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Abstract

Softwar e Synthesis of SystemC Models.
Brijesh Sirpatil

Technological advances are providing us with the capability to integrate more and more
functionality into a single chip. This is leading to a new design paradigm, System On a
Chip (SOC). In SOC designs al the functionality of a system is put inside a single chip,
leading to increased performance, reduced power consumption, lower costs, and reduced
size. SOC design brings with it new challenges and difficulties, however. The designs are
now large, complicated and involve both software and hardware components. The
designs have to be modeled at a high level of abstraction before partitioning into
hardware and software components for final implementation.

SystemC is a system level modeling language useful for System On a Chip design. It
provides various features to perform system level modeling and simulation, which are
missing in the generic HDL’s such as VHDL and Verilog. The hardware portion of the
SystemC models can be synthesized into hardware using commercial tools . The software
portion can be rewritten as embedded software for the target processor.

The am of this thesis is to explore the SOC design process and to define methods for
software synthesis of SystemC models. Software synthesis involves trandlation of
SystemC models into code that is suitable for execution on an embedded processor. A
simple scheduler that replaces the SystemC simulation kernel is proposed. This scheduler
alows SystemC models to be executed directly as embedded software without the need
for extensive modification or translation. Application of this process to the development
of a GSM speech processing system, including the trandation of part of the SystemC
model into software that will execute on an embedded processor, is shown and the results
are presented.
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1 Introduction

In recent years there have been rapid technological advances in the semiconductor
industry. Continuing advances in IC fabrication technology and material science have
made it possible to keep up with Moore’'s Law [[119]. The number of transistors on a
chip and the clock frequency have been doubling every 18 months. This has made it
possible to design complex systems within a single chip, leading to new architectures and
design paradigms.

In the past, systems were built using discrete components such as microprocessors,
memory and analog components. These systems do not scale well, in terms of
complexity, performance, speed and cost. To increase the performance beyond that
possible with discrete components, one has to integrate functionality into a single chip.
The need for integration of functionality gave rise to VLSI designs. A single VLS| chip
usualy implements a complete sub-system or alarge part of the needed functionality. A
typical system today includes various VLS| cores, memory, microprocessors and the
embedded software running on the processors. Total system complexity now includes the
complexity in the silicon cores and the embedded software. Figure 1 shows the growth of
system complexity with time.

4 System complexity
Embedded Software complexity
Complexity
/ Si IP complexity
1995 2000

Figure 1 Increasing system complexity.

Increasing demands for more performance have taken the system designs based on VLS
chips to their limits. Now the basic gate delay is no longer the speed/performance
bottleneck. The bottleneck now is the interconnect delays, power consumption and low
system bus speeds. One way to overcome the above bottlenecks is to put all the various
VLSl cores, memory, and processors into a single chip. This eliminates latency and
delays of accessing data external to the chip, thereby increasing the performance. The
tendency to put more functionality into a single chip has led to large and complex
designs. The older design flow and methodology cannot cope up with the increased
complexity. In the early stages of the design, not only the hardware, but also the entire
system including the software has to be modeled to verify and validate the
design.Engineers have begun to use a new design paradigm, System On a Chip (SOC), to
overcome the the above mentioned challenges.



In the SOC design paradigm, al the functionality of a complete system is put into a
single silicon die. The usua SOC chip may consist of a microprocessor, memory, glue
logic, peripheral devices and analog modules (Figure 2). The SOC design paradigm
enables reuse of silicon IP cores. Designers can now build complete systems by putting
together various IP cores inside a single chip. This leads to reduced development time
and costs. Complete integration of all the functionality within a single chip means better
performance, speed, lower power and higher reliability.

Generd
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RAM Flash Memory

Peripheral Application

Devices Specific Logic

Analog Bus Interface
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Figure 2 Typical components of SOC design

The SOC design paradigm is made possible with recent advances in IC fabrication
technologies. With the capability to pack more and more transistors into a single die, we
are able to put more functionality into a single chip. This alows a designer to pack all the
functionality of a product into asingle chip, giving rise to SOC designs.

