the major cause of idleness. These slacks can be ex-
ploited to reduce dynamic and leakage energy consumption
of a given architecture in multiple ways. Three possible ap-
proaches can be considered to exploit the compile-time vis-
ible slacks for reducing dynamic energy consumption. In
the first technique, the functional units of a given type are
replicated and each unit is operated with a different supply
voltage and a corresponding clock. This technique requires
multiple supply voltage rails, multiple clock frequency do-
mains and voltage converters for interfacing circuits operat-
ing at different voltage levels [16). In [6], a limit study of
exploitable slacks using a similar technique is presented for
a dynamic instruction schedule processor. The second tech-

ILeakage becomes the dominant part of energy consumnption for 0.1 mi-
cron (and below) technologies [4].

nique also replicates functional units of a given type but uses
a different architectural implementation for each replica, all
operating with the same supply voltage and clock domain.
For example, different adders (e.g., carry look-ahead adder,
carry select adder, ripple carry adder, etc.) possess differ-
ent energy and performance tradeoffs. In the third technique,
instead of replicating the functional units, the supply volt-
age and clock frequency to the unit are changed dynamically.
In this technique, typically, Phase Locked Loops (PLLs) are
employed to dynamically change clock frequency [10, 4]. As
the change to a new frequency requires time on the order of
a few microseconds, the first two techniques are easier to ex-
ploit using compiler-directed optimizations. From the com-
piler’s viewpoint, the compilation strategies adopted for both
the first and second technique are similar. Consequently, in
this work, we focus only on the first alternative.

In addition to the dynamic energy reduction, two leakage
control mechanisms are considered to exploit the compile-
time visible slacks for reducing leakage energy. The first
leakage control mechanism exploits the state dependence of
the leakage current and sets the inputs that have the minimum
leakage current when the units are idle [7]. The second mech-
anism eliminates leakage by cutting the power supply to the
units [14]. These techniques can also be employed to reduce
leakage in the unused replicated units when optimizing for
dynamic energy.

In this paper, we make the following contributions:

¢ Evaluation of two leakage control mechanisms: input
control and supply gating. The trade-off in energy con-
sumption and performance impact of these mechanisms are
evaluated through circuit-level simulation of three integer
ALU (JIALU) components designed in 0.25 micron technol-
ogy. Further, the dynamic energy consumption and latency of
these JALU components when operating at different supply
voltages are obtained through simulation. These leakage and
energy parameters have been integrated into a cycle-accurate
VLIW energy simulation framework built upon the Trimaran
infrastructure [17].

¢ Design and implementation of compiler techniques that
utilize the evaluated leakage control and voltage scaling
mechanisms to exploit the slacks available in a given sched-
ule. We present algorithms that do not sacrifice any perfor-
mance while reducing energy consumption as well as algo-
rithms that sacrifice some performance.

& A unified mechanism that combines the benefits of both
voltage scaling and leakage control in exploiting schedule
slacks. This mechanism is experimentally compared to volt-
age scaling and leakage control techniques. Experimental
results show that the unified scheme can reduce the energy
consumption of IALU components by as much as 75% in a
typical VLIW architecture.

The remainder of this paper is organized as follows. Ar-
chitectural and circuit support for reducing dynamic and

103

—=l g™ 2 :§: e
el g
3 Interconnect
AN L U J L Low-Energy
) Versions
I
J [X] X 3

Figure 1. VLIW architecture with multiple 1ALU ver-
sions.

leakage energy is reviewed in Section 2. Compiler support
for our approach to energy minimization is presented in Sec-
tion 3. Experimental results showing the benefits of our algo-
rithms are given in Section 4. Finally, conclusions are given
in Section §.

2 Architectural and Circuit Support

2.1 Support for Dynamic Energy Management

We assume a VLIW architecture (see Figure 1) composed
of integer ALUs (IALUs), floating point ALUs (FPALUs),
one load/store (I.D/ST) unit, and one branch (BR) unit. Inte-
ger ALUs have different versions that possess different per-
formance (latency) and energy consumption characteristics.
In the instruction word, a few control bits are associated with
each functional unit to select the appropriate low energy ver-
sion of the IALU. These control bits are used to route the con-
trol signals/data to the appropriate versions. Our algorithms
take an already scheduled code and reschedules it. In doing
$0, it sets the control bits to appropriate values and modifies
start time (taking into account data dependencies) and exe-
cution length (latency) of operations. The compiler ensures
that the rescheduling does not change the issue width. Mul-
tiple versions of functional units also involve some circuit
overheads. First, when the supply voltages to the different
versions are different, a level converter circuit is required to
interface the circuits operating at different voltages [16]. Sec-
ond, as the multiple versions of the functional units operate at
different frequencies, there is also a need for multiple clock
domains. We limit the overhead of the multiple clock distri-
bution circuitry by using local clock dividers wherever pos-
sible. In addition to multiple clock domains, we also require
multiple supply rails for supporting the different versions of
the units.

Do

b,

+ | Functionaiunt| < Sioep | camd vy
 Stee

sloep ——o-|

Functional Unit

o))
Figure 2. (a) Block level implementation of input vec-
tor control scheme. (b) Block diagram for gating
supply voitage. When sleep signal is activated, the
supply voitage to functional unit is gated.

