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Abstract 
 

Software Synthesis of SystemC Models. 
 

Brijesh Sirpatil 
 
Technological advances are providing us with the capability to integrate more and more 
functionality into a single chip. This is leading to a new design paradigm, System On a 
Chip (SOC). In SOC designs all the functionality of a system is put inside a single chip, 
leading to increased performance, reduced power consumption, lower costs, and reduced 
size. SOC design brings with it new challenges and difficulties, however. The designs are 
now large, complicated and involve both software and hardware components. The 
designs have to be modeled at a high level of abstraction before partitioning into 
hardware and software components for final implementation.  
 
SystemC is a system level modeling language useful for System On a Chip design. It 
provides various features to perform system level modeling and simulation, which are 
missing in the generic HDL’s such as VHDL and Verilog. The hardware portion of the 
SystemC models can be synthesized into hardware using commercial tools . The software 
portion can be rewritten as embedded software for the target processor. 
 
The aim of this thesis is to explore the SOC design process and to define methods for 
software synthesis of SystemC models. Software synthesis involves translation of 
SystemC models into code that is suitable for execution on an embedded processor. A 
simple scheduler that replaces the SystemC simulation kernel is proposed. This scheduler 
allows SystemC models to be executed directly as embedded software without the need 
for extensive modification or translation. Application of this process to the development 
of a GSM speech processing system, including the translation of part of the SystemC 
model into software that will execute on an embedded processor, is shown and the results 
are presented.    
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1 Introduction 
In recent years there have been rapid technological advances in the semiconductor 
industry. Continuing advances in IC fabrication technology and material science have 
made it possible to keep up with Moore’s Law [�19]. The number of transistors on a 
chip and the clock frequency have been doubling every 18 months. This has made it 
possible to design complex systems within a single chip, leading to new architectures and 
design paradigms.  
 
In the past, systems were built using discrete components such as microprocessors, 
memory and analog components. These systems do not scale well, in terms of 
complexity, performance, speed and cost. To increase the performance beyond that 
possible with discrete components, one has to integrate functionality into a single chip. 
The need for integration of functionality gave rise to VLSI designs. A single VLSI chip 
usually implements a complete sub-system or a large part of the needed functionality. A 
typical system today includes various VLSI cores, memory, microprocessors and the 
embedded software running on the processors. Total system complexity now includes the 
complexity in the silicon cores and the embedded software. Figure 1 shows the growth of 
system complexity with time.  
   
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Increasing system complexity. 

 
Increasing demands for more performance have taken the system designs based on VLSI 
chips to their limits. Now the basic gate delay is no longer the speed/performance 
bottleneck. The bottleneck now is the interconnect delays, power consumption and low 
system bus speeds. One way to overcome the above bottlenecks is to put all the various 
VLSI cores, memory, and processors into a single chip. This eliminates latency and 
delays of accessing data external to the chip, thereby increasing the performance. The 
tendency to put more functionality into a single chip has led to large and complex 
designs. The older design flow and methodology cannot cope up with the increased 
complexity. In the early stages of the design, not only the hardware, but also the entire 
system including the software has to be modeled to verify and validate the 
design.Engineers have begun to use a new design paradigm, System On a Chip (SOC), to 
overcome the the above mentioned challenges. 
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In the SOC design paradigm, all the functionality of a complete system is put into a 
single silicon die. The usual SOC chip may consist of a microprocessor, memory, glue 
logic, peripheral devices and analog modules (Figure 2).  The SOC design paradigm 
enables reuse of silicon IP cores. Designers can now build complete systems by putting 
together various IP cores inside a single chip. This leads to reduced development time 
and costs. Complete integration of all the functionality within a single chip means better 
performance, speed, lower power and higher reliability.   
 

 
Figure 2 Typical components of SOC design 

 
The SOC design paradigm is made possible with recent advances in IC fabrication 
technologies. With the capability to pack more and more transistors into a single die, we 
are able to put more functionality into a single chip. This allows a designer to pack all the 
functionality of a product into a single chip, giving rise to SOC designs.  
 

1.1  SOC Design Paradigm 
A typical SOC design is a complex system with hardware and software components 
interacting with each other to perform a given task. As discussed above, the SOC may 
consist of ASIC cores, peripherals, and a general processor with software . Various IP 
cores that are fully developed and tested by third-party sources may be included. For 
efficient implementation and reduced development time, it is important to have an early 
and accurate high-level model of the entire system. A designer needs to explore the 
architecture, develop software, integrate systems and measure system performance before 
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the hardware is built. Based on the performance of the model, the designer can then 
partition the system into hardware and software components and study the trade offs of a 
given partition.  
 

 

Figure 3 Typical SOC design flow. 

 
A typical design flow of an SOC system is described in [1] and is shown in Figure . The 
system is first modeled at the functional level or transaction level. The functional level 
model is an un-timed model and composed of function calls. The transaction level model 
is a timed model, and interactions between models are through signals and events. At this 
level of modeling, the architecture and algorithms are verified. Any performance issues 
and bottlenecks are studied and simulated. Once the architecture and algorithms are 
verified, the next step is to determine which part of the system is to be implemented in 
hardware and which part goes into software. This process is called hardware/software 
partitioning. The software portion runs as embedded software on the general-purpose 
microprocessor and the hardware portion is implemented as an embedded ASIC core.  
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To partition the system, the computational complexity and implementation cost of each 
of the sub-systems is measured or estimated. These values are then used to arrive at a 
hardware/software partition that meets all the requirements in terms of timing 
requirements, development and production costs, development time, and die area. The 
usual measure of the cost of a software implementation is the computational load and 
timing restrictions on the embedded software. For the hardware implementation, cost is 
measured by die area (number of gates) and cost of production. Once a suitable partition 
is obtained, the hardware subsystem may have to be re-written in a suitable HDL so as to 
be compatible with the synthesis tools. The software part of the system would have to be 
developed for the embedded processor. This transition from a high level of abstraction to 
a lower level of abstraction is usually done manually. 
 

1.2 SOC Design Issues    
The development cycle of a complex SOC design involves modeling and testing of the 
system at various levels of abstractions.  The process of converting from one level of 
abstraction to another is time-consuming and laborious. Added to that, at every step of 
the transition between models, one needs to simulate and verify the design. This testing 
and verification is again an expensive and time-consuming process. Often, one may have 
to re-write  the test benches if there is a shift in modeling platform.  
A single modeling language that can used to describe a system at all levels of abstraction 
would considerably reduce design time and effort. The need to rewrite the model during 
design flow would be eliminated. The same test benches could be used at all the levels of 
abstraction, leading to reduced costs and development time. Using a single language 
would also ensure that the models are consistent and error-free across all levels of 
abstraction. Thus, there is a need for a modeling language/platform that can scale 
effectively from high-level behavioral modeling to low-level abstraction of RTL models.  
 
The modeling platform should also support synthesis of the models into either hardware 
or software components. An SOC modeling platform has to have native synthesis tools, 
as conversion of models from one platform to another is an expensive process. Just like 
there are tools for hardware synthesis, there is a need for tools to synthesize software. 
There are tools that convert high-level abstract models into a hardware circuit, but similar 
tools for software synthesis are non-existent. To manage the ever-growing complexity of 
systems, the automation of software synthesis steps will no longer be an option but a 
necessity. In the following sections we will exam the current state of tools available for 
SOC designs. 

1.3  Modeling tools for SOC design paradigm 
• VHDL and Verilog are the two most popular and widely used hardware 

description languages. They are well suited for modeling hardware, and the 
accompanying synthesis tools are mature and produce optimized hardware. But, 
the drawback is that neither language has suitable constructs for high-level 
system modeling. They also do not support hardware-software co-modeling and 
co-simulation, and they are very poor in modeling software constructs. Other 
limitations of VHDL and Verilog include poor simulation speed and efficiency, 
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and the inability to incorporate existing C/C++ IP which has been tested, 
debugged, and optimized into designs. 

There is a need for a modeling language that can scale from high-level abstract modeling 
to low-level RTL modeling. Some of the new languages that fall into this category are 
SystemC, Cynlib, and Superlog. 
 
SystemC [�2] is a C++ class library for modeling system level designs. SystemC is 
primarily targeted towards modeling of complex System On Chip (SOC) designs. It is an 
industry-sponsored open standard for system-level modeling platforms. Since SystemC is 
based on C++ classes, it inherently supports the modeling of software. It also has classes 
to model hardware constructs such as signals and ports. SystemC has a built in simulation 
kernel. A general purpose C++ compiler can used to compile the SystemC model. The 
output of the compiler is an executable file, which upon execution simulates the model. 
Models can be developed and debugged using general tools such Visual Studio or GNU’s 
gcc/gdb. SystemC models can output trace files that are compatible with standard 
waveform display tools.  
 
Cynlib is also based on a C++ class library [�3]. It is a set of C++ classes which 
implement features necessary for modeling hardware.  The library creates a C++ 
environment in which both the hardware and the test environment can be modeled and 
simulated. However, the focus of Cynlib is more towards hardware modeling in C++ 
rather than system-level modeling. 
 
Superlog is an extension of Verilog with support for C language features. It is not 
compatible with general C/C++ compilers and needs its own set of tools for simulation. 
 
From the above description of the languages, one can see that only SystemC is 
specifically targeted towards system-level modeling. Since it is based on C++ class 
libraries, it inherently supports all of the C++ language constructs. It can be compiled 
using a general C/C++ compiler for simulation. Synopsis offers a compiler tool [�4] to 
synthesize the SystemC models into hardware. SystemC offers a seamless design flow 
from high-level modeling to RTL level modeling and final hardware synthesis. SystemC 
does lack tools for automated software synthesis. But, since the SystemC is based on 
C++, its models can be easily ported to run as embedded software.  Hence, in today’s 
market, it is a suitable candidate for hardware-software co-design and simulation.  

1.4  Aim of thesis 
A case study of using SystemC as a high-level modeling language is presented in [�5]. 
The authors conclude that SystemC is well suited for such a task. Behavioral synthesis of 
SystemC models is presented in [�6]. Modeling guidelines and a study of hardware 
compiler tools is presented in [�7][�8]. 
 