1.1 SOC Design Paradigm

A typical SOC design is a complex system with hardware and software components
interacting with each other to perform a given task. As discussed above, the SOC may
consist of ASIC cores, peripherals, and a general processor with software . Various IP
cores that are fully developed and tested by third-party sources may be included. For
efficient implementation and reduced development time, it is important to have an early
and accurate high-level model of the entire system. A designer needs to explore the
architecture, develop software, integrate systems and measure system performance before



the hardware is built. Based on the performance of the model, the designer can then
partition the system into hardware and software components and study the trade offs of a
given partition.

| Functional Level |

v

| Transaction Level |

Hardware — software

Co-synthesis
Embedded Software

Behavioral Model

Behavioral
Quvnthesic
RTL and Logic
Svnthesis

Gate netlist

Figure 3 Typical SOC design flow.

A typical design flow of an SOC system is described in [1] and is shown in Figure . The
system is first modeled at the functional level or transaction level. The functiona level
model is an un-timed model and composed of function calls. The transaction level model
isatimed model, and interactions between models are through signals and events. At this
level of modeling, the architecture and algorithms are verified. Any performance issues
and bottlenecks are studied and simulated. Once the architecture and algorithms are
verified, the next step is to determine which part of the system is to be implemented in
hardware and which part goes into software. This process is called hardware/software
partitioning. The software portion runs as embedded software on the genera-purpose
microprocessor and the hardware portion is implemented as an embedded ASIC core.



To partition the system, the computational complexity and implementation cost of each
of the sub-systems is measured or estimated. These values are then used to arrive a a
hardware/software partition that meets all the requirements in terms of timing
requirements, development and production costs, development time, and die area. The
usual measure of the cost of a software implementation is the computational load and
timing restrictions on the embedded software. For the hardware implementation, cost is
measured by die area (number of gates) and cost of production. Once a suitable partition
is obtained, the hardware subsystem may have to be re-written in a suitable HDL so as to
be compatible with the synthesis tools. The software part of the system would have to be
developed for the embedded processor. This transition from a high level of abstraction to
alower level of abstraction is usually done manually.

1.2 SOC Design Issues

The development cycle of a complex SOC design involves modeling and testing of the
system at various levels of abstractions. The process of converting from one level of
abstraction to another is time-consuming and laborious. Added to that, at every step of
the transition between models, one needs to simulate and verify the design. This testing
and verification is again an expensive and time-consuming process. Often, one may have
to re-write the test benchesif thereis a shift in modeling platform.

A single modeling language that can used to describe a system at all levels of abstraction
would considerably reduce design time and effort. The need to rewrite the model during
design flow would be eliminated. The same test benches could be used at all the levels of
abstraction, leading to reduced costs and development time. Using a single language
would aso ensure that the models are consistent and error-free across all levels of
abstraction. Thus, there is a need for a modeling language/platform that can scale
effectively from high-level behavioral modeling to low-level abstraction of RTL models.

The modeling platform should also support synthesis of the models into either hardware
or software components. An SOC modeling platform has to have native synthesis tools,
as conversion of models from one platform to another is an expensive process. Just like
there are tools for hardware synthesis, there is a need for tools to synthesize software.
There are tools that convert high-level abstract models into a hardware circuit, but similar
tools for software synthesis are non-existent. To manage the ever-growing complexity of
systems, the automation of software synthesis steps will no longer be an option but a
necessity. In the following sections we will exam the current state of tools available for
SOC designs.

1.3 Modeling tools for SOC design paradigm

« VHDL and Verilog are the two most popular and widely used hardware
description languages. They are well suited for modeling hardware, and the
accompanying synthesis tools are mature and produce optimized hardware. But,
the drawback is that neither language has suitable constructs for high-level
system modeling. They aso do not support hardware-software co-modeling and
co-simulation, and they are very poor in modeling software constructs. Other
limitations of VHDL and Verilog include poor simulation speed and efficiency,



and the inability to incorporate existing C/C++ IP which has been tested,
debugged, and optimized into designs.
There is a need for a modeling language that can scale from high-level abstract modeling
to low-level RTL modeling. Some of the new languages that fall into this category are
SystemC, Cynlib, and Superlog.

SystemC [[2] is a C++ class library for modeling system level designs. SystemC is
primarily targeted towards modeling of complex System On Chip (SOC) designs. It isan
industry-sponsored open standard for system-level modeling platforms. Since SystemC is
based on C++ classes, it inherently supports the modeling of software. It also has classes
to model hardware constructs such as signals and ports. SystemC has a built in simulation
kernel. A general purpose C++ compiler can used to compile the SystemC model. The
output of the compiler is an executable file, which upon execution simulates the model.
Models can be developed and debugged using general tools such Visual Studio or GNU’s
gec/gdb. SystemC models can output trace files that are compatible with standard
waveform display tools.