2.2 Support for Leakage Energy Management

2.2.1 Input Vector Control

Many researchers have used models to estimate leakage and
algorithms to find the minimum and maximum leakage of a
given circuit [9]. Leakage, as in the case of dynamic power,
depends on the input pattern. This is a consequence of the
transistor stacking effect, where a simple two-transistor stack
can reduce leakage by a factor of up to 10. Additional stack-
ing can only provide incrementally more savings. The state
of transistors in the stack, however, is determined by the in-
puts. The objective is to find the input pattern that maximizes
the number of disabled transistors in a stack. Once this input
pattern vector has been found, the input latches of the units
can be designed such that a sleep signal sets the value of the
unit’s inputs to the desired state (See Figure 2(a)). The imple-
mentation of the input control technique requires minimal ar-
chitectural support. The overhead of the input latches is quite
small. For example, the area overhead for setting the inputs
of the multipliers is less than 10%. A sleep signal is activated
whenever the unit is idle. This signal is set in our approach
by the compiler as described in Section 3.2. Note that if the
switching incurred in setting the input to the desired sleep
pattern causes a dynamic energy consumption larger than that
produced by the reduction in leakage energy, this technique
can increase overall energy consumption. Based on the rela-
tive values of the dynamic and leakage energy consumption
and the duration of the idleness, the sleep signal needs to be
activated intelligently.

We have quantified the leakage energy reduction for dif-
ferent integer ALU components using circuit-level simula-
tion for 0.25 micron, 3.3V supply voltage and 0.48V thresh-
old voitage. Random input patterns were generated for each
unit to provide a 95% confidence of finding the input vec-
tor that provides the least leakage current {7] and simulations
were done for each of them. The second, third and fourth
columns of Figure 3 show the leakage power savings, initia-
tion and recovery latencies due to the input control technique
for three of the IALU components considered this work.

104

Input Vector Control Power Supply Gating
C % L]

Adder 66 Tcycle Ocycle 100 480 cycles 480 cycles
Multiplier 18 1cycle 0cycle 100 800cycles | 800 cycles
Shifter 86 1 cycle 0 cycle 100 396 cycles 396 cycles

Figure 3. The effectiveness of the leakage control
mechanisms. The leakage reduction column gives
the average leakage current reduction due to the
application of the control mechanism, and the initi-
ation latency column indicates the time it takes for
the control mechanism to take effect and recovery
latency is the time required to return the tunctional
unit to normal operational state.

2.2.2 Power Supply Gating

There are many ways in which power supply gating approach
can be implemented [4] but the basic idea is to disconnect the
power supply from the unit so that idle units do not consume
any leakage energy. Supply gating can be implemented using
a sleep transistor that serves as a pass transistor. The sup-
ply line Vpp passes through this pass transistor to provide a
gated supply voltage to the functional unit. The supply volt-
age to the functional unit is shut down when the sleep signal
is activated to turn off the sleep transistor. The sleep transis-
tor is built using a higher threshold voltage than the transis-
tors in the functional unit. Thus, its leakage current in the
off state is negligible. In our implementation, we use a sleep
transistor per functional unit as shown in Figure 2(d). Im-
plementation of the power supply gating needs careful con-
sideration of sleep mode transistor sizing to consider perfor-
mance and noise immunity issues. The initiation/recovery
latency for this technique is influenced by the diffusion ca-
pacitances of the sized sleep transistors. It must also be noted
that frequent switching of large sleep transistors has dynamic
energy overheads. Thus, we utilize this technique only to
shutdown units for longer durations. The fifth, sixth and sev-
enth columns of Figure 3 show the leakage power savings,
initiation and recovery latencies due to power supply gating,
respectively.

3 Compiler Support

The objective of the compiler support explored in this pa-
per is to exploit the idleness of functional units. In reducing
dynamic and leakage energy, the compiler exploits the hard-
ware support discussed in the previous section. The algo-
rithms considered in this section start with an already avail-
able schedule. In our implementation, this schedule is ob-
tained using basic block-level {13] or superblock-level [8]
scheduling. We start with these performance-oriented sched-
ules so as to have a minimal impact on performance while
exploiting the slacks for energy reduction.

Lawvo | agw [atve faes [wost |
ol o] od| ew
Ve o] ed]
H obt T °di
T em] T e
.II .h’3 -S. Tttt ‘-_;—.i--'
e e | ew] TeR]
Inslack Outslack
{a) (b)
CI] CI] ® B T 10
o0 o0 o]® se]e]e]
D) I} O HC
z A A
- M L i
@0 110 Q — O
N - -
i —t+
: N ®] <] O
: O® i C) ¥ V-
11O 2110 i o i
© () (e) Added Cycle U]
ECINEL L
a2's slack < § E: —_ " X) E,E. £,
at’s slack « g, . vE 5:
: 13 : rg, i
v | ¥ :. g
0 O @) ; E
Before Leakage Control After Leakage Control @)
© - vo‘ltage/swina/ ’ %Comrol
A Edk + Elk @ €4+ E
. . A Epy A Ey+ T'E)
. gj EqE Ey A ‘ E«E Ey Voltage E - € ; "
o]) !] U Control K ko
YT g Unified ; ' Ey : 1 £y : g,
k g, Appmi o €+ “Ey\ Leakage § \/ Ei v 'Ey
: E, ! tE, Control O O
"o 'O
0 [0}

Figure 4. (a) An example schedule where inslack and outsiack of operation d1 are explicitly marked. (b) Different
slacks for the schedule given in (a). (c) An example schedule that is the output of a performance-oriented
schedule. (d) Optimizing the slack of operation a1 in (¢) using Algorithm . (e) Optimizing the slack of operation
al in (¢) using Algorithm II. (f) Optimizing the slack of operation a1l in {c) using the modified form of Aigorithm
I. (g) Conflicting slacks. (h) Impact of leakage control mechanism on energy consumption. (i) Comparison of
dynamic energy control and leakage control. (j) Unified approach which uses both leakage control and dynamic
energy control on the same slack. Note that dynamic energy consumption is associated with the first cycle of
operation for convenience. It actually spans over the entire duration of the operation.

