
Compiler-Directed Cache Polymorphism �

This paper appeared in Proceedings of LCTES02-SCOPES02, June 19-21, 2002.

J. S. Hu, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, H. Saputra and W. Zhang
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802.

ABSTRACT
Classical compiler optimizations assume a �xed cache archi-
tecture and modify the program to take best advantage of it.
In some cases, this may not be the best strategy because each
loop nest might work best with a di�erent cache con�guration
and transforming a nest for a given �xed cache con�guration
may not be possible due to data dependences. Working with
a �xed cache con�guration can also increase energy consump-
tion in loops where the best required con�guration is smaller
than the default (�xed) one. In this paper, we take an alter-
nate approach and modify the cache con�guration for each
nest depending on the access pattern exhibited by the nest.
We call this technique compiler-directed cache polymorphism
(CDCP). More speci�cally, in this paper, we make the follow-
ing contributions. First, we present an approach for analyzing
data reuse properties of loop nests. Second, we give algo-
rithms to simulate the footprints of array references in their
reuse space. Third, based on our reuse analysis, we present an
optimization algorithm to compute the cache con�gurations
for each nest. Our experimental results show that CDCP is
very e�ective in �nding the near-optimal data cache con�gu-
rations for di�erent nests in array-intensive applications.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; D.3.4 [Programming
Languages]: Processors|Compilers;Optimization

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Embedded software, compilers, cache polymorphism, data reuse,
cache locality, energy consumption.

�This work was supported in part by grants from
PDG, National Science Foundation grants CAREER
0093082&0093085, 0103583, 0082064 and a GSRC grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02,June 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

1. INTRODUCTION
Most of today's microprocessor systems include several spe-

cial architectural features (e.g., large on-chip caches) that use
a signi�cant fraction of on-chip transistors. These complex
and energy-hungry features are meant to be applicable across
di�erent application domains. However, they are e�ectively
wasted for applications that cannot fully utilize them, as they
are implemented in a rigid manner. For example, not all the
loops in a given array-based embedded application can take
advantage of a large on-chip cache. Also, working with a �xed
cache con�guration can increase energy consumption in loops
where the best required con�guration (from the performance
angle) is smaller than the default (�xed) one. This is because
a larger cache can result in a large per access energy.
The conventional approach to address the locality prob-

lem for caches (that is, the problem of maximizing the num-
ber of cache hits) is to employ compiler optimization tech-
niques [8]. Current compiler techniques generally work under
the assumption of a �xed cache memory architecture, and
try to modify the program behavior such that the new be-
havior becomes more compatible with the underlying cache
con�guration. However, there are several problems with this
method. First, these compiler-directed modi�cations some-
times are not e�ective when data dependences prevent nec-
essary program transformations. Second, the available cache
space sometimes cannot be utilized e�ciently, because the
static con�guration of cache does not match di�erent require-
ments of di�erent programs and/or of di�erent portions of
the same program. Third, most of the current compiler tech-
niques (adapted from scienti�c compilation domain) do not
take energy issues into account in general.
An alternative approach to the locality problem is to use re-

con�gurable cache structures and dynamically tailor the cache
con�gurations to meet the execution pro�le of the application
at hand. This approach has the potential to address the lo-
cality problem in cases where optimizing the application code
alone fails. However, previous research on this area [1, 9] is
mainly focused on the implementation and the employment
mechanisms of these designs, and lacks software-based tech-
niques to direct dynamic cache recon�gurations. Recently, a
compiler-directed scheme to adapt the cache assist was pro-
posed in [6]. Our work focuses on the cache as opposed to the
cache assist.
In this paper, we propose a strategy where an optimizing

compiler decides the best cache con�guration for each nest
in the application code. More speci�cally, in this paper, we
make the following contributions. First, we present techniques
for analyzing the data reuse properties of a given loop nest

and constructing formal expressions of these reuse patterns.
Second, we develop algorithms to simulate the footprints of
array references. Our simulation approach is much more ef-
�cient than classical cycle-based simulation techniques as it
simulates only data reuse space. Third, we develop an opti-
mization algorithm for computing the optimized cache con�g-
urations for each loop nest. We also provide a program level
algorithm for selecting dynamic cache con�gurations. We fo-
cus on the behavior of array references in loop nests as loop
nests are the most important part of array-intensive media
and signal processing application programs. In most cases,
the computation performed in loop nests dominates the ex-
ecution time of these programs. Thus, the behavior of the
loop nests determines both performance and energy behavior
of applications. Previous research [8] shows that the perfor-
mance of loop nests is directly inuenced by the cache behav-
ior of array references. Also, recently, energy consumption has
become an important issue in embedded systems [9]. Conse-
quently, determining a suitable combination of cache memory
con�guration and optimized software is a challenging problem
in embedded design world.
The rest of this paper is organized as follows. Section 2 re-

views basic concepts, notions, and representations for array-
based codes. In Section 3, concepts related to cache behavior
such as cache misses, interferences, data reuse, and data local-
ity are analyzed. Section 4 introduces our compiler-directed
cache polymorphism technique, and presents a complete set
of algorithms to implement it. We present experimental re-
sults in Section 5 to show the e�ectiveness of our technique.
Finally, Section 6 concludes the paper with a summary and
discusses some future work on this topic.

2. ARRAY-BASED CODES
This paper is particularly targeted at the array-based codes.

Since the performance of loop nests dominates the overall per-
formance of the array-based codes, optimizing nests is par-
ticularly important for achieving best performance in many
embedded signal and video processing applications. Optimiz-
ing data locality (so that the majority of data references are
satis�ed from the cache instead of main memory) can improve
the performance and energy e�ciency of loop nests in the fol-
lowing ways. First, it can signi�cantly reduce the number of
misses in data cache, thus avoiding frequent accesses to lower
memory hierarchies. Second, by reducing the number of ac-
cesses to the lower memory hierarchies, the increased cache hit
rate helps promote the energy e�ciency of the entire memory
system. In this section, we discuss some basic notions about
array-based codes, loop nests, array references as well as some
assumptions we made.

2.1 Representation for Programs
We assume that the application code to be optimized has

the format which is shown in Figure 1.

Assumption 1. Each array in the application code being
optimized is declared in the global declaration section of the
program. The arrays declared in the global section can be ref-
erenced by any loop in the code.

This assumption is necessary for our algorithms that will
be discussed in following sections. In the optimization stage
of computing the cache con�guration for the loop nests, As-
sumption 1 ensures an exploitable relative base address of
each array involved.

#include < header:h >
� � �
Global Declaration Section of Arrays;
� � �
main(int argc, char *argv[])
f
� � �
Loop Nest No. 0;
� � �
Loop Nest No. 1;

.

.