The aim of this thesis is to explore the process and to define methods for software 
synthesis of SystemC models. Software synthesis involves the translation of SystemC 
models into code that is suitable for execution on an embedded processor. The motivation 
behind such a translation is to eliminate the time consuming process of re-implementing 
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the models as embedded software.  Some guidelines and restrictions for developing 
SystemC models that are easily synthesized into software are presented. A method for 
preserving the structure and semantics of SystemC models during the translation to 
software code is proposed, based on the use of a simple scheduler that replaces the 
SystemC simulation kernel . Application of this process to the design of a GSM 
communication system, translating part of the SystemC model into software that will 
execute on an embedded processor, is shown and the results presented. The work leading 
to this thesis was also published in paper [�9]. 
 

1.5 Overview of Thesis 
Chapter 2 describes in brief the features and modeling constructs of SystemC HDL. It 
also elaborates the simulation steps and flow of the SystemC simulation kernel. 
 
Chapter 3 presents the details of GSM speech processing and transmission. All the steps 
involved in speech processing are explained in brief.   
 
Chapter 4 presents the SystemC model of the GSM speech processing. It delves into 
architecture of the modules and handshake signals used between the modules. 
 
 Chapter 5 discusses the target embedded processor and reasons for its choice. It also 
presents the computational load of all the modules on the target processor. 
 
Chapter 6 delves into details of software synthesis. It presents the idea of using a 
scheduler to schedule threads and gives the details of implementation of the scheduler. It 
also contains pseudo code and examples of using the scheduler and software signals. The 
chapter also presents modeling guidelines and coding restrictions for software synthesis. 
 
Chapter 7 presents the results, performance and comparisons of the SystemC derived 
implementation of embedded software against pure software implementation.  
 
Chapter 8 concludes the thesis and provides pointers to future work. 
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2 SystemC Language 
SystemC is a C++ class library for modeling system-level designs[�2]. SystemC is 
primarily targeted towards high-level modeling of complex systems. Using SystemC one 
can effectively create cycle accurate models of algorithms, hardware architectures, and 
the interfaces between them. Since SystemC is based on C++, it naturally supports 
software algorithm development. On the other hand, to model hardware, it provides 
necessary constructs for timing and concurrency. SystemC has a built in simulation 
kernel, so it does not require any tools for simulation. SystemC can be compiled using 
standard C++ tools to create an executable model that can be used for simulation and 
validation. 
 

2.1 SystemC Language Features 
Important SystemC modeling constructs are described below in brief. 
 
2.1.1 Modules and processes 
VHDL uses an entity and Verilog uses a module to encapsulate the logic and structure of 
hardware modules. Similarly SystemC has module, which encapsulates the data and 
algorithms. Modules in turn contain processes, ports and signals. A process is used to 
model concurrency and is the basic unit of simulation. Processes are sensitive to signals 
and are executed concurrently. There are three types of processes available for modeling 
– methods, threads, and clocked threads. 
 
Methods: Methods are executed whenever an event occurs on a signal in the method's 
sensitivity list. Once the execution begins it cannot be suspended; it completes execution 
and returns control to the simulation kernel. Hence, a method may not contain an infinite 
loop. 
 
Thread: Threads can be suspended and activated by the simulation kernel. A wait() 
function call suspends the thread. It is re-activated again whenever an event occurs on a 
signal in the thread's sensitivity list, and execution continues from the next statement. A 
thread can contain an infinite loop with at least one wait() function call.   
 
Clocked Thread: Clocked threads are a special case of Threads sensitive only to the 
clock signal. Clocked threads are useful for hardware synthesis and current synthesis 
tools support only clocked thread processes. 
 
2.1.2 Ports and Signals 
Ports provide the external interfaces to modules and pass information between them. 
They are similar in function to VHDL and Verilog input/output ports. There are three 
types of ports – input, output and bi-directional ports, depending on the direction of data 
flow.  
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Just the way signals are used to interconnect ports in VHDL signals are also used in 
SystemC to interconnect ports. Signals transfer data from one port to another. Ports and 
Signals can be of any data type supported by SystemC. 

 
 
 

When a port is read, the value of the signal the port is connected to is returned. When a 
port is written, the value of the signal the port is connected to is updated. When a port is 
written, the signal value is not updated immediately, however, but at the end of the 
simulation cycle. This ensures that all the processes see the same value of the signal 
within a simulation cycle.  
 
2.1.3 Data Types 
As SystemC is based on C++, it supports all the native data types of the C++ language, 
such as integer, float, and char. Pointers can be used in high-level models and for 
simulation, but cannot be synthesized with the current synthesis tools. SystemC also has 
some additional data types for modeling logic and hardware, such as sc_bit and sc_logic. 
Sc_bit is a 2-valued data type and sc_logic is a four valued (0,1,X,Z) data type. SystemC 
also has fixed-precision signed and unsigned integer data types where the user can 
specify the number of bits used to represent a number. SystemC also provides signed and 
unsigned fixed-point data types that can be used to accurately model DSP systems. 
 

2.2 SystemC Simulation Kernel 
SystemC designs can be compiled using any ANSI C++ compiler. SystemC has a built in 
cycle-based simulation kernel to simulate the designs. The resulting executable 
specification realizes the model and the simulation kernel. The complete simulation 
kernel is built into the class library and needs no external tools for simulation of the 
model. The source code for the kernel and the library is available with the distribution of 
the SystemC platform, from [�2]. Wolfgang Muller, et al, have published a rigorous 
description and semantics of the SystemC simulation kernel [�16]. 
 
Each one of the user-defined processes is executed independently of the others and also 
the kernel. Simulation begins with a call to the function sc_start(). At the start of the 
simulation all the processes are initialized and scheduled for execution.  All of the 
processes get a chance to execute in every simulation cycle. The order of execution is not 
defined. Any changes in the signal values are not immediately updated. Signals are 
assigned new values only in the next simulation cycle. This makes the simulation cycle 
accurate. A process that is executing or is scheduled to be executed is in an active state. 
An active process goes into a suspended state after it completes its operation or reaches a 
wait statement. Once all the processes are in a suspended state, the kernel then updates 
the signals, advances simulation time and enters into the next simulation cycle. The 
simulation cycle is illustrated in Figure 3 (adopted from [�16]). 
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Figure 3 SystemC simulation cycle. 

 
At the start of the simulation, the module initialization or the test bench generates the 
initial events. These events then trigger processes (Figure 4). Any processes that were 
activated are then executed. Clocked threads, referred to as Cthreads, are sensitive only to 
the clock signal and are scheduled to be executed in the future. Once all the processes 
have been executed, then the signals are updated. The updating of signals may cause new 
events, which may trigger other processes. The triggered processes are then executed, 
which may in turn trigger other processes. This cycle continues until there are no events 
triggering any of the processes or all the processes have been executed. Once all the 
processes are in the suspended state and there are no events, then the CThreads are 
executed. After execution of the Cthreads, simulation time is advanced and the clock and 
all the signals are updated. This completes one simulation cycle. This cycle is then 
repeated until simulation comes to an end or is stopped.    
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Figure 4 SystemC simulation flow. 

 
SystemC is based on a C++ class library; therefore, theoretically it is possible to port the 
SystemC library to any embedded processor. By doing so, there would be no need for 
software synthesis. However, this step is neither feasible nor practical. The SystemC 
kernel carries with it a large overhead and performance penalty, which would be 
unacceptable in embedded applications. Since the kernel is designed for cycle-accurate 
simulation, it has large latency and will not meet the strict timing requirements of 
embedded systems. Also, the SystemC library is currently available only on Windows, 
Solaris and Linux OS platforms. The library depends on an operating system to provide 
certain functionalities. To execute a SystemC model on an embedded system would 
require the embedded system have an OS. The OS comes with its own overhead in terms 
of memory and computational load, which again may not be acceptable in some 
embedded applications. Hence, it is not viable to simply port the complete SystemC 
library and simulation kernel over to the embedded processor. One needs to be able to 
execute the SystemC models without the overhead of the cycle accurate simulation 
kernel.     

Generate Events

Execute Processes

Schedule CThreads

Update Signals Check Events Execute CThreads

Advance Time

Update Clocks 

events 
No events



 11

3 GSM Speech Processing  
 
To effectively study the software synthesis process and to come up with process, method 
and design guidelines, we need a complex real world system. The system must have 
modules, which can be modeled as processes. The modules should have interactions 
among themselves and affect behavior of each other. Finally, the computational load 
should be  large enough that we would have to partition the system into hardware and 
software for optimum performance. 
 
The Global System for Mobile telecommunications (GSM) is a digital cellular 
communications standard [�17][�18]. It was originally developed in Europe to create a 
common European mobile telephone standard, but it has been rapidly accepted 
worldwide. GSM speech processing is a complex and computationally heavy system. It 
consists of various well-defined processing steps, some of which are mathematically 
intensive and operate on integer values. Other processing steps are algorithmically 
complex and process data in bits. Hence, we find that GSM speech processing is an ideal 
candidate for our work. 
 
The steps involved in GSM speech processing and transmission are illustrated in the 
figure below (Figure 5). Each of the steps involved is briefly explained in the following 
paragraphs. 

 
Figure 5 GSM speech processing. 
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3.1 Speech Encoder  
The speech codec used in GSM is RPE-LTP (Regular Pulse Excitation-Long Term 
Prediction). The codec models the human vocal tract using two filters and an initial 
excitation. It transmits the parameters necessary to model the vocal tract and to recreate 
the speech at the other end. The speech encoder takes in 20ms of speech as input. Speech 
is sampled at 8 KHz giving total of 160 signed 13 bit PCM samples in each 20ms 
segment. The encoder then compresses the 160 samples into one frame of 260 bits. The 
speech encoder outputs data at the rate of 13kbps (260bits / 20ms). 
 