105

Figure 4(a) presents an example input schedule for the en-
ergy optimization phase. All schedule figures in this paper
are given as two-dimensional grids. In these schedule figures,
each column denotes a functional unit and each row denotes
a cycle. For example, in Figure 4(a), a schedule fragment
for five functional units: four integer ALUs (IALU-0 thru
TALU-3), and a load/store unit (LD/ST) is shown. Operation
a0 is scheduled to be executed in the first cycle in IALU-0
whereas operation cl is scheduled to be executed in JALU-2
in the second cycle.

For each operation, we define an inslack and an outslack.
The outslack of an operation is the number of cycles between
the end of the current operation and the start of the next (ear-
liest) dependent operation. Similarly, the inslack of an op-
eration is the number of cycles between the latest end time
of all operations on which the current operation is dependent
on and the start of the current operation. In the rest of the
paper, the term slack refers to the sum of the number of cy-
cles in both inslack and outslack. Note that this slack defini-
tion is with respect to data dependences between instructions
and is independent of the underlying architecture. However,
whether a given slack can be exploited or not depends not
only on data dependences but also on the architecture in ques-
tion. We define a slack as exploitable if the corresponding
operation can be executed in a slower, low-energy version of
a functional unit without violating any data dependencies.

As an example, the inslack and outslack of operation d1
are explicitly illustrated in Figure 4(a). Here, we assume that
dl is only dependent on d0 and that d2 is the only opera-
tion dependent on d1. To illustrate the difference between
slack and exploitable slack, we consider the schedule frag-
ment shown in Figure 4(c) which contains four IALUs. We
focus on operation al which has four idle cycles before it
and five idle cycles after it. Assuming that al is dependent
on only b0 and that 0 is dependent on a1, we cannot exploit
all of these nine slack cycles for reducing energy even if we
have a low-energy unit with nine cycles of latency. This is
because data dependences with b0 and c0 put a restriction on
the number of cycles that can be used to execute al. Conse-
quently, the inslack and outslack for al are 2 and 3, respec-
tively. Suppose now that we have two low-energy functional
units that can execute al in 4 and 7 cycles, respectively. Since
the operation al needs to complete in six cycles (latency of
the fastest version + slack duration), we can only use the first
functional unit. Therefore, the exploitable slack for this op-
eration is 3 (note this is the difference between the latency on
the low-energy version on which operation is scheduled and
the latency of the original high-performance version).

Note that schedule-specific decisions impact the availabil-
ity of low-energy functional units for exploiting slacks. Con-
sider, for instance, operation c1 scheduled on IALU-2 in Fig-
ure 4(b). Assuming that this operation is not involved in any
data dependence relation, it should normally be possible to

106

prolong its execution and save energy. However, if we have
only one low-energy IALU and decide to use it for c0, it will
not be possible to exploit c1’s slack.

3.1 Algorithms for Dynamic Energy Reduction

Figure 4(c) shows how a given slack can be exploited to
reduce dynamic energy consumption. Below we present two
algorithms that take advantage of slacks by scheduling the
operation in question in a slower, less energy-consuming ver-
sion of the corresponding functional unit. Both algorithms
assume that the VLIW architecture in question has multiple
(low-energy) versions of each functional unit type. The first
algorithm works without increasing the schedule length of
the original performance-oriented scheduling. The second
algorithm, on the other hand, allows a user-specified perfor-
mance degradation if doing so leads to larger energy sav-
ings (as compared to the first algorithm). Both algorithms
first order the operations to be exploited for energy optimiza-
tion. Then, for each operation (in order), considering its ex-
ploitable inslack and taking into account number of IALU
operations that can be issued in a cycle, the start time of the
operation is set to the earliest possible time. After that, con-
sidering the outslack of the operation and the available low-
energy versions of the corresponding unit, the most suitable
low-energy version of the unit is selected and the operation
is scheduled in that unit.

3.1.1 Algorithm1

The first algorithm is based on the idea that the low-energy
units are used only if this does not increase the length of the
performance-oriented schedule. This can be achieved by not
prolonging the (compile-time estimated) execution of the op-
eration beyond its outslack. The idea can be best explained
using an example. Figure 4(d) shows how the operation al
in Figure 4(c) is scheduled in a low-energy unit with a la-
tency of 6. Note that the operation is scheduled to start at
the fourth cycle and finish at the ninth cycle. However, if the
latency of a candidate low-energy version was 7, it would not
be possible to use this (version of the) unit for this operation.

A sketch of this algorithm is given in Figure 5. The
algorithm takes a region of code to schedule (region) and
a table (table) that gives energy consumption and latency
for each IALU component. compute_slack() computes the
inslack and outslack for each operation in the region and
build slack_list() builds a list of operations with slacks. In
the for-loop, we employ a selection heuristic to determine
the most beneficial operation candidate for slack exploitation.
Note that it is very important to determine a suitable order of
processing for operations as exploiting one slack might pre-
vent another slack from being exploited. This is illustrated in
Figure 4(g) where fully exploiting the slack for operation al
prevents the outslack for operation a2 from being exploited

INPUT: A sequence of operations ("'region”} scheduled
using a performance-oriented scheduler;
A table that gives energy consumption and latency
for each IALU component { “table"”)
OUTPUT: A scheduled set of operations where slacks have
been exploited
Algorithml{region,able,...)
begin
compute slack(region);
list = build_slacklist(region);
curr.max = -1;
next_op = NULL;
for each operation op in list do
if (heuristic_energy(op) > curr.max) then

next.op = op;
curr_max = heuristicenergy(op);
endif .
endfor

if (next_op ! = NULL) then
stime = stime_old - inslack;
latency = compute latency(next_op);
energy = computegnergy(next.op);
update_region(region,next.op,stime,energy,latency);
Algorithml(region,table,...);

endif

end

Figure 5. Algorithm .