.
Loop Nest No. l;
� � �

g

Figure 1: Format for a Program.

for(i1 = l1; i1 � u1; i1+ = s1)
for(i2 = l2; i2 � u2; i2+ = s2)
� � �
for(in = ln; in � un; in+ = sn)
f

� � �AR1[f1;1(~i)][f1;2(~i)] � � � [f1;d1 (
~i))] � � � ;

� � �AR2[f2;1(~i)][f2;2(~i)] � � � [f2;d2 (
~i))] � � � ;

.

.

.

� � �ARr[(fr;1(~i)][fr;2(~i)] � � � [fr;dr (
~i))] � � � ;

g

Figure 2: Format for a Loop Nest.

Since loop nests are the main structures in array-based pro-
grams, program codes between loop nests can be neglected.
We also assume that each nest is independent from the oth-
ers. That is, as shown in Figure 1, the application contains
a number of independent nests, and no inter-loop-nest data
reuse is accounted for. This assumption can be relaxed to
achieve potentially more e�ective utilization of recon�gurable
caches. This will be one of our future research. Note that sev-
eral compiler optimizations such as loop fusion, �ssion, and
code sinking can be used to bring a given application code
into our format [12].

Assumption 2. All loop nests are at the same program lex-

ical level, the global level. There is no inter-nesting between
any two di�erent loop nests.

Assumption 3. All nests in the code are perfectly-nested,
i.e., all array operations and array references only occur at
the innermost loop.

These assumption, while not vital for our analysis, make our
implementation easier. We plan to relax these in our future
work.

2.2 Representation for Loop Nests
In our work, loop nests form the boundaries at which dy-

namic cache recon�gurations occur. Figure 2 shows the for-
mat for a loop nest.
In this format, ~i stands for the loop index vector, ~i =

(i1; i2; � � � ; in)
T . Notations lj ; uj and sj are the correspond-

ing lower bound, upper bound, and stride for each loop index
ij , where j = 1; 2; � � � ; n. AR1, AR2, � � � , and ARr corre-
spond to di�erent instances of array references in the nest.
Note that these may be same or di�erent references to the
same array, or di�erent references to di�erent arrays. Func-
tion fj;k(~i) is the subscript (expression) function (of~i) for the

kth subscript of the jth array reference, where j = 1; 2; � � � ; r,
k = 1; 2; � � � ; dk, and dk is the number of dimensions for the
corresponding array.

2.3 Representation for Array References
In a loop nest with the loop index vector~i, a reference ARj

to an array with m dimensions is expressed as:

ARj [fj;1(~i)][fj;2(~i)] � � � [fj;m(~i)]:

We assume that the subscript expression functions fj;k(~i) are
a�ne functions of the loop indices and loop-invariant con-
stants. A row-major storage layout is assumed for all arrays
as in C language. Assuming that the loop index vector is
an n depth vector; that is, ~i = (i1; i2; � � � ; in)

T , where n is
the number of loops in the nest, an array reference can be
represented as:0
BBB@

fj;1
fj;2
...

fj;m

1
CCCA =

0
BBB@

a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
. . .

...
am1 am2 � � � amn

1
CCCA

0
BBB@

i1
i2
...
in

1
CCCA+

0
BBB@

c1
c2
...
cm

1
CCCA

(1)

The vector at the left side of the above equation is called

array reference subscript vector ~f . The matrix above is de-
�ned as access matrix A. The rightmost vector is known as
the constant o�set vector ~c. Thus, the above equation can be
also written as [12]:

~f = A~i+ ~c (2)

3. CACHE BEHAVIOR
In this section, we review some basic concepts about cache

behavior. As noted earlier, in array-intensive applications,
cache behavior is largely determined by the footprints of the
data manipulated by loop nests. In this paper, we �rst pro-
pose an algorithm for analyzing the cache behavior for di�er-
ent arrays and di�erent array references in a given loop nest.
Based on the information gathered from this analysis, we then
propose another algorithm to compute the cache memory de-
mand in order to achieve a perfect cache behavior for the loop
nest being analyzed, and suggest a cache con�guration.

3.1 Cache Misses
There are three types of cache misses: compulsory (cold)

misses, capacity misses, and conict (interference) misses.
Di�erent types of misses inuence the performance of pro-
gram in di�erent ways. Note that, most of the data caches
used in current embedded systems are implemented as set-
associative caches or direct-mapping caches in order to achieve
high speed, low power, and low implementation cost. Thus,
for these caches, interference misses can dominate the cache
behavior, particularly for array-based codes. It should be
stressed that since the cache interferences occur in a highly
irregular manner, it is very di�cult to capture them accu-
rately [11]. Ghosh et al. proposed cache miss equations in [4]
as an analytical framework to compute potential cache misses
and direct code optimizations for cache behavior.

3.2 Data Reuse and Data Locality
Data reuse and data locality concepts are discussed in [12]

in detail. Basically, there are two types of data reuses: tempo-
ral reuse and spatial reuse. In a given loop nest, if a reference

accesses the same memory location across di�erent loop iter-
ations, this is termed as temporal reuse; if the reference ac-
cesses the same cache block (not necessarily the same memory
location), we call this spatial reuse. We can consider temporal
reuse is a special case of spatial reuse. If there are di�erent
references accessing the same memory location, we say that a
group-temporal reuse exists; whereas if di�erent references are
accessing the same cache block, it is termed as group-spatial
reuse. Note that group reuse only occurs among di�erent ref-
erences of the same array in a loop nest. When the reused
data item is found in the cache, we say that the reference ex-
hibits locality. This means that data reuse does not guarantee
data locality. We can convert a data reuse into locality only
by catching the reused item in cache. Classical loop-oriented
compiler techniques try to achieve this by modifying the loop
access patterns.

4. ALGORITHMS FOR CACHE POLYMOR-
PHISM

The performance and energy behavior of loop nests are
largely determined by their cache behavior. Thus, how to op-
timize the cache behavior of loop nests is utmost important
for satisfying high-performance and energy e�ciency demands
of array-based codes.
There are at least two kinds of approaches to perform op-

timizations for cache behavior. The conventional way is com-
piler algorithms that transform loops using interchange, re-
versal, skewing, and tiling transformations, or transform the
data layout to match the array access pattern. As mentioned
earlier, the alternative approach is to modify the underlying
cache architecture depending on the program access pattern.
Recent research work [7] explores the potential bene�ts from
the second approach. The strategy presented in [7] is based on
exhaustive simulation. The main drawback of this simulation-
based strategy is that it is extremely time consuming and can
consider only a �xed set of con�gurations. Typically, simulat-
ing each nest with all possible cache con�gurations makes this
approach unsuitable for practice. In this section, we present
an alternative way for determining the suitable cache con�g-
urations for di�erent sections (nests) of a given code.