Cynlib is also based on a C++ class library [(03]. It is a set of C++ classes which
implement features necessary for modeling hardware. The library creates a C++
environment in which both the hardware and the test environment can be modeled and
simulated. However, the focus of Cynlib is more towards hardware modeling in C++
rather than system-level modeling.

Superlog is an extension of Verilog with support for C language features. It is not
compatible with general C/C++ compilers and needs its own set of tools for simulation.

From the above description of the languages, one can see that only SystemC is
specifically targeted towards system-level modeling. Since it is based on C++ class
libraries, it inherently supports all of the C++ language constructs. It can be compiled
using a general C/C++ compiler for simulation. Synopsis offers a compiler tool [[04] to
synthesize the SystemC models into hardware. SystemC offers a seamless design flow
from high-level modeling to RTL level modeling and final hardware synthesis. SystemC
does lack tools for automated software synthesis. But, since the SystemC is based on
C++, its models can be easily ported to run as embedded software. Hence, in today’s
market, it is a suitable candidate for hardware-software co-design and simulation.

1.4 Aim of thesis

A case study of using SystemC as a high-level modeling language is presented in [[15].
The authors conclude that SystemC is well suited for such atask. Behaviora synthesis of
SystemC models is presented in [[16]. Modeling guidelines and a study of hardware
compiler toolsis presented in [(17][[J8].

The aim of this thesis is to explore the process and to define methods for software
synthesis of SystemC models. Software synthesis involves the trandation of SystemC
models into code that is suitable for execution on an embedded processor. The motivation
behind such atrandation is to eliminate the time consuming process of re-implementing



the models as embedded software. Some guidelines and restrictions for developing
SystemC models that are easily synthesized into software are presented. A method for
preserving the structure and semantics of SystemC models during the trandation to
software code is proposed, based on the use of a simple scheduler that replaces the
SystemC simulation kernel . Application of this process to the design of a GSM
communication system, tranglating part of the SystemC model into software that will
execute on an embedded processor, is shown and the results presented. The work leading
to this thesis was also published in paper [[19].

1.5 Overview of Thesis

Chapter 2 describes in brief the features and modeling constructs of SystemC HDL. It
also elaborates the simulation steps and flow of the SystemC simulation kernel.

Chapter 3 presents the details of GSM speech processing and transmission. All the steps
involved in speech processing are explained in brief.

Chapter 4 presents the SystemC model of the GSM speech processing. It delves into
architecture of the modules and handshake signals used between the modules.

Chapter 5 discusses the target embedded processor and reasons for its choice. It also
presents the computational load of al the modules on the target processor.

Chapter 6 delves into details of software synthesis. It presents the idea of using a
scheduler to schedule threads and gives the details of implementation of the scheduler. It
also contains pseudo code and examples of using the scheduler and software signals. The
chapter also presents modeling guidelines and coding restrictions for software synthesis.

Chapter 7 presents the results, performance and comparisons of the SystemC derived
implementation of embedded software against pure software implementation.

Chapter 8 concludes the thesis and provides pointers to future work.



2 SystemC Language

SystemC is a C++ class library for modeling system-level designg[[12]. SystemC is
primarily targeted towards high-level modeling of complex systems. Using SystemC one
can effectively create cycle accurate models of algorithms, hardware architectures, and
the interfaces between them. Since SystemC is based on C++, it naturally supports
software algorithm development. On the other hand, to model hardware, it provides
necessary constructs for timing and concurrency. SystemC has a built in simulation
kernel, so it does not require any tools for simulation. SystemC can be compiled using
standard C++ tools to create an executable model that can be used for simulation and
validation.

2.1 SystemC Language Features
Important SystemC modeling constructs are described below in brief.

2.1.1 Modulesand processes

VHDL uses an entity and Verilog uses a module to encapsulate the logic and structure of
hardware modules. Similarly SystemC has module, which encapsulates the data and
algorithms. Modules in turn contain processes, ports and signals. A process is used to
model concurrency and is the basic unit of simulation. Processes are sensitive to signals
and are executed concurrently. There are three types of processes available for modeling
— methods, threads, and clocked threads.