if al depends on a2. Consequently, our selection heuristic
evaluates each and every operation with a slack and calcu-
lates the potential energy gain if the associated slack is ex-
ploited. The potential gain is the difference in energy con-
sumption between the fastest (and most energy-consuming)
version of the unit and the most-energy saving version that
does not distort any data dependence. Our approach, using
the heuristic_energy() function, selects the operation with the
largest potential gain (curr-max keeps the maximum poten-
tial energy gain found so far). After selecting an operation,
the scheduler updates the code region, and calls itself with
the updated region. compute_latency() return the largest la-
tency value (from table) which is less than or equal to the
sum of slack of the operation next_op and the minimum la-
tency for executing the operation using the fastest version.
In Figure 5, compute_energy() returns the corresponding en-
ergy value. Variables latency and energy keep the latency
and energy consumption of the version on which next_op is
scheduled. Finally, stime and stime_old are the updated and
original start times of next_op.

3.1.2 Algorithm 1

This algorithm attempts to increase dynamic energy sav-
ings further by allowing a user-specified increase in sched-
ule length. Note that this might be a reasonable approach
in many embedded/portable environments where energy con-
sumption holds a first-class status. Informally, this algorithm
checks whether, for a given operation with slack, using a
more energy-saving version than the one that would normally
be selected by Algorithm I is possible without exceeding a
performance degradation threshold (PDT), a user-specified

107

parameter. If so, it employs this more energy-saving option
and considers the next operation (and its slack). An exam-
ple application of this approach is illustrated in Figure 4(e),
which shows the optimized version of Figure 4(c). As dis-
cussed in the previous subsection, the first algorithm would
exploit the slack of operation al by scheduling its execution
over six cycles. Note that considering the inslack and out-
slack, it is not possible to achieve a better result using the
first algorithm even if we have a more energy-saving version
(of the same unit) with a latency of 7 cycles. However, if
we are allowed to increase the schedule length by one cycle,
we can extend the execution of this operation to 7 cycles as
shown in Figure 4(e). This can be achieved by inserting one
empty cycle to the schedule.

We have also implemented a modified version of this al-
gorithm. The modified version is more conservative in in-
creasing schedule length. In fact, it does not increase sched-
ule length unless it is strictly necessary; instead, it extends
the available slack by moving around the other instructions
in the code region of interest. Let us consider the example in
Figure 4(c) under a scenario where we want to employ a low-
energy unit with a latency of 7 cycles for operation al. As
shown in Figure 4(f), this can be achieved by scheduling c0
in the eleventh cycle instead of the tenth cycle. Note that this
is possible only if c0 has an outslack and data dependences
allow such a move. Since our experiments with this modi-
fied version generated very similar results to those obtained
from Algorithm II, we drop this version from discussion in
the remainder of the paper.

3.2 Algorithms for Leakage Energy Reduction

As leakage energy is becoming a significant portion of the
overall energy consumption [3], it is also important to study
software techniques to reduce leakage energy. The algo-
rithms for leakage energy reduction exploit the slacks in the
schedule by activating the appropriate leakage control mech-
anism. The compiler is provided with the information on the
latency to invoke the leakage control mechanism, the latency
to restore the unit to normal mode, the potential leakage en-
ergy reduction, and any additional overhead energy associ-
ated with the application of the leakage control mechanism.

It must be noted that the definition of the slack is different
when considering leakage control. Since the application of
leakage control techniques is not impacted by dependences,
we define the slack for leakage control as the duration be-
tween two successive accesses to the unit in question. Note
that this implies leakage control can exploit larger slacks than
voltage scaling, which is restricted by the data dependences.

3.2.1 Input Vector Control

While abstracting the potential energy reduction of the in-
put vector control mechanism, two important factors need to

be considered. First, it must be noted that the leakage cur-
rent takes a few nanoseconds to settle to the minimum value
corresponding to the activated input vector. Second, the acti-
vation of the input vector itself causes some dynamic energy
‘consumption as the input to the unit is changed. Both these
aspects are factored into the model presented to the compiler.
Both the dynamic energy overhead and the leakage current
settling time are state dependent. In our experiments, we as-
sume only a single functional unit of each type, an average
dynamic energy consumption when the input control mecha-
nism is activated, and a single cycle settling time for leakage
current. The average leakage energy reduction possible by
activating the input vector found through circuit simulations
explained earlier is provided to the compiler. The compiler
analyses each slack and just before the first slack cycle, it
inserts a command to activate the sleep signal shown in fig-
ure 2(a). Similarly, a command to deactivate the signal is in-
serted in the final cycle of the slack. Our current implemen-
tation works at the basic block level granularity and inserts
commands to activate and deactivate the sleep signals when
entering or leaving basic blocks. This reduces the ability to
exploit larger slacks but makes the implementation easier.
Figure 4(h) (on page 4) shows the energy consumption
with and without leakage control mechanism. Note that when

the leakage control mechanism is employed, we incur ex- -

tra dynamic energy consumption in the second cycle. The
scheduling algorithm determines for each slack whether to
activate the input control mechanism or not. It utilizes the
following expression to determine whether the slack can be
exploited:

Ea+(k+1)E >2Es+E+rE +r(k-1)E (1)
In this equation, Ej is the leakage energy per cycle and Ej
is the dynamic energy per operation, r is leakage energy re-
duction factor (i.e., if the original leakage energy is Ej, the
optimized energy is rE;), k is the slack duration in cycles,
r' is the leakage energy reduction factor during the current-
settling time. Note that assuming 7 = r’ and a single-cycle
current-settling time, we see that leakage energy is beneficial
when pk(1 —) — 1 > 0, where E; = pFE,.