4.1 Compiler-directed Cache Polymorphism
The existence of cache interferences is the main factor that

degrades the performance of a loop nest. Cache interfer-
ences disrupt the data reuse in a loop nest by preventing data
reuse from being converted into locality. Note that both self-
interferences or cross-interferences can prevent a data item
from being used while it is still in the cache. Our objective is
then to determine the cache con�gurations that help reduce
interferences. The basic idea behind the compiler-directed
cache polymorphism (CDCP) is to analyze the source code of
an array-based program and determine data reuse character-
istics of its loop nests at compile time, and then to compute a
suitable (near-optimal) cache con�guration for each loop nest
to exploit the data locality implied by its reuse. The near-
optimal cache con�guration determined for each nest elimi-
nates most of the interference misses while keeping the cache
size and associativity under control. In this way, it optimizes
execution time and energy at the same time. In fact, in-
creasing either cache capacity or associativity further only
increases energy consumption. In this approach, the source
codes are not modi�ed (obviously, they can be optimized be-

for(i = 0; i � N1; i ++)
for(j = 0; j � N2; j ++)
for(k = 0; k � N3; k ++)
for(l = 0; l � N4; l ++)
f
a[i + 2 � k][2 � j + 2][l] = a[i + 2 � k][2 � j][l];
b[j][k + l][i] = a[2 � i][k][l];

g

Figure 3: Example Code { a Loop Nest.

fore our algorithms are run; what we mean here is that we do
not do any further code modi�cations for the sake of cache
morphism).
At the very high level, our approach can be described as

follows. First, we use compiler to transform the source codes
into an intermediate format. In the second step, each loop
nest is processed as a basic element for cache con�guration.
In each loop nest, references of each array are assigned into
di�erent uniform reference sets. Each uniform set is then an-
alyzed to determine the reuse they exhibit over di�erent loop
levels. Then, for each array, an algorithm is used to simulate
the footprints of the reuse space within the layout space of
this array. Following this, a loop nest level algorithm opti-
mizes the cache con�gurations while ensuring data locality.
Finally, the code is generated such that these dynamic cache
con�gurations are activated at runtime (in appropriate points
in the application code).

4.2 Array References and Uniform Reference
Sets

Every array reference is expressed in Equation 2, ~f = A~i+~c,

in which ~f is the subscript vector, A is the access matrix, ~i
is the loop index vector and ~c is the constant vector. All
the information are stored in the array reference leaf, array
node and its parent loop-nest node of the intermediate codes.
Consider a piece of code in Figure 3, which is a loop nest:
The �rst reference of array a is represented by the following

access matrix Aa and constant o�set vector �!ca ,

Aa :

0
@ 1 0 2 0

0 2 0 0
0 0 0 1

1
A ;�!ca :

0
@ 0

2
0

1
A :

The reference to array b is also represented by its access ma-
trix Ab and constant o�set vector �!cb :

Ab :

0
@ 0 1 0 0

0 0 1 1
1 0 0 0

1
A ;�!cb :

0
@ 0

0
0

1
A :

The de�nition of uniform reference set is very similar to
the uniformly generated set [3]. If two references to an array
have the same access matrix and only di�er in constant o�set
vectors, these two references are said to belong to the same
uniform reference set. Constructing uniform reference sets for
an array provides an e�cient way for analyzing the data reuse
for the said array. This is because all references in an uniform
reference set have same data access patterns and data reuse
characteristics. Also, identifying uniform reference sets allows
us to capture group reuse easily.

4.3 Algorithm for Reuse Analysis
In the following sections, we use a bottom-up approach

to introduce the algorithms for implementing our compiler-

INPUT: access matrix Am�n of a uniform reference set
array node, loop-nest node
a given cache block size: BK SZ

OUTPUT: self-reuse pattern vector
���!
SRPn of this uniform set

Begin

Initial self-reuse pattern vector:
���!
SRPn = ~0

Set current loop level CLP to be the innermost loop:
CLP = n

Do

Set current dimension level CDN to be the highest
dimension: CDN = 0

Set index occurring ag IOF : IOF = FALSE
Do
If Element in access matrix A[CDN][CLP] 6= 0
Set IOF = TRUE
Break

Go up to the next lower dimension level
While CDN == the lowest dimension
If IOF == FALSE
Set reference has temporal reuse at this level:

SRP [CLP] = TEMP-REUSE
Else If CDN == m
If A[CDN][CLP] � s[CLP] < BK SZ=ELMT SZ
Set reference has spatial reuse at this level:

SRP [CLP] = SPAT-REUSE
Go up to the next higher loop level

While CLP == the outermost loop level
End.

Figure 4: Algorithm 1: Self-Reuse Analysis.

directed cache polymorphism technique. First, algorithms an-
alyzing the data reuses including self-reuses and group-reuses
are provided for each uniform reference set in this subsection.

4.3.1 Self-Reuse Analysis
Before the reuse analysis, all references of an array in a loop

nest are �rst constructed into several uniform reference sets.
Self-reuses (both temporal and spatial) are analyzed at the
level of uniform set. This algorithm works on access matrix.
The detailed algorithm is shown in Figure 4.
This algorithm checks each loop index variable from the

innermost loop to the outermost loop to see whether it oc-
curs in the subscript expressions of the references. If the jth

loop index variable ij does not occur in any subscript expres-
sion, the reection in access matrix is that all elements in
the jth column are 0. This means that the iterations at the
jth loop do not change the memory location accessed, i.e.,
the array reference has self-temporal reuse in the jth loop.
If the index variable only occurs in the lowest (the fastest-
changing) dimension (i.e., the mth dimension), the distance
between the contiguous loop iterations is checked. In the al-
gorithm, s[CLP] is the stride of the CLP th loop, BK SZ is
a given cache block size and ELMT SZ is the size of array
elements. If the distance (A[CDN][CLP] � s[CLP]) between
two contiguous iterations of this reference is within a cache
block, it has spatial reuse in this loop level.

4.3.2 Group-Reuse Analysis
Group reuses only exist among references in the same uni-

form reference set. Group-temporal reuse occurs when di�er-
ent references access the same data location across the loop
iterations, while group-spatial reuse exists when di�erent ref-
erences access the same cache block in the same or di�erent
loop iterations. Algorithm 2 in Figure 5 exploits a simpli�ed
version of group reuse which only exists in one loop level.
When a group-spatial reuse is found at a particular loop

level, the algorithm in Figure 5 �rst checks whether this level

INPUT: a uniform reference set with A and ~cs
array node, loop-nest node
a given cache block size: BK SZ

OUTPUT: group-reuse pattern vector
����!
GRPn of this uniform set

Begin

Initial group-reuse pattern vector:
����!
GRPn = ~0

For each pair of constant vectors ~c1 and ~c2
If ~c1 and ~c2 only di�er at the jth element
Set init dist = j c1[j]� c2[j] j

Check the jth row in access matrix A
Find the �rst occurring loop index variable (non-zero

element) starting from the innermost loop, say ik
If k < 1
If j == m and init dist < BK SZ=ELMT SZ
Continue

Else

Check the kth column of access matrix A

If ik only occurs in the jth dimension
If j == m //m is the lowest dimension of array
If init dist%A[k][m] == 0
Set GRP[k] = TEMP-REUSE

Else If GRP[k] == 0
Set GRP[k] = SPAT-REUSE

Else //j < m
If init dist%A[k][m] == 0
Set GRP[k] = TEMP-REUSE

End.