3.2 Channel Encoding 
Channel coding is performed to detect and, if possible, correct errors that occurred during 
the transmission.  It adds redundancy bits to the original information in order to detect 
and correct errors. GSM uses both a block code (parity encoding) and a convolutional 
code. The coding differs for the data, speech and control channels. Since we are only 
modeling the speech channel of the GSM system, speech channel encoding is described 
in the following paragraph. More information regarding channel coding can found in 
[�14]. 
  
The 260 bits of a GSM speech frame are divided into three different classes according to 
their function and importance. The most important class is the class Ia, containing 50 bits. 
Next in importance is the class Ib, which contains 132 bits. The least important is the 
class II, which contains the remaining 78 bits. The different classes are coded differently. 
First of all, the class Ia bits are block-coded (parity encoding). Three parity bits, used for 
error detection, are added to the 50 class Ia bits. The resultant 53 bits are added to the 
class Ib bits. Four zero bits are added to this block of 185 bits (50+3+132). A 
convolutional code, with r = 1/2 and K = 5, is then applied, obtaining an output block of 
378 bits. The class II bits are then added, without any protection. An output block of 456 
bits is finally obtained. 
 

3.3 Interleaving 
Interleaving is used to obtain time diversity in a digital communications system without 
adding any overhead. The interleaving decreases the possibility of losing whole bursts 
during the transmission. The interleaving scheme used for the speech channel is 
described in the following paragraph. 
 
The total of 456 bits from the convolutional encoder, which constitutes 20ms of speech, 
is subdivided into eight blocks of 57 bits each. These eight blocks are then transmitted in 
consecutive time slots. If one of the blocks is lost due to burst errors, the other 7 blocks 
would contain enough information so that whole segment can be recovered using error 
correction. Each time slot carries two 57-bit sub-blocks of data from two different 20ms 
speech segments. This is illustrated in the figure below (Figure 6). 
 
 
 



 13

Figure 6 Speech packet interleaving. 

3.4 Encryption 
To provide privacy and prevent unauthorized network access, the eight blocks of 
interleaved data are encrypted before burst formatting and transmission. Two types of 
ciphering algorithms are used in GSM, which are referred to as the A3 and A5 
algorithms. These algorithms are not published for security reasons. For our work, we 
needed the computational load and complexity, but not the algorithmic details. Using 
some information from the Internet [�10][�11] and textbooks on algorithms [�12], 
Anup Varma [�8] implemented an approximation of the algorithms. This 
implementation simulates the computational load of encrypting and decrypting the data, 
which is sufficient for our work.        
 

3.5 Packet Formatting 
The encrypted data is placed into a packet (also referred to as a frame), which contains 
additional information for synchronization, equalization and control signals. The 
structure of the packet is shown below (Figure 7). 
 

 
Figure 7 Speech packet format. 
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phase changes. The differential encoder output is the XNOR of the present bit and the 
past bit. 
 

3.7 Transmission 
Once the bit stream is differentially encoded, it is ready for transmission. The modulation 
scheme used by GSM is Gaussian Minimal Shift Keying (GMSK). GMSK is a type of 
digital FM modulation, where the modulated signal is passed through a Gaussian filter to 
smooth the rapid changes in frequency. Rapid changes in frequency would tend to spread 
the energy of the modulated signal, thereby increasing the bandwidth. Therefore, passing 
the signal through a filter minimizes the bandwidth. 
 
GSM uses two bands of 25 MHz, for transmission and reception.  

• 890-915 MHz band is used for subscriber-to-base transmissions  
• 935-960 MHz band is used for base-to-subscriber transmissions. 
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4 SystemC Model of GSM Speech Processing 
A detailed description and tutorial of SystemC modeling is available in [13]. Anup 
Varma has developed a SystemC model of the GSM speech processing for his master’s 
thesis [8]. 
 
Speech is processed in 20ms segments. Data flow is linear from the first stage to the last 
stage. Within stages, however, there are some feedback loops and buffering is needed. 
The packet size varies as the data moves from one stage to another. Since any of the 
stages could be implemented in hardware or software, the interface between the stages 
had to be standardized. All the modules had a well-defined interface and architecture. 
 
 

 
Figure 8 SystemC model of GSM speech processing.  

 
Figure 8 shows the various modules in the SystemC model and the data flow among the 
modules. The file reader module acts as a data source for the speech encoder. It reads in 
20ms of speech data and transfers it to the speech encoder. The speech encoder processes 
the data and transfers it down the chain to the next module, the channel encoder. The data 
is processed and moves down the chain from the channel encoder to the interleaver, the 
encryption module, the packet-formatting module, and finally, the differential encoder 
module. In the real systems, the output of the differential encoder goes to a modulator 
where it is modulated using the RF carrier frequency for transmission. In the SystemC 
model, the output of the differential encoder is fed into a channel module. The channel 
module adds random bit and burst errors to the bit stream, simulating the errors in signal 
transmission and reception. 
 
On the receiving side, the differential decoder gets the bit stream from the channel 
module. This bit stream contains the random errors introduced by the channel. The 
differential module processes the data and moves it up the chain to the packet 
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disassembler. Data moves up the chain from the packet disassembler to the decryption 
module, the channel decoder and the speech decoder. The output of the speech decoder is 
an audio stream. The file writer module accepts the audio stream and writes it to a file for 
later playback. 
 

4.1 Module Architecture 
The main data flow in GSM speech processing is linear. Each module has to get data 
from the previous module, process the data, and then provide data to the next module in 
the chain. To make the models compatible with hardware/software partitioning, the core 
data processing and the data input/output functions were separated and implemented in 
separate sub-modules, as illustrated in Figure 9. All of the modules operate 
synchronously to a global clock. All the data transfer and signals are also synchronous to 
the clock. 
 

 
Figure 9 Module architecture. 

 
The input, output, and processing sub-sections are implemented in separate processes 
within a module. This allows for concurrent execution of the subsections, leading to 
optimized performance. The processes communicate with each other using signals. The 
input sub-section writes the input data into an input buffer. The data processing sub-
section operates on the data in the input buffer and writes the output into an output buffer. 
The output sub-section reads the data from the output buffer and transfers it to the next 
module. 
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4.2 Handshake Signals  
A simple handshake protocol ensures reliable data transfer between the modules. The 
handshake protocol signals are described below. (Figure 10) 
 
 
 
 
 
 
 
 
 

Figure 10 Module architecture. 

 
• DOA (DataOut_Available): Output signal. Data is available for the next module. 

Asserted by the sending module. 
• RTR (Ready_To_Receive): Output signal from the receiving module. Indicates 

module is ready to receive data. 
• DIA (DataIn_Available): Input signal. Data is available to be received, asserted 

by the sender. 
• RAK (Receive_AcKnowledge): Output signal. Acknowledgement from the 

receiver. 
• RTS (Request_To_Send): Input signal. Receiving module is ready to receive data 
• RAR (Recieve_Ack_Received): Input Signal. The acknowledgement from the 

receiving module indicating that it received data. 
• DAI (Data In): Input data to the module. 
• DAO (Data Out): Output data from the module. 

 
Once a module is ready to receive more data, it asserts the RTR signal. The receiver 
module then waits until the DIA signal is asserted and begins to read the data in. The 
receiver acknowledges each data transfer across the bus (DAI) by asserting the RAK 
signal. 
 
On the sending side, the sender waits until the receiver asserts the RTS signal. Once it 
sees RTS asserted, the sender asserts the DOA signal and writes out the data onto the 
DAO bus. The sender then waits for the acknowledgement RAR before writing the next 
data on to the bus. 
 
The code for an input process is shown below. The input process is the same for all of the 
modules as it is a well-defined common interface. The data transfer is synchronous with 
handshake signals for acknowledgment. Data is transferred using a bus and the width of 
the bus is 16bits. This code snippet only shows the synchronization and handshake 
sections of the code. The code is taken from the interleaver encoder module. 
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void inter_encoder::input() 
{ 
  input_reset();    
  wait();  
  while(true) 
  { 

wait(); 
    

 // read input data from the bus 
  for(int i=0;i<IE_MEMORY_SIZE;++i) 

{ 
   wait(); 
  //ready to accept the next word from the bus.  
   I_GOT_YOUR_BIT.write(false); //signal RAK 
   READY_TO_RECV.write(true); //signal RTR 
    

//wait till data is written to the bus 
  wait_until(DATAIN_AVAIL.delayed() == true); //Signal DIA 

   word_input_data[i] = DATAIN.read();  //read from bus DAI 
 
   wait(); 
 //acknowledge the data 
   I_GOT_YOUR_BIT.write(true);  //signal RAK 
   READY_TO_RECV.write(false);  //signal RTR 
   wait_until(DATAIN_AVAIL.delayed() == false); //signal DIA 
   wait(); 
  }  
 wait(); 
 
      //complete data segment has been read from the previous module 
… 
        } 
}         
 
 
The code for the data processing process of a module is shown below. The code snippet 
shows only the handshake and synchronization sections. Again, the code is taken from 
the interleaver module. 
 
void inter_encoder::process_data() 
{ 
//process reset signal  
process_data_reset(); 
 wait(); 
 while(true) 
 {  
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 processing_started.write(false); 
 wait(); 
  

//wait till the input process has read the data segment  
wait_until(input_data_ready.delayed() == true) ; 

         processing_started.write(true); 
   
 //data processing code goes here 
      
 wait(); 
 //indicate to the output process that data is ready 
 input_data_processed.write(true); 
         output_data_ready.write(true); 
         input_ack_received.write(false); 
         output_ack_received.write(false); 
         
        wait(); 
 //wait for an ack from the output process. 
         wait_until(input_ack.delayed() == true); 
         input_data_processed.write(false); 
         input_ack_received.write(true); 
         
         wait_until(output_ack.delayed() == true); 
         output_data_ready.write(false);       
         output_ack_received.write(true);  
         wait(); 
  } 
}  
 
The code for the output process is shown below. Again, only the handshake and 
synchronization sections are shown. 
 
void inter_encoder::output() 
{ 
  output_reset();  
  wait();  
  while(true) 
  { 
          wait(); 

 
// send output data  

        for(int i=0;i<IE_OUTPUT_SIZE;++i) 
        {  
  wait(); 
   

//wait until receiver is ready  
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wait_until(READY_TO_SEND.delayed() == true); //signal RTS 
  DATAOUT_AVAIL.write(true);   //signal DOA 
  DATAOUT.write(word_interleaved_data[i]); //write to bus DAO 
  wait(); 
   
  //wait for an ack. 
  wait_until(YOU_GOT_MY_BIT.delayed() == true);//signal RAR 
  DATAOUT_AVAIL.write(false);  //singal DOA 
  wait(); 
 }   
 wait(); 
 
 output_ack.write(true); 
 wait_until(output_ack_received.delayed() == true); 
 output_ack.write(false); 
 wait(); 
          
     }     
}
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5 Embedded Processor 
For our study we chose the StarCore SC140 processor [15] as the embedded processor in 
our SOC design. StarCore is an alliance between Motorola Semiconductor Products 
Sector and Agere Systems for the purpose of developing DSP core technology. The 
StarCore processor is targeted towards the communication market, and its architecture is 
well suited for mobile handsets. One of the most important considerations was that the 
StarCore is available as an IP core. Availability of StarCore DSP IP cores enables 
designers to build their SOC systems around the processor. We also had a development 
platform with a compiler and an instruction set simulator for the processor, which 
enabled us to compile and run our code to get timing measurements. For the above-
mentioned reasons, the StarCore SC140 was chosen as our target embedded processor.   
 