Figure 6(a) shows (for different values of p and k) when
leakage energy reduction is beneficial for an energy reduc-
tion factor of 0.5. It can be observed that the leakage control
is beneficial in all cases except when both p and & are small.
In other words, in order for the leakage control mechanism
to be beneficial, the per cycle leakage energy should be com-
parable to the dynamic energy per operation and there should
be a sufficient number of cycles in the slack to compensate
for the extra dynamic energy consumption due to input vector
control. Figure 6(b) shows when leakage energy reduction is
beneficial (when p = 1 and p = 0.5) for different reduction
factor values. We see that the leakage control mechanism
is useful when & is larger than 10 or r is small enough (i.e,

108

overall leakage energy reduction is high).

3.2.2 Power Supply Gating

The use of power supply gating demands different optimiza-
tion strategies since it requires a significant amount of time
for the circuit to transition back to active (fully-operational)
state. Consequently, to take advantage of this mechanism,
the compiler should focus on larger program scopes such as
nested loops and procedures. In our current implementation,
we exploit only power supply gating for totally unused units
throughout program execution.

3.3 Combining Dynamic and Leakage Energy Re-
duction

In the previous sections, dynamic and leakage energy re-
duction have been explored individually. As the relative mag-
nitudes of dynamic and leakage energy become comparable,
it will become important to reduce both in an integrated fash-
ion. In this section, two alternate approaches for combin-
ing voltage scaling and leakage reduction by the compiler
are presented. Since our current voltage scaling scheme for
dynamic energy reduction works on instruction granularity,
we consider here only input vector control for the leakage
reduction.

In the first approach, the compiler determines whether it
is better to exploit dynamic or leakage energy reduction for
each slack duration independently. To achieve this, it uses the
following expression to determine which technique to em-
ploy (see Figure 4(1)):

Ep+((k+1)Ey <2E;+ (1 + '+ (k-1Vr)E (2)

where Egp is the dynamic energy consumed when voltage
scaling is employed to increase the latency of the operation
to exploit the slack of k cycles, and Ey;, is the corresponding
leakage energy per cycle when voltage scaling is employed.
Note that leakage energy also scales down with supply volt-
age scaling. If the condition specified by the above expres-
sion is satisfied, voltage scaling is employed to exploit the
slack; otherwise, the leakage control mechanism is activated.

Figure 7 shows for each slack duration, the energy con-
sumed when no optimization is performed, when only volt-
age scaling is applied, and when only the input vector con-
trol is applied. It is interesting to note that, based on slack
duration, either voltage scaling or input vector control mech-
anism generates the best result, motivating an integrated ap-
proach that employs different energy reduction mechanisms
depending on slack size. In Figure 7(a), voltage scaling is
the preferred technique for siacks of duration less than 10
cycles. Beyond this crossover point, the leakage reduction
mechanism becomes favorable. This crossover point is influ-
enced by the number of available functional units with differ-
ent supply voltages (which is three in Figure 7(a)). When we

(a) (b)

10

[-] "

- —

6 - —
pg = e
<4 ¥ o T
z 3 a i —— —

2 - i T r et]

1 i 9 10 1t |

[

R -2

.2 k

k -+ r=0.4;p=1 ~»r=0.6;p=1 r=0.8;p=1
[-+ p=0.2 - p=0.4 -~ p=0.6 * p=0.8 *-p=1.0] = r=0.4;p=0.5 -*r=0.6;p=0.5 -*-r=0.8;p=0.5

Figure 6. Sensitivity of leakage energy benefits to parameters k and p for a fixed value of r = 7’ = 0.5. In
obtaining these resulits, energy values for a 0.1micron, 1V adder are used.

(a) (®)
50 - [— e ey
45 s
a0 _ 40 //'//:
Z 3‘ 35 /
W g | =20 P P
B Eis ad sl
* 0 F o o ——
] " s i 7
5 W T
0+— . . e 0 +— . e e
123 4567 8 9 1111213141516 17 181920 1 2 3 456 7 8 9 1111213141516 17181920
k k
[-+-originatl -=- dynamic -+-leakage| [-=-original -+ dynamic -+~ leakage|
{c) (d)
50 - f J—— -
45 >
40 // 5 ° /
2 — &5 /
5 30 / 5 4
g 25 g e al——
woo // e w3 ‘w
i B
g 15 g M 5 2
10
-/',""’r"_ 1
§
4] - T T T T T 1] T . T ™ T T —r T T r —
12 3 456 7 8 9 1011121314 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12
k k
[-+orlginal - dynamic -+ leakage| [~ best of dynamic/leakage -+~ unified|

Figure 7. (a-c) Comparison of voitage scaling and input vector control. In (a), r is 0.1 and the number of supply
voltages is three (1V, 0.7V,0.55V). In (b}, r is 0.1 and the number of supply voltages is two (1V and 0.7V). In (¢), »
is 0.3 and the number of supply voltages is two (1V and 0.7V), (d) Unified approach with three supply voltages
(1V, 0.7V, 0.55V) and r being 0.3. In obtaining these resuits, energy values for 0.1 micron adder are used.

109

reduce the number of available supply voltages to two (e.g.,
in an attempt to reduce unit replication and multiple supply
line overheads), the crossover point shifts to a slack dura-
tion of 5 cycles as can be observed from Figure 7(b). This
shift is caused by the inability to exploit larger slacks due to
the non-availability of functional units using the third sup-
ply voltage. In contrast, the input vector control is able to
amortize the initial dynamic energy consumption overhead
better with larger slacks. The leakage energy reduction fac-
tor, 7, (when the leakage control mechanism is used) also
influences the location of the crossover point. Figure 7(c)
shows that the crossover point increases to 10 when the leak-
age reduction is less, even in the presence of just two supply
voltages. These results emphasize the need for the compiler
designers to be aware of parameters that can influence their
technique of choice for slack exploitation.