Figure 5: Algorithm 2: Group-Reuse Analysis.

has group-temporal reuse for other pairs of references. If it
does not have such reuse, this level will be set to have group-
spatial reuse. Otherwise, it just omits the current reuse found.
For group-temporal reuse found at some loop level, the ele-
ment corresponding to that level in the group-reuse vector
���!
GRPn will be directly set to have group-temporal reuse.
Now, for each array and each of its uniform reference sets

in a particular loop nest, using Algorithm 1 and Algorithm
2, the reuse information at each loop level can be collected.
As for the example code in subsection 4.3, references to array
a have self-spatial reuse at loop level l, self-temporal reuse
at loop level j and group reuse at loop level j. Reference of
array b has self-spatial reuse at loop level i.
Note that, in contrast to the most of the previous work in

reuse analysis (e.g., [12]), this approach is simple and com-
putes reuse information without solving a system of equations.

4.4 Simulating the Footprints of Reuse Spaces
The next step in our approach is to transform those data

reuses into real data localities. A straightforward idea is to
make the data cache large enough to hold all the data in these
reuse spaces of the arrays. Note that data which are out of
reuse spaces are not necessary to be kept in cache after the
�rst reference since there is no reuse for those data. As dis-
cussed earlier, the cache interferences can signi�cantly a�ect
the overall performance of a nest. Thus, the objective of our
technique is to �nd a near-optimal cache con�guration, which
can reduce or eliminate the majority of the cache interferences
within a nest. An informal de�nition of a near-optimal cache
con�guration is as follows:

Definition 1. A near-optimal cache con�guration is the
possibly smallest cache in size and associativity which achieves
a near-optimal number of cache misses. And, any increase in
either cache size or associativity over this con�guration does

not deliver further signi�cant improvement.

In order to �gure out such a near-optimal cache con�gu-
ration that would contain the entire reuse space for a loop

nest, the real cache behavior in these reuse spaces must be
made available for potential optimizations. In this section,
we provide an algorithm that simulates the exact footprints
(memory addresses) of array references in their reuse spaces.

Suppose, for a given loop index vector ~i, an array refer-
ence with a particular value of ~i = (i1; i2; � � � ; in)

T can be
expressed as follows:

f(~i) = SA+ Cof1 � i1 + Cof2 � i2 + � � �+ Cofn � in: (3)

Here, SA is starting address of the array reference, which
is di�erent from the base address (the memory address of
the �rst array element) of an array. It is the constant part
of the above equation. Suppose that the data type size of
the array elements is elmt sz, the depth of dimension is m,
the dimensional bound vectors are

�!
dlm = (dl1; dl2; � � � ; dlm)

T ,
��!
dum = (du1; du2; � � � ; dum)

T , and the constant o�set vector
~c = (c1; c2; � � � ; cm)

T , SA is derived from the following equa-
tion:

SA = elmt sz �

mX
j=1

m+1Y
k=j+1

ddk � cj ; ddk =

�
1; k = m+ 1

duk � dlk; k � m

(4)

Cofj(j = 1; 2; � � � ; n) are integrated coe�cients of the loop
index variables. Suppose the access matrix is Am�n, Cofj is
derived as follows:

Cofj = elmt sz �

mX
l=1

m+1Y
k=l+1

ddk � alj ; ddk =

�
1; k = m+ 1

duk � dlk; k � m

(5)

Note that, with Equation 3, the address of an array refer-
ence at a particular loop iteration can be calculated as the
o�set in the layout space of this array. The algorithm pro-
vided in this section is using these formulations to simulate
the footprints of array references at each loop iteration within
their reuse spaces. Following two observations give some basis
as to how to simulate the reuse spaces.

Observation 1. In order to realize the reuse carried by the
innermost loop, only one cache block is needed for this array
reference.

Observation 2. In order to realize the reuse carried by
a non-innermost loop, the minimum number of cache blocks

needed for this array reference is the number of cache blocks
that are visited by the loops inner than it.

Since we have assumed that all subscript functions are a�ne,
for any array reference, the patterns of reuse space during
di�erent iterations at the loop level which has the reuse are
exactly the same. Thus, we only need to simulate the �rst
iteration of the loop having the reuse currently under ex-
ploiting. For example, loop level j in loop vector ~i has the
reuse we are exploiting, the simulation space is de�ned as
SMSj = (i1 = l1; i2 = l2; � � � ; ij = lj ; ij+1; � � � ; in), in which
ik>j varies from its lower bound lk to upper bound uk.
Algorithm 3 (shown in Figure 6) �rst calls Algorithms 1 and

2. Then, it simulates the footprints of the most signi�cant
reuse space for an array in a particular loop nest. These
footprints are marked with a array bitmap.

4.5 Computation and Optimization of Cache
Configurations for Loop Nests

INPUT: an array node, a loop-nest node
a given cache block size: BK SZ

OUTPUT: an array-level bitmap for footprints
Begin
Initial array size AR SZ in number of cache blocks
Allocate an array-level bitmap ABM with size AR SZ
and initial ABM to zeros

Initial the highest reuse level RS LEV = n
//n is the depth of loop nest
For each uniform reference set
Call Algorithm 1 for self-reuse analysis
Call Algorithm 2 for group-reuse analysis
Set URS LEV = highest reuse level of this set
If RS LEV > URS LEV
Set RS LEV = URS LEV

If RS LEV == n
For all references of this array

Set ~i = ~l//only use the lower bound

apply equation 3 to get the reference address f(~i)

transfer to block id: bk id = f(~i)=BK SZ
set array bitmap: ABM [bk id] = V ISITED

Else
For all loop indexes ij , j > RS LEV
varies the value of ij from lower bound to upper bound
For all references of this array

apply equation 3 to get the reference address f(~i)

transfer to block id: bk id = f(~i)=BK SZ
set array bitmap: ABM [bk id] = V ISITED

End.

Figure 6: Algorithm 3: Simulation of Footprints in
Reuse Spaces.