5.1 Computational Load of the Modules 
To perform and study hardware-software partition tradeoffs, we need a measure of cost of 
implementation in hardware and software. In addition to the cost of implementation, we 
had to ensure that all the timing requirements were met. The measure of the cost of 
implementation in hardware was chosen to be the number of clock periods needed to 
perform the computation. The measure of the cost of implementation in software was 
chosen to be the number of processor clock cycles required to perform the computation. 
To simplify the calculations the hardware cost measurements were made at the same 
clock frequency as that of the processor. 
 
To get the timing measurements on the embedded processor, each module was manually 
ported to run on the StarCore processor. Necessary changes in code were made to comply 
with the requirements of StarCore C compiler. Each module was run independently and 
the number of clock cycles required to process one block of data was recorded. The 
recorded values are shown below. The processor was running at 300 MHz.  
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Table 1 Execution time of the modules running on embedded processor. 

 
Index Module M/c Cycles Execution Time (ms) 

1 A/D Converter 20.0000
2 Speech Encoder 1251510 4.1717
3 Parity encoder 12509 0.0417
4 Convolution. Encoder 71527 0.2384
5 Interleaving Encoder 105970 0.3532
6 Packet Encoder 6774 0.0226
7 A5 Encoder 43840 0.1461
8 Differential Encoder 9188 0.0306
  
9 Speech Decoder 488376 1.6279
10 Parity Decoder 12428 0.0414
11 Convolution Decoder 13387103 44.6237
12 Interleaving Decoder 97210 0.3240
13 Packet Decoder 4633 0.0154
14 A5 Decoder 42699 0.1423
15 Differential Decoder 8453 0.0282
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6  Software Synthesis 
 
If a C++ compiler is available for the embedded processor, then we could use the 
inheritance feature of the C++ language to arrive at an organization of the modules which 
lends itself to both hardware and software synthesis. We could encapsulate the core data 
processing in a base class. This base class would do all the data processing using 
synthesizable C language constructs. To simulate and synthesize it, we would derive the 
SystemC class from the base class. The SystemC class would provide all the necessary 
constructs for simulation and communication between modules. To implement it in 
software, we would derive a C++ class from the base class (Figure 11). This class would 
then take on the responsibility of creating threads, communication and synchronization 
with other modules and registering it with the scheduler. 
 
 

 
Figure 11 Inheritance diagram for the module organization. 

 
Unfortunately, there is no C++ compiler for the chosen target embedded processor, the 
StarCore SC140. Infact there are very few C++ compilers for embedded processors. For 
this reason we had to come up with a different solution which only needs a C compiler. A 
software implementation that mimics the organization and architecture of the high-level 
SystemC model would be most easy and least time-consuming to implement as 
embedded software. Since SystemC is based on a C++ class library, it is possible to port 
the high-level model directly into software, including the simulation kernel. But, such a 
design would be very inefficient and would have the large overhead of the cycle accurate 
simulation kernel. Instead of porting the complete SystemC kernel, it is possible to 
execute SystemC models as software using a simplified scheduler. This scheduler can be 
easily implemented in C. A simplified scheduler would be lightweight and have much 
less overhead than the SystemC kernel. 
 
Current day hardware synthesis tools for SystemC support only CThreads. Hence, any 
design that aims to be compatible with both hardware and software implementations has 
to use only CThreads. CThreads are processes that are sensitive only to clock signals. So, 
to execute a design based only on Cthreads, one needs a simple scheduler that schedules 
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all the active processes at every cycle. The simplified scheduler operation is illustrated in 
Figure 12. 
 

 
Figure 12 Scheduler for the software implementation 

 
A simplified scheduler executes all the active threads. Any changes in the signal values 
are not immediately updated. Once all the threads in the present simulation cycle have 
had a chance to execute, the scheduler then updates the signals. This ensures that all the 
modules that read a certain signal see the same signal value in a given cycle. After 
updating the signals, the scheduler activates any threads that were waiting and are now 
ready to run. The scheduler then executes all the active threads, repeating the cycle. 
 
The order of execution of the CThreads is not specified, which is also the case in a 
SystemC simulation. Once a CThread suspends, it is guaranteed that all the other 
CThreads get a chance to execute before the CThread is executed again. Since all the 
signal values are updated at the end of the cycle, this process ensures that all the 
CThreads read the same signal value in a given cycle. It also ensures that signal values 
are updated before the CThread is rescheduled. This leads to a direct analogy between the 
cycle of the scheduler and the hardware clock cycle of the SystemC simulation, although 
there is no concept of clock period and no guarantee that all the cycles take same amount 
of time to execute. This mechanism does ensure that any model that simulated correctly 
will execute correctly on the embedded software. 
   
In summary, a scheduler that schedules CThread processes and updates signals can 
execute a SystemC model on the embedded processor. To implement SystemC models as 
embedded software, one has to implement a rudimentary scheduler along with support for 
software signals. Using this scheduler, one can port the SystemC models to embedded 
software with little or no modifications.  
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6.1 Scheduler 
Craig Dry from Motorola has written and released a free scheduler, the Motorola 8101 
Real-time Preemptive Scheduler (RPS). This scheduler formed the basis for our CThread 
scheduler. The original scheduler was extensively modified and extra features added to 
support threads and signals.  
 
The scheduler initialization and thread creation functions are explained below. 
 
SchedInit(int stacksize)
This function call initializes the scheduler. This should be called once at the beginning of 
the program. The argument stacksize is the size of the stack for the scheduler. The 
stack size is in bytes. 
Example: 
SchedInit(8000);
 
SchedStart()
A call to this function starts the scheduler. Before calling this function, the scheduler 
should be initialized and the threads created. Any mapping of ports and signals should 
also be completed. (Ports and signals explained in the next section). 
  

6.2 Software Implementation of Ports and Signals 
Modules in SystemC exchange data and control information using ports and signals 
connected to the ports. The port and signals were implemented as structures in the 
embedded software.  
 
The signal structure is shown below. 

//signal structure
typedef struct signal_struct {

struct signal_struct *next; //next signal in list
int numBytes; //size of signal type
int updateFlag; //whether signal has been

//updated or not
void *current_val; //current value of signal
void *next_val; //next value of signal

} Signal;
 
The scheduler stores all the signals in a linked list. The field next stores the pointer to 
the next signal in the linked list. The field numBytes defines the length of the signal in 
bytes. If one wants a 32-bit bus between two modules, then one has to create a signal 
with a length of 4 bytes. The signal structure stores both the current value of the signal 
and the next value of the signal. When a port connected to a signal is read, then the data 
pointed to by current_val, the current value of the signal, is returned. Whenever a 
signal is written to, the new value is stored in the location pointed to by next_val. 
Only when the scheduler updates the signal, is the new value copied into the current 
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value location. Since signals are all updated at the end of a cycle after all the active 
threads have been executed, all the threads see the same value of the signal during a 
simulation cycle. This ensures that model will work correctly without specifying any 
order of execution of the threads.  
 
The updateFlag is used to optimize the process of updating the signals. Only those 
values that have been written in the present cycle will have the flag set. If the flag is set 
then the signal values are updated by copying the next value into current value. 
 
To create a signal, one has to call the CreateSignal() function with the size of the 
signal in bytes. The smallest signal that can be created is one byte. As this is not 
hardware simulation, there is no overhead associated with the extra bits. The function 
returns a pointer to the signal structure. 
  
Example:  
pointer_to_signal = CreateSignal(size);
 
The port structure contains a pointer to the signal to which it is connected. The same port 
type is used for both input and output.  
 
typedef struct port_struct {

Signal *signal; // signal connected to port
} Port;
 
A port has to be connected to a signal before it can be read or written. A code sample to 
connect a port to a signal is shown below. 
 
//declare a Port and signal.
Port portA;
Signal *sigA;

//Create a signal with length of 1 Byte.
sigA = CreateSignal(1);

// connect the signals to the ports
ConnectPortToSignal(&portA, sigA);
 
Once the port is connected to a signal, it can be read and written. To read a port, the 
function portRead()is called. The function accepts two arguments; one is a pointer to 
the port. The other parameter is a pointer to the location where the read value is to be 
stored. Care should be taken that enough memory has been allocated to hold the complete 
signal.  

portRead( struct port, char* ptr);
 
Code example: 
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//read portA and store the read value into location pointed
//to by data.
portRead(&portA, data); 
 
To write to a port, the function portWrite() is called. The function accepts two arguments, 
a pointer to the port and a pointer to data that is to be written to the port. The size of the 
data to be written to the port should match the size of the signal connected to the port. 

portWrite( struct port, char* data);
 
Code example: 
//Write data present at the location pointed to by the data
into the port portA.
portWrite(&portA, data); 
  

6.3 Software Implementation of Clocked Threads 
In the SystemC specification, clocked threads execute independently and concurrently. 
To get the independent and concurrent execution in software, each clocked thread has to 
be implemented as a thread. One has to create a thread for every clocked thread  process 
in SystemC and connect the modules using software signals. Any communication 
between the threads has to be through the use of signals. 
 