In the second approach, which we call unified, the goal is
to investigate whether both the leakage and dynamic energy
management schemes can be exploited at different intervals
of the same slack. The idea is illustrated in Figure 4(j). Ba-
sically, the compiler selects an optimum value f (< &) up to
which dynamic energy is optimized and beyond which leak-
age energy is optimized. This scheme is in contrast to the
previous approach that determines a single technique to em-
ploy for each slack. Figure 7(d) shows how the unified ap-
proach compares to using the best of the dynamic and leak-
age control mechanisms individually for each slack duration
explained in the previous paragraph. We see that the uni-
fied approach performs best as it combines the best of both
the techniques. Since the individual slack exploitation for
leakage or dynamic energy control (discussed in the previous
paragraph) is subsumed by this technique, we only consider
the unified scheme in the rest of the paper.

4 Experimental Evaluation

In this section, we discuss our implementation and sim-
ulation environment (Section 4.1), introduce our benchmark
codes (Section 4.2), and present our results (Section 4.3).

4.1 Simulation Platform and Implementation

Trimaran is a compiler infrastructure to provide a vehi-
cle for implementation and experimentation in state-of-the-
art research in compiler techniques for Instruction Level Par-
allelism (ILP) {17]. A program flows through ITMPACT,
Elcor, and the cycle-level simulator. IMPACT applies
machine-independent classical optimizations and transfor-
mations to the source program, whereas Elcor is respon-
sible for machine-dependent optimizations and scheduling.
The proposed algorithms are implemented in Elcor. The
increase in compilation time due to our algorithms was
around 20% on average. The cycle-level simulator was mod-

110

IALUt Supply Dynamic]
Component Voltage { Energy (pJ) | Latency
Adder 3.3V 66.6 1 cycle
2.1V 26.9 2 cycles
1.7V 17.6 3 cycles
Multiplier 3.3V 258.0 8 cycles
2.1V 104.5 14 cycles
1.7V 68.4 27 cycles
shifter 3.3V 66.1 4 cycles
2.1V 26.8 8 cycles
1.7V 17.5 16 cycles

Figure 8. Energy characteristics for the three 32-
bit components using 0.25micron technology. The
threshold voltage for these designs is 0.48V.

ified to record the activity of the IALU units. Further, the
simulator was augmented to support a cache hierarchy. This
recorded information was used along with energy parame-
ters to evaluate the energy consumption. The energy estima-
tion is activity-based in which energy consumption is based
on number of accesses to the components. The dynamic en-
ergy parameters and leakage reduction factors used are based
on actual circuit-level simulation of the components. Fig-
ure § shows the energy parameters of three IALU compo-
nents (adder/subtracter, shifter and multiplier) for three sup-
ply voltages. These numbers are based on actual layouts per-
formed in 0.25 micron technology. Scaling factors [2] are ap-
plied to these values to obtain corresponding values for 0.10
micron with a 1V supply voltage and 0.2V threshold voli-
age. The leakage reduction numbers are extracted from the
Figure 3. The default configuration for our experiments uses
four IALU, two FPAL U, one LD/ST unit and one branch unit.

We present results for the different optimizations both us-
ing compile time metrics and runtime metrics. The energy
savings estimated at the compile time are provided by ana-
lyzing the slacks using E1lcox (without taking into account
conditionals and loop bounds) and are called static results.
The energy savings at run time are estimated using the cycle-
accurate simulator and are called dynamic results. It must be
observed that the dynamic results depend on the number of
times each portion of the schedule is executed. All energy
saving numbers are reported with respect to an architecture
that uses a performance oriented schedule with no support
for voltage scaling or leakage control. As we apply our tech-
niques to the IALU, we consider the energy consumed only
by the IALU operations.

4.2 Benchmark Codes

To evaluate the effectiveness of our algorithms, we used a
suite of fifteen programs from different benchmark sets. The
important characteristics of these codes are given in Figure 9.
The third column in this figure gives the number of slacks

Number | Avg. Slack | Exploitable

Program Source of Slacks Length Slacks (%)
099.go SpecInt95 2,741 3.99 34%
124.m88ksim SpecInt95 1,809 3.78 32%
129.compress SpecInt95 632 347 44%
130.11 SpecInt95 1,077 4.22 49%
132.ijpeg SpecInt95 1,360 4.27 49%
convolution DSPstone 33 1.50 50%
dot.product DSPstone 29 1.75 25%
fir DSPstone 59 2.00 75%
n.complex.updates { DSPstone 61 1.53 90%
n.real.updates DSPstone 64 1.56 67%
cordic Mediabench 456 573 14%
idea Mediabench 668 3.76 75%
nbradar Mediabench 441 6.60 61%
paraffins Trimaran 383 2.34 52%
rawcaudio Mediabench 83 1.74 54%

Figure 9. Benchmark characteristics. The average
length of slacks is the static length obtained for all
IALU operations (including those without slack) in
the basic block schedule.

in each code and the fourth column gives the average slack
length (in cycles). The fifth column shows the percentage
of exploitable slacks. On average, 51.4% of the slacks are
exploitable and the average slack length is 3.21. We mea-
sured the distribution of slacks across different types of op-
erations and observed that, in these codes, more than 88%
of the slacks, on the average, occur with integer ALU opera-
tions using our default configuration. This provides a strong
motivation for us to focus on these operations for exploiting
slacks.