In previous subsections, the reuse spaces of each array in
a particular loop nest have been determined and their foot-
prints have also been simulated in the layout space of each
array. Each array has a bitmap indicating the cache blocks
which have been visited by the iterations in reuse spaces after
applying Algorithm 3. As we discussed earlier, the phenom-
ena of cache interferences can disturb these reuses and prevent
the array references from realizing data localities across loop
iterations. Thus, an algorithm that can reduce these cache
interferences and result in better data localities within the
reuse spaces is crucial.
In this subsection, we provide a loop-nest level algorithm to

explicitly �gure out and display the cache interferences among
di�erent arrays accessed within a loop nest. The main point
of this approach is to map the reuse space of each array into
the real memory space. At the same time, the degree of con-
ict (number of interferences among di�erent arrays) at each
cache block is stored in a loop-nest level bitmap. Since the
self-interference of each array is already solved by Algorithm
3 using an array bitmap, this algorithm mainly focuses on
reducing the group-interference that might occur among dif-
ferent arrays. As is well-known, one of the most e�ective way
to avoid interferences is to increase the associativity of data
cache, which is used in this algorithm. Based on the de�ni-
tion of near-optimal cache con�guration, this algorithm tries
to �nd the smallest data cache with smallest associativity that
achieves signi�cantly reduced cache interferences and nearly
perfect performance of the loop nest. Figure 7 shows the de-
tailed algorithm (Algorithm 4) that computes and optimizes
the cache con�guration.
For a given loop nest, Algorithm 4 starts with the cache

block size (BK SZ) from its lower bound, e.g., 16 bytes and
goes up to its upper bound, e.g., 64 bytes. At each particular
BK SZ, it �rst applies Algorithm 3 to obtain the array bitmap
ABM of each array. Then it allocates a loop-nest level bitmap

INPUT: loop-nest node
global list of arrays declared
lower bound of block size: Bk SZ LB
upper bound of block size: Bk SZ UB

OUTPUT: optimal cache con�gurations at di�. BK SZ
Begin
Set BK SZ = BK SZ LB (lower bound)
Do
For each array in this loop nest
Call algorithm 3 to get the array bitmap ABM

create and initial a loop-nest level bitmap LBM,
with the size is the smallest 2n that is �
the size of the largest array (in block): LBM size

For each array bitmap ABM
map ABM into the loop-nest bitmap LBM
with the relative base-address of array: base addr
to indicate the degree of conict at each block

For block id < array size
LBM [(block id+ base addr)%LBM size]+ =

ABM [block id]
set assoc = the largest degree of conict in LBM
set cache sz = assoc � LBM size
set optimal cache conf. to current cache conf.
For assoc < assoc upper bound
half the number of sets of current cache by
LBM size= = 2
For i � LBM size
LBM [i]+ = LBM [i + LBM size]

set assoc = highest value of LBM [i]; i � LBM size
set cache size = assoc � LBM size
If assoc < assoc upper bound

and cache size < optimal cache size
set optimal cache conf. to current cache conf.

give out optimal cache conf. at BK SZ
doubling BK SZ� = 2

while BK SZ > BK SZ UB (upper bound)
End.

Figure 7: Algorithm 4: Compute and Optimize Cache
Con�gurations for Loop Nests.

LBM for all arrays within this nest, whose size is the smallest
value in power of 2 that is greater or equal to the largest
array size. All ABMs are remapped to this LBM with their
relative array base addresses. The value of each bits in LBM
indicates the conict at a particular cache block. Following
this, the optimization is carried out by halving the size of
LBM and remapping LBM . The largest value of bits in
LBM also shows the smallest cache associativity needed to
avoid the interference in the corresponding cache block. This
process is ended when the upper bound of associavitity is met.
A near-optimal cache con�guration at block size BK SZ is
computed as the one which has smallest cache size as well as
the smallest associativity.

4.6 Global Level Cache Polymorphism
The compiler-directed cache polymorphism technique does

not make changes to the source code. Instead, it uses compiler
only for source code parsing and generates internal code with
the intermediate format which is local to our algorithms. A
global or program level algorithm, Algorithm 5 (in Figure 8)
is presented in this subsection to obtain the directions (cache
con�gurations for each nest of a program) of the cache recon-
�guration mechanisms.
This algorithm �rst generates the intermediate format of

the original code and collects the global information of arrays
in source code. After that, it applies Algorithm 4 to each of its
loop nests and obtains the near-optimal cache con�gurations
for each of them. These con�gurations are stored in the cache-
con�guration list (CCL). Each loop nest has a corresponding

INPUT: source code(.spd)
OUTPUT: Performance data and its cache con�gurations

for each loop nest
Begin
Initial cache-con�guration list: CCL
Use one SUIF pass to generate the intermediate code format
Construct a global list of arrays declared with its
relative base address

For each loop nest
For each array in this loop nest
Construct uniform reference sets for all its references

Call algorithm 4 to optimize the cache con�gurations
for this loop nest

store the con�gurations to the CCL
For each block size
activate recon�guration mechanisms with each loop nest
using its con�guration from the CCL

Output performance data as well as the cache con�guration
of each loop nest

End.

Figure 8: Algorithm 5: Global Level Cache Polymor-
phism.

#de�ne N 8
int a[N][N][N], b[N][N][N];
intN1 = 4; N2 = 4; N3 = 4; N4 = 4;
main()
f
int i, j, k, l;

for(i = 0; i � N1; i ++)
for(j = 0; j � N2; j ++)
for(k = 0; k � N3; k ++)
for(l = 0; l � N4; l++)
f
a[i+ k][j + 2][l] = a[i+ k][j][l];
b[j][k + l][i] = a[2 � i][k][l];

g
g

Figure 9: An Example: Array-based Code.

node in CCL which has its near-optimal cache con�gurations
at di�erent block sizes. After the nest-level optimization is
done, Algorithm 5 activates the cache recon�guration mech-
anisms, in which a modi�ed version of the Shade simulator
is used. During the simulation, Shade is directed to use the
near-optimal cache con�gurations in CCL for each loop nest
before its execution. The performance data of each loop nest
under di�erent cache con�gurations is generated as output.
Since current cache recon�guration mechanisms can only

vary cache size and cache ways with �xed cache block size,
the cache optimization is done for di�erent (�xed) cache block
sizes. This means that the algorithms in this paper suggest
a near-optimal cache con�guration for each loop nest for a
given block size. In the following section, experimental results
verifying the e�ectiveness of this technique are presented.