To create and register a thread with the scheduler, the function call createThread() 
has to be called. 

extern void createThread(int stackSize,void(*entryPoint)()
)
This function call registers a new thread with the scheduler. It allocates memory space for 
the stack used by the thread. The amount of memory is determined by the first argument 
stackSize, which is in bytes. The second argument, entryPoint, is a pointer to 
the function that is called every time this thread is to be executed. The function is 
analogous to the processes in SystemC. This function takes no arguments and returns no 
value. Just like in the SystemC CThread process, the function should contain an infinite 
loop with at least one call to function wait() or wait_until() to suspend the 
thread. It is necessary to suspend the thread within the infinite loop so that other threads 
get a chance to execute. 
 
extern void wait()
This function does not take any arguments. When the function is called, control is 
returned to the scheduler and the thread is put into a suspended state. The thread will be 
rescheduled for execution in the next cycle. Execution will continue from the next line 
after the call to wait().

extern void wait_until( int (*wait_fn) () )
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This function suspends the thread until a specified condition is true. It takes one 
argument, a pointer to a function. If the thread is suspended and waiting on a signal or 
condition, then this function is called at the beginning of every cycle to determine if the 
thread is to be scheduled or not. If the function passed as a parameter returns 1, then the 
thread is scheduled. If the function returns 0, then the thread is not scheduled.  
 
This function can be used to wait on a signal. For example to wait on a signal ready, 
one has to write a function that reads the port connected to the signal ready and returns 1 
if ready is asserted and 0 otherwise.   

//code snippet to illustrate the use of wait_until()
//function to wait on a signal

Port ReadyIn; //port to which the ready signal is
//connected

//this function is called whenever a thread is waiting on
//the port ReadyIn.
int ready( )
{

int val;
portRead(&ReadyIn, &val);
return val;

}

//inside the thread
threadA()
{

…
wait_until(&ready); //wait until signal ready is

asserted.
…

}
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6.4 GSM Model 
The SystemC implementation of the GSM speech processing has already been discussed in the 
previous chapter. The handshake signals between modules and the module architecture were 

described. In the software implementation of the GSM model, the core processing functions were left 
untouched. The handshake signals, however, were optimized for speed. The interface between the 

modules is shown below in  

Figure 13. 
 
 
 
 
 
 
 
 

 

Figure 13 Handshake signals in software implementation. 

 
When a module has data to send, it asserts the output signal ReadyO and writes the data 
on to the output bus DataO. It then waits on the signal AckI, which is an 
acknowledgement from the receiving module, before proceeding. Once it receives the 
acknowledgement, the sending module un-asserts the ready signal and waits until 
acknowledgement from the receiving module is un-asserted. A simple state diagram to 
illustrate the handshake is shown in the Figure 14.  
 

  
Figure 14 Handshake process on sending side. 
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On the receiving side, the receiver waits on the input signal ReadyI. Once this signal is 
asserted, the receiving module reads the data of the input bus DataI. After reading the 
data from the bus, it sends an acknowledgement back to sending module by asserting the 
signal AckO. It then waits until the sending module un-asserts its ready signal before 
proceeding to process the data. This handshake scheme ensures that sending module does 
not overwrite the data before a receiver has read the data and also ensures the receiver 
does not read same data twice. A simple state diagram to illustrate the handshake is 
shown in the Figure 15.  
 

 
Figure 15 Handshake process on the receiving side. 

 
The following code snippet further illustrates the use of signals to perform handshakes 
and synchronization. The code snippet is from the interleaving encoder module. This 
module receives data from the channel encoder module and sends data to the encryption 
module.  
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Signal *interAck;
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Signal *interData;
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.. 
.. 
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int i;

//indicate that output data is not ready
intPortWrite(&interReadyOut,0);

wait(); //make sure other thread sees write

//processing 4 segments only for example
for(i=0;i<4;++i)
{

//wait until the data is ready
wait_until(&waitOninterReadyIn);

//acknowledge ready signal
intPortWrite(&interAckOut,1);

//Read data (bit array) from the input port
portRead(&interDataIn, inter_input_data);

//wait till the sender sees ACK = 1;
wait_until(&waitOninterReadyIn0);

//acknowledge data transfer
intPortWrite(&interAckOut,0);

//process data here
inter_enc_process_data();

//write out bit array
portWrite(&interDataOut, interleaved_data);

//indicate that output data is ready
intPortWrite(&interReadyOut,1);

// wait for Ack = 1 so we know other thread has
//seen

wait_until(&waitOninterAckIn);
intPortWrite(&interReadyOut,0);

// wait for Ack = 0 so we know that data has been
//copied
wait_until(&waitOninterAckIn0);

}
}
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In the code snippet, the function call wait_until() takes an argument which is a pointer to 
a function. The return value of the function determines if the thread will be moved from 
the suspended state to the active state by the scheduler. The code sample below illustrates 
the use of the wait_until() function call to wait on a signal interAckIn, with the use of 
function waitOnIinterAckIn(). 
 
// wait for Ack = 1  
wait_until(&waitOnInterAckIn); 
 
The function call waitOnInterAckIn() reads the port and returns the value of the signal 
connected to the port. The code snippet for the function is shown below. 
  
//functions for the scheduler to wait on.
int waitOninterAckIn()
{

int val;
portRead(&interAckIn, &val);
return val;

}

6.5 Modeling Guidelines 
Before delving into the architecture and modeling guidelines, a brief description of some 
compatibility issues is presented below. 
  
Features in SystemC that cannot be used in software implementations: 

• Primitives: sc_method, sc_thread, processes sensitive to signals other than 
clock. 

• Data Types: sc_int, sc_uint etc. 
 
Features in the C language that cannot be used in synthesizable SystemC models: 

• Pointers. 
• Floating point data types. 

 
Features in the C language that cannot be used in SystemC model for simulation: 

• SystemC is a library of C++ classes to model hardware, and C++ is a superset 
of the C language. Hence, one should theoretically be able to use all the 
language constructs of C. 

 

6.6 Suggested Organization 
The current architecture of the modules is shown below in Figure 16. The input and 
output sections exist primarily to convert data from a word array to a bit array. The 
processing section contains all the functionality needed for processing the data. The 
processing section is primarily composed of C code and is encapsulated into a single C 
function call. Input data is copied into an input buffer and the function associated with 
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processing the data is called. Upon completing its task, the function writes the output into 
an output buffer. The module has various handshake and data signals going to other 
modules, which have been implemented using SystemC constructs. 
 

 
Figure 16 Current Architecture of the SystemC model of GSM speech processing. 

 
The hardware synthesis tools and the software synthesis process are both compatible with 
restricted C code. The major part of the work in porting the GSM model to either 
hardware or software would involve porting various algorithms and data processing steps. 
Thus, if all the data processing within a module is encapsulated into a single C function 
or a few functions, then the design would lend itself well for both hardware and software 
synthesis. Another advantage of using native C code and data types for processing is that 
it decreases simulation time under SystemC. SystemC data types such as sc_int have 
overhead associated with them.  
 
The control and communication aspects of the models should be implemented using 
SystemC signals and ports (Figure 17). But, all the modules should be restricted to using 
only Cthreads, as both the hardware tools and the software scheduler are not compatible 
with any of the other SystemC processes. Any changes made to the system will affect  
only the processing section that is implemented using the restricted C language (without 
pointers and float data types). This section is common to all the implementations of the 
model; i.e., abstract, hardware and software. Hence, any algorithmic or processing 
changes in the system get automatically updated in both the hardware and software 
implementation. 
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Figure 17 Hardware/software compatible module architecture.. 

 
Each of the modules should be coded in a separate file. All the variables and buffers used 
for data processing should not be declared as member variables of the SystemC class. In 
this way, the variable will be accessible to all the functions within a module and un-
accessible from outside the module. Any communication or exchange of data between the 
modules should be restricted to using ports and signals. This will ensure that the software 
version of the model will function as intended.  
 
The control section handles all the handshake signals and data transfers. This will make it 
easier to port the modules at the boundary of the hardware and software partition. At the 
boundaries, the software modules running on the embedded processor have to interact 
with the hardware modules implemented as ASIC logic. This will usually involve the 
implementation of specific driver software to interact with the hardware. Thus, having a 
processing section separate from the control section isolates the data processing 
algorithms from the hardware interface details.    
 

Figure 18 Model implementation flow. 

 
 
In summary, a SystemC model following the above guidelines will be compatible with 
hardware synthesis tools and lend itself to embedded software implementation (Figure 
18). Hardware synthesis requires little or no changes to the model. For software 
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synthesis, the modules have to be altered to make them compatible with the software. The 
amount of changes required is minimal and restricted to the handshake signals and 
control sections. Most of the alterations relate to changing from C++ syntax to C syntax 
and function calls.  
 

7 Results 
A software tool was developed by Pradeep Adhipathi [22] to partition a high-level model 
into hardware and software. Input to the tool is a representation of the model as a directed 
graph. The nodes of the graph represent the modules and the arcs represent signals 
between the modules. The tool also accepts timing restrictions and activation rates of the 
processes to arrive at the partition. The GSM speech-processing model was partitioned 
using the software tool. The resulting partition placed the speech encoder in hardware and 
the rest of the modules in software. The modules that were to be implemented in software 
were then ported to run as embedded software using the scheduler.   
 
To evaluate and compare the performance of the embedded software implementation of 
GSM speech processing derived from the SystemC model, we need a reference 
implementation. GSM speech processing implemented in purely C from scratch is an 
ideal reference platform. Therefore, all the modules in the GSM speech processing that 
were to be implemented in software were ported to C manually. This implementation was 
a pure software implementation without a scheduler or signals. The model was executed 
for 4 speech segments and the timing was measured. Most of the modules processed 
information in bits. Hence, each bit had to be stored in a native C data type (ex. integer or 
character). To study the trade-offs of using character versus integer data types to store the 
bits, two models were implemented. The first model used the integer data type to 
represent each bit and the second model used the character data type to represent each bit. 
The time taken by each module to execute 4 speech segments is given in the table below. 