4.3 Results and Discussion

4.3.1 Dynamic Energy Reduction

In this subsection, we assume that there are three versions for
each IALU (with each version operating with a different sup-
ply voltage) in the default configuration that can be used si-
multaneously (that is a total of 12 IALU versions) The energy
value corresponding to each version is shown in Figure 8. It
should be emphasized that the leakage energy contribution
for this technology (0.25 micron) is not significant as com-
pared to dynamic energy consumption (around 3% of overall
energy for a junction temperature of 110C).

Figure 10 shows that a 70.8% energy saving is possi-
ble when only considering energy consumption of operations
with exploitable slacks (i.e., the operations that can be opti-
mized by Algorithm I). This is obtained starting with a basic-
block oriented performance schedule. The corresponding
number when superblock scheduling is used is 71.6%. These
static results show that the proposed approach can cover the
slacks successfully across applications from different bench-
mark suites.

In order to evaluate how this translates to actual energy

111

E:gj
@ 60
B 50 - ‘
.540- B
: ,
‘:30-
§20-
& 10 |
R 0 £ @ B
i3 E = 8% 938 ¢E%
P4 RRRE RS i
g AL
s c
i
{mBasic Block D Superblock]|

Figure 10. Percentage energy savings considering
only IALU operations with siacks when using basic
block and superblock scheduling (static results).

savings, Figure 11(a) provides the overail energy savings ob-
tained by running the benchmarks through the simulator (dy-
pamic results). The average energy savings by using Algo-
rithm I which employs voltage scaling is 32.3%. Further en-
ergy savings can be obtained at the cost of performance when
Algorithm II with three different PDTs is used as observed
from the figure. The average energy savings across the differ-
ent benchmarks for these three PDTs are 50.1%, 63.7% and
71.3%, respectively. It can be observed that the additional en-
ergy savings are small when moving from 20% to 50% per-
formance degradation. This is because of the limited num-
ber of supply voltages that imposes an inherent limit of ex-
ploitable slack duration. Further, the incremental energy sav-
ings corresponding to a fixed slack duration starts to reduce
as slack duration increases. On the average, the actual per-
formance degradation at runtime across the different bench-
marks for Algorithm II is 11.5%, 17.6% and 42%, respec-
tively, for 10%, 20% and 50% PDTs. The energy behavior of
Algorithm I and Algorithm II when superblock scheduling is
employed is shown in Figure 11(b). It is observed that slacks
can be exploited successfully providing comparable energy
savings even with superblock scheduling.

4.3.2 Comparing Voltage Scaling, Leakage Control and

Unified Schemes

In this subsection, we use the 0.1 micron, 1V supply volt-
age technology energy parameters as leakage and dynamic
energy become comparable in this technology. The leakage
energy reduction factor (r) for the adder, shifter and multi-
plier used were 0.34, 0.14, and 0.72, respectively. Further,
we use a value of p = 1, that is leakage energy per cycle
is equal to the dynamic energy per operation executed on
that unit. The voltage scaling technique is the same as that

(b)

#HHDMM;%%
m supyesnd

Jspeiqu

_” _ anau_

sajepdnTiearu

sojepdn xajdwos u

T T o—

_ . jonposd 1op

- uoRN|OAUCY
ﬂf

Badlrzet

8R8398K=°

(ile10nQ) sbujaeg ABiouz %

{a)

OfpNEIME)
supjesed
1epeiqu

eopt

AP10d

sajepdn jgai v

sajepdn xejdwos u

Gedjrzel

woel

s5udwod'62y
wsHEguryeL

0b-g60

8R838R’ke°

(ite10a0) sBujaeg ABrouz o,

D Algorithm Ii (10)

H Algorithm |

1 Algorithm Nl (50)

| Algorithm I (20)

|

O Algorithm |l (10)

B Algorithm |

O Algorithm Il (50)

B Algorithm Il (20)

Figure 11. Overall runtime energy savings percentage for all IALU operations when voltage scaling is applied

in conjunction with (a) basic-block scheduling (b) super-block scheduling. Algorithm Il numbers are for three

different performance degradation thresholds of 10%,

20% and 50%.

()

(a)

8R8Be8IE°
sBujaeg ABioug %

sBujaeg ABiouz %

selepdnTieei v
seiepdn xe|dwod u
n

1anposd jop

UORN|OAUCD

Badizes
ross
s69:du0d°gzi
uASHERW vl

o660

l sejepdn (wes u

saiepdnxe|dwod u
m
wnposdTiop

UORN|OAUTD

Bodlzes
roes
ssoudwoagzy
UHSHBRWI VTE

08680

| Voltage Scaling [J Leakage Control M Unifled)

{mVottage Scaling [Leakage Control R Unified)

@

(c)

||
|| | ————
..ll'l

.
288g¢88¢e-°
sBujneg ABiou3x %

opneomes
suyypied

1epeiqu

sajepdn~xoldwos " u
n
janposd jop

uopnjoAuod

Sadirzes
roes
ssodwoaezy
wisngeuryZ)

08660

sayepdnTsai u
seyepdn xe|dwos"u
“

tanposdiop

uo[IiNoAucd

BodlzE)
wogt
ssasdu00°621
unEYBRWPZL

06660

ge888882°

sBujaes ABiou3z %

[mVoltage Scaling [lLeakage Control M Unitied |

lIVoltage Scaling O Leakage Control B UnlﬂedJ

Figure 12. Energy savings for all IALU operations as compared to original case with no voitage scaling cr

leakage control (a) Static results with three supply voltages and basic block scheduling (b) Dynamic results with
three supply voltages and basic block scheduling (¢) Dynamic results with two supply voltages and basic block

scheduling (d) Dynamic results with three supply voltages and superbiock scheduling.