4.7 An Example
In this subsection, we focus on the example code in Figure

9 to illustrate how the compiler-directed cache polymorphism
technique works. For simplicity, this code only contains one
nest.
Algorithm 5 starts with one SUIF pass to convert the above

source code into intermediate code, in which the program
node only has one loop-nest node. The loop-nest node is
represented by its index vector ~i = (i; j; k; l)T , with an in-

dex lower bound vector of
�!
il = (0; 0; 0; 0)T , an upper bound

vector of
�!
iu = (N1; N2; N3; N4)

T and a stride vector of
�!
is =

(1; 1; 1; 1)T . Within the nest, arrays a and b have references
ARa1 , ARa2 , ARa3 and ARb, which are represented in access
matrices and constant vectors as follows:

Aa1 :

0
@ 1 0 1 0

0 1 0 0
0 0 0 1

1
A ;�!ca1 :

0
@ 0

2
0

1
A ;

Aa2 :

0
@ 1 0 1 0

0 1 0 0
0 0 0 1

1
A ;�!ca2 :

0
@ 0

0
0

1
A ;

Aa3 :

0
@ 2 0 0 0

0 0 1 0
0 0 0 1

1
A ;�!ca3 :

0
@ 0

0
0

1
A ;

Ab :

0
@ 0 1 0 0

0 0 1 1
1 0 0 0

1
A ;�!cb :

0
@ 0

0
0

1
A ;

Also, a global array list is generated as < a; b >. Then,
for array a, references ARa1 and ARa2 are grouped into one
uniform reference set, and ARa3 is put to another one. Array
b, on the other hand, has only one uniform reference set.
Then, Algorithm 4 is invoked and starts from the smallest

cache block size, BK SZ, say 16 bytes. It uses Algorithm 3
to obtain the array bitmap ABMa for array a and ABMb for
array b at BK SZ. Within Algorithm 3, we �rst call Algo-
rithm 1 and Algorithm 2 to analyze the reuse characteristics
of a given array. In our example, the �rst uniform set of ar-
ray a has self-spatial reuse at level l, group-temporal reuse at
level j, the second uniform set has self-spatial reuse at level
l and self-temporal reuse at level j. Reference of array b has
self-spatial reuse at level i. The highest level of reuse is then
used for each array by Algorithm 3 to generate the ABM for
its footprints in the reuse space. We assume an integer has 4
bytes in size. In this case, both ABMa and ABMb have 128
bits shown as follows:
ABMa:

0-31 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
32-63 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
64-95 0
96-127 0

ABMb:

0-31 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
32-63 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
64-95 0
96-127 0

These two ABMs are then passed by Algorithm 3 to Al-
gorithm 4. In turn, Algorithm 4 creates a loop-nest bitmap
LBM with size being equal to the largest array size, MAX(
ABMs), and re-maps ABMa and ABMb to LBM . Since ar-
ray a has relative base address at 0 (byte), and array b at
2048, we determine LBM as follows:

0-31 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0
32-63 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0
64-95 0
96-127 0

Name Arrays Nests Brief Description

adi.c 6 2 Alternate Direction Integral
aps.c 17 3 Mesoscale Hydro Model
bmcm.c 11 3 Molecular Dynamic of Water
eux.c 5 6 Mesh Computation
tomcat.c 9 8 Mesh Generation
tsf.c 1 4 Array-based Computation
vpenta.c 9 8 Nasa Ames Fortran Kernel
wss.c 10 7 Molecular Dynamics of Water

Table 1: The Array-based Benchmarks Used in the
Experiments.

The maximum value of bits in LBM indicates the number of
interference among di�erent arrays in the nest. Thus, it is the
least associativity that is required to avoid this interference.
In this example, Algorithm 4 starts from a cache associativity
of 2 to compute the near-optimal cache con�guration. Each
time, the size of LBM is halved and the LBM is re-mapped
until the resulting associativity reaches the upper bound, e.g.,
16. Then it outputs the smallest cache size with smallest as-
sociativity as the near-optimal con�guration at this block size
BK SZ. For this example, the near-optimal cache con�gu-
ration is 2KB 2-way associative cache at 16 byte block size.
The LBM after optimization is shown as follows:

0-31 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0
32-63 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0

Following this, Algorithm 4 continues to compute the near-
optimal cache con�gurations for larger cache block sizes by
doubling the previous block size. When the block size reaches
its upper bound, e.g., 64 bytes, this algorithm stops to pass
all the near-optimal con�gurations at di�erent block sizes to
Algorithm 5. On receiving these con�gurations, Algorithm
5 activates Shade to simulate the example code (executable)
with these cache con�gurations. Then the performance data
is generated as the output of Algorithm 5.

5. EXPERIMENTS

5.1 Simulation Framework
In this section, we present our simulation results to ver-

ify the e�ectiveness of the CDCP technique. Our technique
has been implemented using SUIF [5] compiler and Shade
[2]. Eight array-based benchmarks are used in this simula-
tion work. In each benchmark, loop nests dominate the over-
all execution time. Our benchmarks, the number of arrays
(for each benchmark) and the number of loop nests (for each
benchmark) are listed in Table 1.
Our �rst objective here is to see the cache con�gurations

returned by our CDCP scheme and a scheme based on ex-
haustive simulation (using Shade). We consider three di�er-
ent block (line) sizes: 16, 32 and 64 bytes. Note that our work
is particularly targeted at L1 on-chip caches.

5.2 Selected Cache Configurations
In this subsection, we �rst apply an exhaustive simulation

method using the Shade simulator. For this method, the orig-
inal program codes are divided into a set of small programs,
each program having a single nest. Shade simulates these

loop nests individually with all possible L1 data cache con-
�gurations within the following ranges: cache sizes from 1K
to 128K, set-associativity from 1 way to 16 ways, and block
size at 16, 32 and 64 bytes. The number of data cache misses
is used as the metric for comparing performance. The opti-
mal cache con�guration at a certain cache block size is the
smallest one in terms of both cache size and set associativ-
ity that achieves a performance (the number of misses) which
cannot be further improved (the number of misses cannot be
reduced by 1%) by increasing cache size and/or set associa-
tivities. The left portion of Table 2 shows the optimal cache
con�gurations (as selected by Shade) for each loop nest in
di�erent benchmarks as well as at di�erent cache block sizes.
The compiler-directed cache polymorphism technique di-

rectly takes the original source code in the SUIF .spd for-
mat and applies Algorithm 5 to generate the near-optimal
cache con�gurations for each loop nest in the source code. It
does not do any instruction simulation for con�guration op-
timization. Thus, it is expected to be very fast in �nding
the near-optimal cache con�guration. The execution engine
(a modi�ed version of Shade) of CDCP directly applies these
cache con�gurations to activate the recon�guration mecha-
nisms dynamically. The cache con�gurations determined by
CDCP are shown on the right part of Table 2. To sum up, in
Table 2, for each loop nest in a given benchmark, the optimal
cache con�gurations from Shade and near-optimal cache con-
�gurations from CDCP technique at block sizes 16, 32, and
64 bytes are given. A notation such as 8k4s is used to indicate
a 8K bytes 4-way set associative cache with a block size of 32
bytes. In this table, B means bytes, K denotes kilobytes and
M indicates megabytes.
From Table 2, we can observe that CDCP has the ability to

determine cache capacities at byte granularity. In most cases,
the cache con�guration determined by CDCP is less than or
equal to the one determined by the exhaustive simulation.