    Table 2 Execution times for the pure software implementation. 

 
Processing time for 4 speech segments. 

Implementation Machine Cycles Instructions Time (ms) 
Pure software implementation using 
integers 

1432757 947573 4.77 

Pure software implementation using 
character. 

1363869 892544 4.54 

 
The software implemented with the character data type is faster than integer data type by 
4.8%. Hence, the character data type implementation was used as the reference design 
and the SystemC derived models were evaluated against it.  
 
In the SystemC model of the GSM speech processing, the modules processed the data in 
bit format (all modules except the speech encoder). The data was transferred from one 
module to another using a 16-bit bus. Thus, the data, which is a bit stream, was converted 
into a word array and transferred across to another module where it was converted back 
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into a bit stream before processing. In the software implementation the bits were stored 
using native data types such as integers or character, so one integer variable stores one 
bit. To transfer the data from one module to another in software, one could just transfer 
the bit array or convert the bit array into a word array and transfer the word array. This 
transfer would involve using the software signals and handshakes between the modules 
for reliable transmission. To compare the transfer methods, a part of the speech 
processing chain was implemented using both of the transfer methods. The parity encoder 
and the convolution encoder modules were implemented using both bit array transfers 
and word array transfers. The execution time for both implementations was measured and 
compared with the pure software implementation. The results for processing four speech 
segments are shown in the table below. 
 

Table 3 Comparison of bit array and word array transfer models execution times. 

 
 

Implementation Number of 
Machine Cycles 

Number of 
Instructions 

Time (ms) 

Bit array transfer 164,161 111,262 0.54 
Word array transfer 486,606 312,072 1.62 
Software Model 124,906 83,212 0.41 
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Overhead for WORD transfer model: 
Computation load for 4 speech segments: 3.8 times software version 
Overhead: 289% the computation for software version  
 
Overhead for BIT ARRAY transfer model 
Computation load for 4 speech segments: 1.31 times software version. 
Overhead: 31% the computation for software version  
 
The large overhead in word transfer model was primarily due to the computational load 
of converting the bit array into a word array and vice versa. It is clear that any 
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implementation in software cannot use the word transfer model of the speech processing. 
Therefore, it was decided that the embedded software version would be implemented 
using bit arrays. The reference software model uses char arrays for storing bits and it was 
faster than the integer array model. Therefore, it was decided to store the bit array in a 
char data type for the SystemC derived software model to maintain consistency across the 
models. 
 
The complete speech encoding chain, from parity encoding to differential encoding, was 
implemented in embedded software using the scheduler and software signals. The 
implementation was tested using the same speech samples that were used for testing the 
SystemC model. The output of every module was compared to the output of the 
corresponding SystemC module and was found to be identical. This proves that the 
software implementation using the scheduler and signals is accurate and identical to 
SystemC model. The time required to process four speech segments was measured and is 
tabulated in the table below. 
 

Table 4 Comparison of pure software implementation and SystemC derived implementation 

 
Processing time for 4 speech segments. 

Implementation Machine Cycles Instructions Time (ms) 
Pure software implementation 
using character. 

1378784 892544 4.59 

Software implementation 
derived from SystemC 

1656004 1096601 5.52 
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The embedded software implementation with scheduler and software signals had a 20.1% 
overhead compared to the pure software implementation.  
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8 Conclusion 
This thesis explored the idea of using SystemC to implement embedded software. A 
simple scheduler was proposed to implement SystemC models in software by scheduling 
and executing the SystemC clocked threads. Software constructs were developed to 
support signals. The scheduler and software signals were implemented and tested. 
 
The SystemC model of the GSM speech processing was implemented as embedded 
software using the scheduler and software signals. The performance and overhead of this 
implementation was measured and compared with a pure software implementation of the 
system. 
 
Initial results indicate that the idea of directly implementing embedded software from 
SystemC models is viable. The overhead of the scheduler would greatly reduce with more 
complex and computationally intensive modules.  
 
This thesis looked into converting SystemC models to embedded C software. Future 
work can look into using C++ for embedded software implementation where a C++ 
compiler is available for the embedded processor. Emulation of hardware constructs like 
signals and ports is easier in C++ with its data encapsulation, function over-loading, and 
inheritance features. The models were manually ported to run on the embedded processor 
using the simplified scheduler. This process can be automated by developing tools for the 
synthesis of SystemC models into software using the scheduler. 
 
Another direction that holds promise is the porting of a light SystemC kernel to the 
embedded processor. This is possible only if there is a suitable C++ compiler for the 
processor. The lightweight kernel should have all the syntax and semantics of the original 
kernel but without the overhead of the cycle accurate simulation requirements.        
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10  Appendix 
 
//************************************************************************** 
// SystemC software scheduler -- This file contains the code for the  
//  SystemC software scheduler.  
// 
// Author -- Mac Baker and Brijesh Sirpatil 
//    Note -- much of this code was inspired by an 8101 RTOS scheduler  
//            written by Craig Dry. 
//************************************************************************** 
 
#ifndef SCHEDULER_H 
#define SCHEDULER_H 
 
// Integer signal and port 
typedef struct int_signal_struct { 
    int current_val;  /* current value of signal */ 
    int next_val;   /* next value of signal */ 
} IntSignal; 
 
typedef struct int_port_struct { 
    IntSignal *signal;  /* signal bound to this port */ 
} IntPort; 
 
// Non-integer signal and port 
typedef struct signal_struct { 
    struct signal_struct *next; // next signal in list 
    int numBytes;    // size of signal type 
    int updateFlag;    // whether signal has been updated or not 
    void *current_val;   // current value of signal 
    void *next_val;   // next value of signal 
} Signal; 
 
typedef struct port_struct { 
    Signal *signal;   // signal connected to port 
} Port; 
 
 
// function declarations 
extern void SchedStart(); 
extern void SchedInit(int StackSize); 
extern void createThread(int stackSize, void (*entryPoint)() ); 
extern void wait_until( int (*wait_fn) () ); 
extern void wait(); 
 
extern void ConnectPortToSignal(Port *port, Signal *signal); 
extern Signal *CreateSignal(int numBytes); 
extern void portRead(Port *port, void *dest); 
extern void portWrite(Port *port, void *val); 
extern int intPortRead(Port *port); 
extern void intPortWrite(Port *port, int val); 
 
//extern void ConnectPortToIntSignal(IntPort *port, IntSignal *signal); 
//extern Signal *CreateIntSignal(); 
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#endif 
 
 
 
//************************************************************************** 
// SystemC software scheduler -- This file contains the code for the  
//   SystemC software scheduler.  
// 
// Author -- Mac Baker and Brijesh Sirpatil 
//    Note -- much of this code was inspired by (and taken from) an 8101  
//            RTOS scheduler written by Craig Dry. 
//************************************************************************** 
 
#include <stdio.h>  // for error printing routine 
#include <string.h>  // for memcpy 
#include "scheduler.h" 
 
#define FALSE 0 
#define TRUE 1 
#define MAX_NUM_SIGNALS 256 
#define MAX_NUM_THREADS 256 
 
typedef struct thread_struct { 
    int (*wait_fn) ();   /* function for thread to wait on */ 
    int StatePtr;   /* pointer to thread's state */ 
    int StackPtr;   /* stack pointer for this thread */ 
    struct thread_struct *next; /* pointer to next thread in list */ 
} Thread; 
 
 
// External variables 
// External functions 
extern void __QCtxtSave(); 
extern void __QCtxtRestore(); 
 
// Global variables 
static Signal *signals = NULL;  // signals in the system 
static int numSignals = 0;   // number of signals defined in system 
static int numThreads = 0;   // number of threads in the system 
static Thread *activeList = NULL;  // list of active threads 
static Thread *waitingList = NULL;  // list of waiting threads 
static Thread *currentThread = NULL; // current active thread 
static int NextStackStart;   // next available address for a thread's stack 
 
// Local function declarations 
static void updateSignals(); 
static void updateSignal(Signal *sig); 
static void activateWaitingThreads(); 
static Thread *addThread(Thread *threadList, Thread *this_thread); 
static Thread *removeThread(Thread *threadList, Thread *this_thread); 
static Thread *getNextThread(Thread *thisThread); 
static int SuspendThread(Thread *thisThread); 
static int SwitchToThread(Thread *thisThread); 
static void error(char *str); 
static void StartThread(); 
static void StopThread(); 
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//---------------------------------------------------------------------- 
// CreateSignal -- Creates a new signal object. 
// Input: 
//    numBytes = size (number of bytes) of signal 
//---------------------------------------------------------------------- 
Signal *CreateSignal(int numBytes) 
{ 
   Signal *sig; 
 
   // allocate the signal struct 
   sig = (Signal *) NextStackStart; 
   NextStackStart += sizeof(Signal); 
 
   // allocate the current and next values of signal 
   sig->current_val = (void *) NextStackStart; 
   NextStackStart += numBytes; 
 
   sig->next_val = (void *) NextStackStart; 
   NextStackStart += numBytes; 
 
   // re-align the stack 
   NextStackStart = (NextStackStart + 8) & ~0x7; 
 
   // initialize rest of signal structure 
   sig->updateFlag = FALSE; 
   sig->numBytes = numBytes; 
 
   // add signal to list 
   sig->next = signals; 
   signals = sig; 
 
   // increment number of signals 
   numSignals++; 
 
   return sig; 
} 
 
 
 
//------------------------------------------------------------------------ 
// ConnectPortToSignal -- Logically connects (binds) a port to a signal. 
// 
// Input:  
// port -- port data structure 
// signal -- signal data structure 
//------------------------------------------------------------------------ 
void ConnectPortToSignal(Port *port, Signal *signal) 
{ 
    // connect port to signal 
    if ((port != NULL) && (signal != NULL)) { 
        port->signal = signal; 
    } 
} 
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//------------------------------------------------------------------------ 
// updateSignal -- Sets a signal's current value equal to its next value. 
// Input: 
//    sig = pointer to signal 
//------------------------------------------------------------------------ 
void updateSignal(Signal *sig) 
{ 
   // copy numBytes from next_val to current_val 
   memcpy( sig->current_val, sig->next_val, sig->numBytes); 
} 
 