Methods: Methods are executed whenever an event occurs on a signal in the method's
sengitivity list. Once the execution begins it cannot be suspended; it completes execution
and returns control to the simulation kernel. Hence, a method may not contain an infinite
loop.

Thread: Threads can be suspended and activated by the ssmulation kernel. A wait()
function call suspends the thread. It is re-activated again whenever an event occurs on a
signa in the thread's sengitivity list, and execution continues from the next statement. A
thread can contain an infinite loop with at least one wait() function call.

Clocked Thread: Clocked threads are a specia case of Threads sensitive only to the
clock signal. Clocked threads are useful for hardware synthesis and current synthesis
tools support only clocked thread processes.

2.1.2 Portsand Signals

Ports provide the external interfaces to modules and pass information between them.
They are similar in function to VHDL and Verilog input/output ports. There are three
types of ports — input, output and bi-directional ports, depending on the direction of data
flow.



Just the way signals are used to interconnect ports in VHDL signals are also used in
SystemC to interconnect ports. Signals transfer data from one port to another. Ports and
Signals can be of any data type supported by SystemC.

When a port is read, the value of the signal the port is connected to is returned. When a
port is written, the value of the signal the port is connected to is updated. When a port is
written, the signal value is not updated immediately, however, but at the end of the
simulation cycle. This ensures that al the processes see the same value of the signal
within asimulation cycle.

2.1.3 DataTypes

As SystemC is based on C++, it supports all the native data types of the C++ language,
such as integer, float, and char. Pointers can be used in high-level models and for
simulation, but cannot be synthesized with the current synthesis tools. SystemC also has
some additional data types for modeling logic and hardware, such as sc_bit and sc_logic.
Sc_hit is a 2-valued data type and sc_logic is afour valued (0,1,X,Z) data type. SystemC
aso has fixed-precision signed and unsigned integer data types where the user can
specify the number of bits used to represent a number. SystemC also provides signed and
unsigned fixed-point data types that can be used to accurately model DSP systems.

2.2 SystemC Simulation Kernel

SystemC designs can be compiled using any ANSI C++ compiler. SystemC has a built in
cycle-based simulation kernel to simulate the designs. The resulting executable
specification realizes the model and the simulation kernel. The complete simulation
kernel is built into the class library and needs no external tools for simulation of the
model. The source code for the kernel and the library is available with the distribution of
the SystemC platform, from [(02]. Wolfgang Muller, et a, have published a rigorous
description and semantics of the SystemC simulation kernel [[116].

Each one of the user-defined processes is executed independently of the others and also
the kernel. Simulation begins with a call to the function sc_start(). At the start of the
simulation al the processes are initialized and scheduled for execution. All of the
processes get a chance to execute in every ssimulation cycle. The order of execution is not
defined. Any changes in the signal values are not immediately updated. Signals are
assigned new values only in the next simulation cycle. This makes the simulation cycle
accurate. A process that is executing or is scheduled to be executed is in an active state.
An active process goes into a suspended state after it completes its operation or reaches a
wait statement. Once all the processes are in a suspended state, the kernel then updates
the signals, advances simulation time and enters into the next simulation cycle. The
simulation cycleisillustrated in Figure 3 (adopted from [[116]).
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Figure 3 SystemC simulation cycle.

At the start of the simulation, the module initialization or the test bench generates the
initial events. These events then trigger processes (Figure 4). Any processes that were
activated are then executed. Clocked threads, referred to as Cthreads, are sensitive only to
the clock signal and are scheduled to be executed in the future. Once all the processes
have been executed, then the signals are updated. The updating of signals may cause new
events, which may trigger other processes. The triggered processes are then executed,
which may in turn trigger other processes. This cycle continues until there are no events
triggering any of the processes or all the processes have been executed. Once all the
processes are in the suspended state and there are no events, then the CThreads are
executed. After execution of the Cthreads, simulation time is advanced and the clock and
al the signals are updated. This completes one simulation cycle. This cycle is then
repeated until simulation comes to an end or is stopped.
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Figure 4 SystemC simulation flow.