5.3 Simulation Results
The two sets of cache con�gurations for each loop nests

given in Table 2 are both simulated at the program level. All
con�gurations from CDCP with cache size less than 1K are
simulated at 1K cache size with other parameters unmodi�ed.
For best comparison, the performance is shown as the cache
hit rate instead of the miss rate. Figure 10 gives the per-
formance comparison between Shade (exhaustive simulation)
and CDCP using a block size of 16 bytes.

Figure 10: Performance Comparison of Cache Con-
�gurations at Block Size of 16: Shade Vs CDCP.

We see from Figure 10 that, for benchmarks adi:c, aps:c,
bmcm:c and wss:c, the results obtained from Shade and CDCP
are very close. On the other hand, Shade outperforms CDCP
in benchmarks eflux:c, tomcat:c and vpenta:c, and CDCP

Codes Shade CDCP

adi 16 32 64 16 32 64
1 1k4s 1k4s 1k4s 64B4s 128B4s 256B4s
2 16k16s 16k16s 16k16s 16k16s 16k16s 16k16s

aps 16 32 64 16 32 64
1 2k4s 4k8s 64k4s 2k8s 4k4s 8k8s
2 16k8s 16k16s 32k16s 16k4s 16k8s 32k8s
3 4k2s 4k8s 8k8s 2k16s 4k8s 8k8s

bmcm 16 32 64 16 32 64
1 1k8s 2k8s 4k8s 64B1s 128B1s 256B1s
2 1k8s 2k8s 4k8s 64B2s 128B4s 256B1s
3 32k4s 64k4s 128k4s 32k4s 64k4s 128k4s

eux 16 32 64 16 32 64
1 16k4s 32k4s 64k4s 2k8s 4k4s 8k8s
2 16k8s 32k4s 64k4s 8k4s 16k2s 32k4s
3 128k16s 128k16s 128k1s 128k8s 256k2s 256k2s
4 2k8s 2k8s 4k8s 128B4s 256B2s 256B4s
5 16k16s 32k4s 64k4s 8k16s 16k8s 32k4s
6 128k16s 128k16s 128k1s 128k8s 256k2s 256k2s

tomcat 16 32 64 16 32 64
1 1k2s 1k1s 1k1s 32B2s 64B2s 128B1s
2 1k1s 1k1s 1k1s 32B1s 64B1s 128B2s
3 128k4s 128k8s 128k1s 64k1s 128k2s 256k2s
4 1k2s 1k4s 2k8s 32B2s 64B2s 128B1s
5 64k8s 128k8s 128k2s 64k1s 128k2s 256k2s
6 1k2s 1k4s 2k4s 64B4s 128B4s 256B2s
7 64k4s 128k8s 128k8s 32k4s 64k8s 128k16s
8 32k1s 128k2s 128k4s 32k1s 64k2s 128k4s

tsf 16 32 64 16 32 64
1 4k4s 8k1s 8k1s 4k1s 4k1s 4k1s
2 128k16s 128k16s 128k16s 1M1s 1M1s 1M1s
3 4k4s 4k16s 8k4s 4k1s 4k1s 4k1s
4 128k16s 128k16s 128k16s 1M1s 1M1s 1M1s

vpenta 16 32 64 16 32 64
1 64k1s 128k1s 128k16s 64k1s 128k1s 256k8s
2 1k8s 2k4s 2k8s 128B8s 256B8s 512B8s
3 1k4s 2k2s 2k8s 256B4s 512B2s 1k2s
4 128k8s 128k16s 128k16s 128k2s 256k8s 512k2s
5 1k4s 2k4s 4k2s 256B4s 512B2s 1k2s
6 1k2s 2k2s 2k8s 128B8s 256B4s 512B8s
7 1k2s 1k2s 1k16s 64B1s 128B2s 256B4s
8 64k8s 128k2s 128k1s 64k1s 128k1s 256k1s

wss 16 32 64 16 32 64
1 4k4s 8k4s 8k16s 2k2s 4k4s 8k8s
2 1k8s 2k8s 4k4s 64B4s 128B4s 256B4s
3 1k2s 1k2s 1k2s 64B2s 128B4s 256b4s
4 64k4s 64k4s 64k4s 64k2s 64k2s 64k2s
5 4k4s 8k8s 16k8s 2k4s 4k4s 8k8s
6 1k2s 1k2s 1k2s 32B2s 64B1s 128B2s
7 2k8s 4k4s 4k4s 64B4s 128B1s 256B2s

Table 2: Cache Con�gurations for each Loop Nest in
Benchmarks: Shade Vs CDCP.

outperforms Shade in tsf:c. Figures 11 and 12 show the re-
sults with block sizes of 32 and 64 bytes, separately.
We note that, for most benchmarks, the performance dif-

ference between Shade and CDCP decreases as the block size
is increased to 32 and 64 bytes. Especially for benchmarks
adi:c, aps:c, bmcm:c and wss:c, the performances from the
two approaches are almost the same. For other benchmarks
such as tsf:c and vpenta:c, our CDCP strategy consistently
outperforms Shade when block size is 32 or 64 bytes. This
is because the exhaustive Shade simulation has a searching
range (for cache sizes) from 1K to 128K as explained earlier,
while CDCP has no such constraints (that is, it can come
up with a non-standard cache size too). Obviously, we can
use much larger and/or much �ner granular cache size for ex-
haustive simulation. But, this would drastically increase the
simulation time, and is not suitable for practice. In contrast,

Figure 11: Performance Comparison of Cache Con-
�gurations at Block Size of 32: Shade Vs CDCP.

the CDCP strategy can determine any near-optimal cache
con�guration without much increase in search time.

Figure 12: Performance Comparison of Cache Con-
�gurations at Block Size of 64: Shade Vs CDCP.

For more detailed study, we break down the performance
comparison at loop nest level for benchmark aps:c. Figure 13
shows the comparison for each loop nest of this benchmark at
di�erent cache block sizes.

Figure 13: Loop-nest Level Performance Comparison
of Cache Con�gurations for asp.c: Shade Vs CDCP.

The results from the loop nest level comparison show that
the CDCP technique is very e�ective in �nding the near-
optimal cache con�gurations for loop nests in this benchmark,
especially at block sizes of 32 and 64 bytes (the most com-
mon block sizes used in embedded processors). Since CDCP
is analysis-based not simulation-based, we can expect that it
will be even more desirable in codes with large input sizes.
From energy perspective, the Cacti power model [10] is used

to compute the energy consumption in L1 data cache for each
loop nest of our benchmarks at di�erent cache con�gurations
listed in Table 2. We use 0.18 micron technology for all the
cache con�gurations. The detailed energy consumption �g-
ures are given in Table 3.