 
//------------------------------------------------------------------------ 
// portRead -- Reads the current value of the signal connected to a port, 
//  storing the value in a given destination. 
// Input: 
//   port = pointer to port 
// Output: 
//   dest = pointer to memory location where value will be stored 
//------------------------------------------------------------------------ 
void portRead(Port *port, void *dest) 
{ 
    // copy numBytes from current_val to dest 
    memcpy( dest, port->signal->current_val, port->signal->numBytes); 
} 
 
 
//------------------------------------------------------------------------ 
// portWrite -- Sets the next value of the signal connected to the port 
//   to the given value. 
// Input: 
//    port = pointer to port 
//    val = pointer to value to be written 
//------------------------------------------------------------------------ 
void portWrite(Port *port, void *val) 
{ 
   // copy numBytes from val to next_val 
   memcpy( port->signal->next_val, val, port->signal->numBytes); 
   port->signal->updateFlag = TRUE; 
} 
 
//------------------------------------------------------------------------ 
// intPortRead -- Reads the current value of the signal connected to a port, 
//  storing the value in a given destination. 
// Input: 
//   port = pointer to port 
// Output: 
//   returns current value of integer signal 
//------------------------------------------------------------------------ 
int intPortRead(Port *port) 
{ 
   return  *((int *)(port->signal->current_val)); 
} 
 
//------------------------------------------------------------------------ 
// IntPortWrite -- Sets the next value of the signal connected to the port 
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//   to the given value. 
// Input: 
//    port = pointer to port 
//    val = integer value to be written 
//------------------------------------------------------------------------ 
void intPortWrite(Port *port, int val) 
{ 
   *((int *)(port->signal->next_val)) = val; 
   port->signal->updateFlag = TRUE; 
} 
 
 
 
//------------------------------------------------------------------------ 
// wait -- Suspends the current thread and switches to the next active thread. 
// If all active threads have been processed for this cycle, then the signals 
// will be updated before re-executing the first active thread. 
// Input -- none 
//------------------------------------------------------------------------- 
void wait() 
{ 
    // suspend the current thread 
    if (!SuspendThread(currentThread)) { 
 
       // get the next ready thread (updating signals if necessary) 
       currentThread = getNextThread(currentThread); 
 
       // switch to the new thread 
       SwitchToThread(currentThread); 
    } 
} 
 
 
 
//------------------------------------------------------------------------- 
// wait_until -- Suspends the current thread and switches to the next active 
// thread. Similar to wait(), the signal will be updated if this was the last  
// thread to execute during this cycle. Also, if the condition function evaluates 
// to FALSE, the suspending thread will be placed in the WAITING state; otherwise, 
// it will remain in the ACTIVE state. 
// Input -- condition_fn = function specifying condition thread waits for 
//-------------------------------------------------------------------------- 
void wait_until( int (*wait_fn) () ) 
{ 
    Thread *thisThread; 
 
    // attach wait_fn to this thread 
    currentThread->wait_fn = wait_fn; 
     
    // remember this thread 
    thisThread = currentThread; 
     
    // get the next thread to execute 
    currentThread = getNextThread(thisThread); 
 
    // suspend current thread 
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    if (!SuspendThread(thisThread)) { 
 
       // if condition is false, change thread to WAITING state 
       if ( !wait_fn() ) { 
           // remove thread from ActiveList 
           activeList = removeThread(activeList, thisThread); 
 
           // add thread to WaitingList 
           waitingList = addThread(waitingList, thisThread); 
            
           // if this was the only thread, then try to find another one 
           if (currentThread == thisThread) { 
              currentThread = getNextThread(activeList); 
           } 
       } 
 
       // switch to next thread 
       SwitchToThread(currentThread); 
    } 
} 
 
 
//----------------------------------------------------------------------- 
// updateSignals -- Updates the values of all signals in the system. 
//----------------------------------------------------------------------- 
void updateSignals()  
{ 
   Signal *sig; 
   
   for (sig = signals; sig != NULL; sig = sig->next) { 
      if (sig->updateFlag == TRUE) { 
         updateSignal(sig); 
         sig->updateFlag = FALSE; 
      } 
   } 
} 
 
 
 
//------------------------------------------------------------------------ 
// activateWaitingThreads -- Tests the condition function for each waiting 
//  thread. If the condition is true, then the thread is removed from the  
// WaitingList and added to the ActiveList of threads. 
//------------------------------------------------------------------------ 
void activateWaitingThreads() 
{ 
    Thread *this_thread, *next_thread; 
 
    // for each thread, test if thread is now ready 
    this_thread = waitingList; 
 
    while (this_thread != NULL) { 
        if ( this_thread->wait_fn() ) { 
            // thread is now ready, so remember next thread in list 
            next_thread = this_thread->next; 
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            // remove from WaitingList, add it to ActiveList 
            waitingList = removeThread(waitingList, this_thread); 
            activeList = addThread(activeList, this_thread); 
 
            // repeat for next_thread 
            this_thread = next_thread; 
        } 
        else { 
  // thread still not ready, so check next thread 
            this_thread = this_thread->next; 
        } 
    } 
} 
 
 
//---------------------------------------------------------------------- 
// addThread -- Adds a thread to a list of threads. Note that the threads 
// are not ordered, so we can simply add thread to beginning of the list. 
// Input: 
//    threadList -- pointer to list of threads 
//    this_thread -- thread to be added to list 
// Output: 
//    threadList -- pointer to updated list of threads 
//---------------------------------------------------------------------- 
Thread *addThread(Thread *threadList, Thread *this_thread) 
{ 
    // add thread to beginning of list 
    this_thread->next = threadList; 
 
    // return pointer to thread (new head of list) 
    return this_thread; 
} 
 
 
//---------------------------------------------------------------------- 
// removeThread -- Searches through a list of threads until it finds  
// the given thread. It will then remove the thread from the list. 
// Input: 
//     threadList -- pointer to list of threads 
//     this_thread -- thread to be removed 
// Output: 
//     threadList -- pointer to updated list of threads 
//---------------------------------------------------------------------- 
Thread *removeThread(Thread *threadList, Thread *this_thread) 
{ 
    Thread *thread_ptr; 
 
    // first, see if thread is the first one in the list 
    if (this_thread == threadList) { 
        // remove thread from list, return rest of list 
        thread_ptr = this_thread->next; 
        this_thread->next = NULL; 
        return thread_ptr; 
    } 
 
    // else, search through the list until we find this_thread 
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    thread_ptr = threadList; 
    while ((thread_ptr != NULL) && (thread_ptr->next != this_thread)) { 
        thread_ptr = thread_ptr->next; 
    } 
 
    // did we find it? 
    if (thread_ptr != NULL) { 
       // must have, so remove thread from list 
       thread_ptr->next = this_thread->next; 
       this_thread->next = NULL; 
    } 
 
    // return pointer to updated list 
    return threadList; 
} 
 
 
 
//-------------------------------------------------------------------------- 
// getNextThread -- Returns the next active thread. If all the threads have 
// been processed for this cycle, then first the signals are updated, and then  
// any waiting threads that are now ready are activated. 
// Input: 
//    thisThread -- pointer to current active thread 
//  activeThreads -- list of active threads 
// waitingThreads -- list of waiting threads 
// Output: 
// nextThread -- next thread to execute 
//-------------------------------------------------------------------------- 
Thread *getNextThread(Thread *thisThread) 
{ 
    Thread *nextThread; 
     
    if (thisThread != NULL) { 
       nextThread = thisThread->next; 
    } 
    else { 
       nextThread = NULL; 
    } 
 
    if (nextThread == NULL) { 
       // we've executed everything this cycle, so we need to update  
  // signals and waiting threads 
       updateSignals(); 
       activateWaitingThreads(); 
 
       // next thread will be first thread in active list (if there are no 
       // active threads, we'll keep updating signals and activate waiting 
       //  threads until there is one) 
       nextThread = activeList; 
        
       if (nextThread == NULL) { 
          printf("No more active threads.\n"); 
          exit(1); 
       } 
    } 
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    // if we got here, there must be an active thread 
    return nextThread; 
} 
 
 
//--------------------------------------------------------------------------- 
// SuspendThread -- Saves the environment of the current thread. This gets 
// a little hairy because we have to mix some C and assembly, and also keep 
// track of what's on the stack. If this routine is ever modified, you may 
// need to update the assembly-language part of it because that code expects 
// a certain-sized stack frame. If you modify the C-code, you may be changing 
// the size of the stack frame. Look at the assembly .sl file to see. 
// Input: 
//     currentThread -- pointer to current thread 
// Output: 
// Returns 0 upon invocation, returns non-zero when thread is resumed  
//  (see SwitchToThread for more details) 
//--------------------------------------------------------------------------- 
int SuspendThread(Thread *thisThread) 
{ 
    static int currSP;  // current stack pointer 
    static int currStatePtr; // current state pointer 
 
    // disable interrupts while suspending thread 
    asm("di"); 
 
    // save this thread's SP 
    asm("tfra sp,r4");   // save SP in r0 
    asm("move.l r4,__currSP");  // save r0 in currSP 
    thisThread->StackPtr = currSP; 
 
    // save the context of this thread 
    currStatePtr = thisThread->StatePtr; // pointer to state info 
    asm("move.l __currStatePtr,r4");  // load pointer into SP 
    asm("tfra r4,sp"); 
    __QCtxtSave(); 
 
    // restore the SP 
    asm("move.l __currSP,r4"); 
    asm("tfra r4,sp"); 
     