SystemC is based on a C++ class library; therefore, theoreticaly it is possible to port the
SystemC library to any embedded processor. By doing so, there would be no need for
software synthesis. However, this step is neither feasible nor practical. The SystemC
kernel carries with it a large overhead and performance penalty, which would be
unacceptable in embedded applications. Since the kernel is designed for cycle-accurate
simulation, it has large latency and will not meet the strict timing requirements of
embedded systems. Also, the SystemC library is currently available only on Windows,
Solaris and Linux OS platforms. The library depends on an operating system to provide
certain functionalities. To execute a SystemC model on an embedded system would
require the embedded system have an OS. The OS comes with its own overhead in terms
of memory and computational load, which again may not be acceptable in some
embedded applications. Hence, it is not viable to simply port the complete SystemC
library and simulation kernel over to the embedded processor. One needs to be able to
execute the SystemC models without the overhead of the cycle accurate ssimulation
kernel.
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3 GSM Speech Processing

To effectively study the software synthesis process and to come up with process, method
and design guidelines, we need a complex real world system. The system must have
modules, which can be modeled as processes. The modules should have interactions
among themselves and affect behavior of each other. Finally, the computational load
should be large enough that we would have to partition the system into hardware and
software for optimum performance.

The Global System for Mobile telecommunications (GSM) is a digital cellular
communications standard [(117][[J18]. It was originally developed in Europe to create a
common European mobile telephone standard, but it has been rapidly accepted
worldwide. GSM speech processing is a complex and computationally heavy system. It
consists of various well-defined processing steps, some of which are mathematically
intensive and operate on integer values. Other processing steps are agorithmically
complex and process data in bits. Hence, we find that GSM speech processing is an ideal
candidate for our work.

The steps involved in GSM speech processing and transmission are illustrated in the
figure below (Figure 5). Each of the steps involved is briefly explained in the following

paragraphs.

Voice Voice
A/D conversion D/A conversion 4
Speech Coding Speech de-coding
Channel Coding Channel De-coding
Interleaving De-Interleaving
Encryption Decryption
Packet Formatting Packet Disassembling
Differential Encoding Differential Decoding
Y Modulation > De-modulation
Transmission

Figure5 GSM speech processing.

11



3.1 Speech Encoder

The speech codec used in GSM is RPE-LTP (Regular Pulse Excitation-Long Term
Prediction). The codec models the human vocal tract using two filters and an initia
excitation. It transmits the parameters necessary to model the vocal tract and to recreate
the speech at the other end. The speech encoder takes in 20ms of speech as input. Speech
is sampled at 8 KHz giving total of 160 signed 13 bit PCM samples in each 20ms
segment. The encoder then compresses the 160 samples into one frame of 260 bits. The
speech encoder outputs data at the rate of 13kbps (260bits/ 20ms).

3.2 Channel Encoding

Channel coding is performed to detect and, if possible, correct errors that occurred during
the transmission. It adds redundancy bits to the original information in order to detect
and correct errors. GSM uses both a block code (parity encoding) and a convolutional
code. The coding differs for the data, speech and control channels. Since we are only
modeling the speech channel of the GSM system, speech channel encoding is described
in the following paragraph. More information regarding channel coding can found in
[014].

The 260 bits of a GSM speech frame are divided into three different classes according to
their function and importance. The most important classis the class Ia, containing 50 bits.
Next in importance is the class Ib, which contains 132 bits. The least important is the
class I, which contains the remaining 78 bits. The different classes are coded differently.
First of all, the class la bits are block-coded (parity encoding). Three parity bits, used for
error detection, are added to the 50 class la bits. The resultant 53 bits are added to the
class Ib bits. Four zero bits are added to this block of 185 bits (50+3+132). A
convolutional code, withr = 1/2 and K =5, is then applied, obtaining an output block of
378 hits. The class 11 bits are then added, without any protection. An output block of 456
bitsisfinally obtained.

3.3 Interleaving

Interleaving is used to obtain time diversity in a digital communications system without
adding any overhead. The interleaving decreases the possibility of losing whole bursts
during the transmission. The interleaving scheme used for the speech channel is
described in the following paragraph.

The total of 456 bits from the convolutional encoder, which constitutes 20ms of speech,
is subdivided into eight blocks of 57 bits each. These eight blocks are then transmitted in
consecutive time slots. If one of the blocks is lost due to burst errors, the other 7 blocks
would contain enough information so that whole segment can be recovered using error
correction. Each time dlot carries two 57-bit sub-blocks of data from two different 20ms
speech segments. Thisisillustrated in the figure below (Figure 6).

12
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Figure 6 Speech packet interleaving.