112

used for Algorithm I in the previous section. When optimiz-
ing for only leakage energy (using input vector control), it is
assumed that only the highest performance version of each
IALU is available. All low-energy versions are supply-gated
to completely eliminate leakage energy. Finally, the unified
scheme employs a combination of leakage control and volt-
age scaling as explained earlier. In the unified scheme, input
vector control is applied whenever a functional unit becomes
idle.

Figure 12(a) gives the energy savings of the three schemes
obtained from compiler (static results) when using basic
block scheduling. Note that these are cumulative energy sav-
ings across all basic blocks. In eleven out of fifteen cases
voltage scaling is estimated to perform better than leakage
reduction at compile time. The unified approach is the best
in all cases. The corresponding dynamic results are shown
in Figure 12(b). The effectiveness of each scheme depends
on the exploitable slack durations in the schedule. It can be
observed that for nine of the benchmarks, the leakage con-
trol mechanism outperforms voltage scaling. The reason that
there are larger energy gains in favor of leakage control when
we move from static to dynamic results is two-fold. First, in
some benchmarks, basic blocks with slacks larger than the
average are executed more frequently. Second, the compiler
visible slacks are prolonged during execution due to unex-
pected delays such as cache miss stalls. We also note that the
unified scheme brings an average of 22.2% and 20.9% im-
provement over the voltage scaling and input vector control
mechanisms, respectively. Figure 12(c) gives the dynamic re-
sults when only two supply voltages (1V and 0.7V) are em-
ployed. Due to the limited number of supply voltages, the
average benefits from voltage scaling reduce from 32.7% to
25.4% on the average. Consequently, the gains due to unified
scheme also reduce from 54.9% to 50.7% on the average.
Figure 12(d) shows the dynamic results when superblock
scheduling is employed with three supply voltages. It can
be observed that as compared to basic block scheduling, the
voltage scaling performs better than leakage control. This is
due to the reduction in the slack length duration. Specifically,
when moving from basic block to superblock, average slack
length reduces by 12%.

5 Conclusions

This work presents a novel approach to optimizing energy
consumption of processor IALUs. The basic idea is to have
the compiler analyze the schedule slacks in a VLIW archi-
tecture and exploit them using dynamic and leakage energy
reduction mechanisms. Based on the duration of exploitable
slacks and available functional units with different supply
voltages, dynamic or leakage energy reduction become more
favorable. We also present and evaluate a unified energy op-
timization approach which exploits voltage scaling and input

113

(16}

vector control for reducing dynamic and leakage energy con-
trol within a given slack. The proposed techniques have been
implanted within a compiler and the resulting schedules are
simulated using parameters extracted from circuit-level sim-
ulation. Our resuits show that combining voltage scaling and
input control performs better than using either of these strate-
gies independently.

References

(11 L. Benini and G. De Micheli. System-level power optimization: tech-
niques and tools. ACM Transactions on Design Automation of Elec-
tronic Systems, 5(2), pp.115-192, April 2000.

S. Borkar. Design challenges of technology scaling. IEEE Micro.
pp.-23-27, July-August 1999.

J. A. Butts and G. Sohi. A Static Power Model for Architects. In Proc.
International Symposium on Microarchitecture. December 2000.

A. Chandrakasan, W. J. Bowhill, and F. Fox. Design of High-
Performance Microprocessor Circuits. IEEE Press, 2001.

Computing Market Dynarics. Mobile Computing Devices: A New
Era in Personal Computing. Report No. CMC00-005MC, Aug. 2000.
J. Casmira and D. Grunwald. Dynamic Instruction Scheduling Slack.
In Proc. 2000 Kool Chips Woerkshop, December 2000.

J. P. Halter and F. Najm. A gate-level leakage power reduction method
for ultra-low-power CMOS circuits. In Proc. IEEE Custom Integrated
Circuits Conference, pp. 475478, 1997.

W. W. Hwu et. al. The superblock: an effective technique for VLIW
and superscalar compilation. The Journal of Supercomputing, Kluwer
Academic Publishers, 1993, pp. 229-248.

M. Johnson, D. Somasekhar and K. Roy. Models and algorithms for
bounds in CMOS circuits. JEEE Transactions on CAD of Integrated
Circuits and Systems, Vol. 18, No. 6, pp. 714-725, June 1999.

A. Klaiber. The technology behind Crusoe processors. Whitepaper,
Transmeta Corporation, January 2000.)

T. Kuroda and T. Sakurai. Threshold-voltage control schemes through
substrate-bias for low-power high-speed CMOS LSI design. Journal
of VLSI Signal Processing Systems, 13(2/3):191-201, Aug. 1996.

S. A. Mahlke et. al. Effective compiler support for predicated execu-
tion using hyperblock. In Proc. the 25th International Symposium on
Microarchitecture,, pp.45-54, Dec. 1992,

S. S. Muchnick. Advanced Compiler Design Impl.
Kaufmann Publishers, San Francisco, California, 1997.

S. Mutoh et. al. 1-V power supply high-speed digital circuit technol-
ogy with multithreshold-voltage CMOS. JEEE Journal of Solid State
Circuits, vol. 30, no. 8, pp. 847-854, Aug. 1995.

T. Okuma, T, Ishihara, and H. Yasuura. Real-time task scheduling
for a variable voltage processor. In Proc. International Symposium on
System Synthesis, November 1999.

K. Roy and S. C. Prasad. Low-Power CMOS VLSI Circuit Design.
Wiley Interscience, 2000.

Trimaran home page, http://www.trimaran.org

M. C. Toburen, T. M. Conte and M. Reilly. Instruction scheduling for
low power dissipation in high performance processors. Power Driven
Microarchitecture Workshop. June 1998.

{21
3]
{4]
[5]
[6]
n

(8]

(91

{101

i

{12

f13)

Morgan

(14}

(15

{17
[18]

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