    // duplicate the stack frame -- if you change the C-code, 
    //  this will probably need to be updated. 
    asm("adda #24,sp"); 
    asm("move.l (sp-56),d4"); // wait_fn 
    asm("move.l d4,(sp-24)"); 
    asm("move.l (sp-52),d4"); // thisThread 
    asm("move.l d4,(sp-20)"); 
    asm("move.l (sp-48),d4"); // return value 
    asm("move.l d4,(sp-16)"); 
    asm("move.l (sp-40),d4"); // return address 
    asm("move.l d4,(sp-8)"); 
    asm("move.l (sp-36),d4"); // return flag reg 
    asm("move.l d4,(sp-4)"); 
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    // re-enable interrupts 
    asm("ei"); 
 
    // return 0 (when this thread is restored, it will return 1 -- see SwitchToThread 
    //   for details) 
    asm("clr d0"); 
    asm("rtstk"); 
     
    // this is just to keep the compiler happy. It never executes 
    return 0; 
} 
 
 
 
//--------------------------------------------------------------------------- 
// SwitchToThread -- Restores the environment of a suspended thread. The  
// thread will resume execution as if it has returned from a call to  
// SuspendThread() with a return value of 1. 
// Input:  
// currentThread -- pointer to thread to switch to 
//--------------------------------------------------------------------------- 
int SwitchToThread(Thread *thisThread) 
{ 
    static int SP;  // SP of currentThread 
    static int StatePtr; // state pointer of currentThread 
 
    // disable interrupts while we're restoring thread 
    asm("di"); 
 
    // remember threads SP 
    SP = thisThread->StackPtr; 
     
    // restore state ptr for this thread 
    StatePtr = thisThread->StatePtr + 34*2*sizeof(int); 
    asm("move.l <__StatePtr,r4"); 
    asm("tfra r4,sp"); 
 
    // restore the thread's context 
    __QCtxtRestore(); 
 
    // restore stack ptr for this thread 
    asm("move.l __SP,r4"); 
    asm("tfra r4,sp"); 
     
    asm("suba #8,sp");  // clean up local vars off stack 
     
    // re-enable interrupts 
    asm("ei"); 
 
    // set return value to 1 
    asm("move.l #1,d0"); 
     
    // return 
    asm("rtstk"); 
     
    // this is here to keep the compiler happy. It never gets executed  
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    return 1; 
} 
 
 
 
//--------------------------------------------------------------------------- 
// createThread -- Creates a new thread, adding the thread to the list of 
// active threads. 
// Input: 
//   stackSize -- size of the stack needed for this thread 
// entryPoint -- function to be executed by thread 
//--------------------------------------------------------------------------- 
void createThread(int stackSize, void (*entryPoint)() ) 
{ 
   Thread *newThread; 
   int *SP; 
 
   // allocate the signal struct 
   newThread = (Thread *) NextStackStart; 
   NextStackStart += sizeof(Thread); 
   NextStackStart = (NextStackStart + 8) & ~0x7; 
 
   newThread->wait_fn = NULL; 
   newThread->next = NULL; 
 
   // increment number of threads 
   numThreads++; 
 
   // add thread to active list 
   activeList = addThread(activeList, newThread); 
 
   // allocate space for the thread's state 
   newThread->StatePtr = NextStackStart; 
   NextStackStart += 35*2*sizeof(int); 
    
   // allocate a stack for the thread 
   SP = (int *) NextStackStart; 
   NextStackStart += stackSize; 
   NextStackStart = (NextStackStart + 8) & ~0x7; // stack must be aligned 
         //   on 8-byte boundary 
 
   // set up stack to execute thread. The thread will initially execute 
   // the StartThread function, then the entryPoint() function, and (if 
   // entryPoint() ever returns), the StopThread function. 
   *(SP++) = (int) &StopThread; // return address 
   *(SP++) = 0x000c000c;   // status register: 
         //   disable interrupts, use  
         //   ESP, 2's complement 
rounding, 
         //   saturation mode 
   *(SP++) = (int) entryPoint;   // return address 
   *(SP++) = 0x0004000c;   // status (same as before, but 
         //   enable interrupts) 
   *(SP++) = (int) &StartThread; // the first return will jump here 
   *(SP++) = 0x000c000c; 
    



 51

   SP++;      // dummy stack vars 
   SP++; 
 
   newThread->StackPtr = (int) SP;    
 
} 
 
 
//----------------------------------------------------------------------- 
// SchedInit -- This function initializes the data structures used by the 
// scheduler. It figures out a "relatively safe" place in memory to put  
// the threads' stacks and initializes the lists of active threads and 
// waiting threads. 
// Input: 
// StackSize -- amount of stack space (in bytes) to reserve for the  
//    main program. The threads' stacks will be located 
//    after this in memory 
//----------------------------------------------------------------------- 
void SchedInit(int StackSize) 
{ 
    // initially, set NextStackStart to the current stack pointer value 
    asm("tfra sp,r4");    // r0 = current SP 
    asm("move.l r4,_NextStackStart"); // save in NextStackStart 
 
    // now, make sure we reserve at least StackSize bytes for the main program 
    NextStackStart += StackSize; 
 
    // stack must be aligned on 8-byte boundary 
    NextStackStart = (NextStackStart + 8) & ~0x7; 
} 
 
 
//------------------------------------------------------------------------ 
// SchedStart -- This routine starts the scheduler. It is assumed that  
// SchedInit has already been called, and also that the threads have been 
// created. This routine will transfer control to one of the active threads. 
// Input: none 
//------------------------------------------------------------------------ 
void SchedStart() 
{ 
   // make head of active list the current thread 
   currentThread = activeList; 
 
   // now switch to current thread 
   SwitchToThread(currentThread); 
} 
 
 
 
//------------------------------------------------------------------------- 
// error -- Prints an error message on stderr and exits. 
// Input: 
//    str = string to be printed 
//------------------------------------------------------------------------- 
void error(char *str) 
{ 
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   fprintf(stderr, "ERROR: %s\n", str); 
   exit(1); 
} 
 
 
//---------------------------------------------------------------- 
// StartThread -- does nothing 
//---------------------------------------------------------------- 
void StartThread() 
{ 
   asm("rte"); 
} 
 
 
//---------------------------------------------------------------- 
// StopThread -- does nothing 
//---------------------------------------------------------------- 
void StopThread() 
{ 
   Thread *nextThread; 
    
   // get next thread 
   nextThread = getNextThread(currentThread); 
    
   // kill this thread 
   activeList = removeThread(activeList, currentThread); 
    
   // switch to next thread 
   if (activeList != NULL) { 
      currentThread = nextThread; 
      SwitchToThread(currentThread); 
   } 
    
   // if we get here, there are no more active threads, so exit 
   exit(0); 
} 
 
 
//************************************************************************** 
// SystemC software scheduler -- This file contains the code to test the  
//   SystemC software scheduler.  
// 
// Author -- Mac Baker and Brijesh Sirpatil 
//************************************************************************** 
 
#include <stdio.h>  // for printf 
#include "scheduler.h" 
 
Signal *Ready;   // handshake signals 
Signal *Ack; 
 
Port InA;    // input and output ports for ThreadA 
Port InB;    //   and ThreadB 
Port OutA; 
Port OutB; 
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int count = 0;   // counter passed between threads 
 
 
// 
// Wait functions -- to use wait_until(cond), you have to have  
//   a function that tests the condition. It should return 
//  1 if the condition is true, 0 if false. 
// 
int Ack0() {  // wait until Ack == 0 
   int val; 
 
   portRead(&InA, &val); 
   return !val; 
} 
 
int Ack1() {  // wait until Ack == 1 
   int val; 
 
   portRead(&InA, &val); 
   return val; 
} 
 
int Ready0() {  // wait until Ready == 0 
   int val; 
 
   portRead(&InB, &val); 
   return !val; 
} 
 
int Ready1() {  // wait until Ready == 1 
   int val; 
 
   portRead(&InB, &val); 
   return val; 
} 
 
 
//---------------------------------------------------------------------- 
// Thread A code -- This thread updates the shared counter, 
//  and then initiates the handshake (notifies other thread 
// that count is ready and waits for acknowledgement). 
//---------------------------------------------------------------------- 
void ThreadA() 
{    
   int temp; 
   int i; 
    
   // set Ready to 0 
   temp = 0; 
   portWrite(&OutA, &temp); 
    
   wait();  // make sure other thread sees write 
    
   for (i=0; i < 10; i++) { 
      // increment the counter (i.e., update shared data) 
      count++; 
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      // set Ready to 1 
      temp = 1; 
      portWrite(&OutA, &temp); 
       
      // wait for Ack = 1 so we know other thread has seen 
      // Ready 
      wait_until( &Ack1 ); 
       
      // set Ready to 0 
      temp = 0; 
      portWrite(&OutA, &temp); 
       
      // wait for Ack = 0 
      wait_until( &Ack0 ); 
   } 
    
   exit(0); 
 
} 
 
 
//---------------------------------------------------------------------- 
// Thread B code 
//---------------------------------------------------------------------- 
void ThreadB() 
{ 
   int temp; 
   int i; 
    
   // set Ack = 0 
   temp = 0; 
   portWrite(&OutB, &temp); 
    
   for (i = 0; i < 10; i++) { 
      // wait for Ready = 1 
      wait_until( &Ready1 ); 
       
      // set Ack = 1 to acknowledge that we saw data 
      temp = 1; 
      portWrite(&OutB, &temp); 
       
      // read updated count value 
      printf("Thread B got Ready signal %d.\n", count); 
       
      // wait for Ready = 0 
      wait_until( &Ready0 ); 
       
      // set Ack = 0 
      temp = 0; 
      portWrite(&OutB, &temp); 
   } 
    
   exit(0); 
 
} 
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// 
// Main code 
// 
void main() 
{ 
   SchedInit(1024); 
    
   // create the signals 
   Ready = CreateSignal(sizeof(int)); 
   Ack = CreateSignal(sizeof(int)); 
    
   // connect the signals to the ports 
   ConnectPortToSignal(&OutA, Ready); 
   ConnectPortToSignal(&InA, Ack); 
    
   ConnectPortToSignal(&OutB, Ack); 
   ConnectPortToSignal(&InB, Ready); 
    
   // create the threads 
   createThread(1024, &ThreadA); 
   createThread(1024, &ThreadB); 
    
   // start the scheduler 
   SchedStart(); 
} 
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