Codes Shade CDCP

adi 16 32 64 16 32 64

1 318.6 287.4 -1 318.6 287.4 -
2 12154.4 13164.5 16753.6 12154.4 13164.5 16753.6

aps 16 32 64 16 32 64
1 322.3 771.7 540.1 661.2 335.4 822.0
2 125599.5 279985.9 368764.9 65461.7 122847.2 145962.2
3 7907.7 33273.5 34697.7 64275.4 33273.5 34697.7

bmcm 16 32 64 16 32 64
1 314.6 342.9 393.4 31.7 30.5 31.1
2 314.6 342.9 393.4 83.0 155.2 31.1
3 26826.7 32203.8 36989.1 26826.7 32203.8 36989.1

eux 16 32 64 16 32 64
1 366.7 386.4 433.3 648.4 320.1 776.6
2 1068.8 610.3 700.1 534.8 301.7 598.5
3 2366.1 2435.0 329.4 1220.7 727.5 749.6
4 310.2 321.7 370.7 146.0 77.0 -
5 2326.5 636.5 731.2 2399.6 1121.7 624.5
6 2573.0 2666.1 375.0 1323.3 795.5 821.3

tomcat 16 32 64 16 32 64
1 895.0 280.4 260.0 895.0 748.4 260.0
2 28.4 27.5 28.1 28.4 27.5 74.3
3 66507.5 117366.5 40582.4 26846.9 40767.0 83199.2
4 78.1 147.5 - 78.1 77.1 29.5
5 25678.1 27508.1 14394.7 9448.6 14978.6 25989.1
6 80.8 152.7 167.6 152.8 152.7 86.5
7 9461.3 18865.2 25190.9 9647.7 21984.0 57050.0
8 2051.1 5050.0 8406.6 2051.1 4046.2 8406.6

tsf 16 32 64 16 32 64
1 160.9 38.5 41.4 34.7 34.7 35.9
2 18858.6 18245.8 19320.4 6263.6 9501.5 14293.2
3 163.5 787.9 173.9 35.2 35.2 42.5
4 18769.0 18159.7 19230.0 6234.3 9452.6 14226.7

vpenta 16 32 64 16 32 64
1 4111.6 5130.1 87386.9 4111.6 5130.1 22364.9
2 350.7 184.6 - 350.7 - -
3 189.4 102.3 - 189.4 97.7 98.6
4 77075.1 235412.6 268609.7 27835.4 90080.5 100849.2
5 188.4 216.9 108.7 188.4 97.4 98.3
6 99.1 101.7 - - 185.8 -
7 90.2 89.0 - 32.7 89.0 -
8 36158.0 13557.1 15249.6 8994.2 12456.5 21512.0

wss 16 32 64 16 32 64
1 268.8 279.9 1610.6 138.6 261.1 624.0
2 288.5 317.1 168.1 143.9 143.6 -
3 75.1 74.1 74.9 75.1 141.8 -
4 22641.6 23665.1 22935.2 13274.4 13051.5 14560.2
5 326.7 672.8 775.3 325.7 319.6 756.3
6 74.8 73.8 74.6 74.8 27.6 74.6
7 302.8 155.6 166.6 142.4 27.9 75.1

Table 3: Energy Consumption (microjoules) of L1
Data Cache for each Loop Nest in Benchmarks with
Con�gurations in Table 2: Shade Vs CDCP.

From our experimental results, we can conclude that (i)
our strategy generates competitive performance results with
exhaustive simulation, and (ii) in general it results in a much
lower power consumption than a con�guration selected by
exhaustive simulation. Consequently, our approach strikes a
balance between performance and power consumption.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new technique, compiler-directed

cache polymorphism, for optimizing data locality of array-
based embedded applications while keeping the energy con-
sumption under control. In contrast to many previous tech-

1Energy estimation is not available from Cacti due to the very
small cache con�guration.

niques that modify a given code for a �xed cache architec-
ture, our technique is based on modifying (recon�guring) the
cache architecture dynamically between loop nests. We pre-
sented a set of algorithms that (collectively) allow us to select
a near-optimal cache con�guration for each nest of a given
application. Our experimental results obtained using a set of
array-intensive applications reveal that our approach gener-
ates competitive performance results and consumes much less
energy (when compared to an exhaustive simulation based
framework). We plan to extend this work in several direc-
tions. First, we would like to perform experiments with dif-
ferent sets of applications. Second, we intend to use cache
polymorphism at granularities smaller than loop nests. And
�nally, we would like to combine CDCP with loop/data based
compiler optimizations to optimize both hardware and soft-
ware in a coordinated manner.

7. REFERENCES
[1] D. H. Albonesi. Selective cache ways: On-demand cache

resource allocation. In Proc. of the 32nd Micro, 1999.

[2] B. Cmelik and D. Keppel. Shade: a fast instruction-set
simulator for execution pro�ling. In Proc. of the 1994
ACM SIGMETRICES Conf. on the Measurement and
Modeling of Computer Systems, May 1994.

[3] D. Gannon, W. Jalby, and K. Gallivan. Strategies for
cache and local memory management by global
program transformation. Journal of Parallel and
Distributed Computing, 5(5):587{616, October 1988.

[4] S. Ghosh, M. Martonosi, and S. Malik. Cache miss
equations: An analytical representation of cache misses.
In Proc. of ICS'97.

[5] Stanford Compiler Group. The SUIF Library, version
1.0 edition. 1994.

[6] X. Ji, D. Nicolaescu, A. Veidenbaum, A. Nicolau, and
R. Gupta. Compiler-directed cache assist adaptivity.
Technical Report ICS-TR-00-17, ICS Department,
University of California-Irvine, June 2000.

[7] I. Kadayif, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and J. Ramanujam. Morphable cache
architectures: potential bene�ts. In ACM Workshop on
LCTES'01, June 2001.

[8] Kathryn S. McKinley, Steve Carr, and Chau-Wen
Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming
Lanaguages and Systems, 18(4):424{453, July 1996.

[9] P. Ranganathan, S. Adve, and N. P. Jouppi.
Recon�gurable caches and their application to media
processing. In Proc. of the 27th ISCA, June 2000.

[10] G. Reinman and N. Jouppi. An integrated cache timing
and power model. Cacti 2.0 technical report, COMPAQ
Western Research Lab, 1999.

[11] O. Temam, C. Fricker, and W. Jalby. Cache interference
phenomena. In Proc. of ACM SIGMETRICS
Conference on Measurement & Modeling Computer
Systems, 1994.

[12] M. Wolf and M. Lam. A data locality optimizing
algorithm. In Proc. of PLDI'91, pages 30{44, 1991.