3.4 Encryption

To provide privacy and prevent unauthorized network access, the eight blocks of
interleaved data are encrypted before burst formatting and transmission. Two types of
ciphering algorithms are used in GSM, which are referred to as the A3 and A5
algorithms. These algorithms are not published for security reasons. For our work, we
needed the computational load and complexity, but not the algorithmic details. Using
some information from the Internet [[(110][(011] and textbooks on agorithms [[112],
Anup Vama [08] implemented an approximation of the algorithms. This
implementation simulates the computational load of encrypting and decrypting the data,
which is sufficient for our work.

3.5 Packet Formatting

The encrypted data is placed into a packet (also referred to as a frame), which contains
additional information for synchronization, equalization and control signals. The
structure of the packet is shown below (Figure 7).

3 Start | 57 bitsof | 1 stealing (26 training| 1 stealing | 57 bitsof | 3 Stop | 8.25 guard
Bits | speech data flag Bits flag speech data | Bits bits

Figure 7 Speech packet format.

3.6 Differential Encoder

To demodulate a transmitted signal, a receiver needs to be synchronized with the
transmitter's clock or carrier wave. This is usually accomplished by transmitting the
carrier signal along with the modulated signal. Before the packet is transmitted, the
binary stream is differentially encoded. Differential encoding of data removes the need
for transmitting the carrier, as the data is encoded not in the phase of the carrier but in the

13



phase changes. The differential encoder output is the XNOR of the present bit and the
past bit.

3.7 Transmission

Once the bit stream is differentially encoded, it is ready for transmission. The modulation
scheme used by GSM is Gaussian Minimal Shift Keying (GMSK). GMSK is a type of
digital FM modulation, where the modulated signal is passed through a Gaussian filter to
smooth the rapid changes in frequency. Rapid changes in frequency would tend to spread
the energy of the modulated signal, thereby increasing the bandwidth. Therefore, passing
the signal through afilter minimizes the bandwidth.

GSM uses two bands of 25 MHz, for transmission and reception.

e 890-915 MHz band is used for subscriber-to-base transmissions
e 935-960 MHz band is used for base-to-subscriber transmissions.

14



4 SystemC Model of GSM Speech Processing

A detailed description and tutorial of SystemC modeling is available in [13]. Anup
Varma has developed a SystemC model of the GSM speech processing for his master’s
thesis[8].

Speech is processed in 20ms segments. Data flow is linear from the first stage to the last
stage. Within stages, however, there are some feedback loops and buffering is needed.
The packet size varies as the data moves from one stage to another. Since any of the
stages could be implemented in hardware or software, the interface between the stages
had to be standardized. All the modules had a well-defined interface and architecture.

File Reader File Writer 4
Speech Coder Speech de-coder
Channel Coder Channel De-coder
Interleaver De-Interleaver
Encryption Decryption
Packet Formatting Packet Disassembler
v Differential Encoder Channel Differential Decoder
—» —»

Figure 8 SystemC model of GSM speech processing.

Figure 8 shows the various modules in the SystemC model and the data flow among the
modules. The file reader module acts as a data source for the speech encoder. It reads in
20ms of speech data and transfers it to the speech encoder. The speech encoder processes
the data and transfers it down the chain to the next module, the channel encoder. The data
is processed and moves down the chain from the channel encoder to the interleaver, the
encryption module, the packet-formatting module, and finally, the differential encoder
module. In the real systems, the output of the differential encoder goes to a modulator
where it is modulated using the RF carrier frequency for transmission. In the SystemC
model, the output of the differential encoder is fed into a channel module. The channel
module adds random bit and burst errors to the bit stream, simulating the errorsin signal
transmission and reception.

On the recelving side, the differential decoder gets the bit stream from the channel

module. This bit stream contains the random errors introduced by the channel. The
differential module processes the data and moves it up the chain to the packet
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disassembler. Data moves up the chain from the packet disassembler to the decryption
module, the channel decoder and the speech decoder. The output of the speech decoder is
an audio stream. The file writer module accepts the audio stream and writes it to afile for
later playback.

4.1 Module Architecture

The main data flow in GSM speech processing is linear. Each module has to get data
from the previous module, process the data, and then provide data to the next module in
the chain. To make the models compatible with hardware/software partitioning, the core
data processing and the data input/output functions were separated and implemented in
separate sub-modules, as illustrated in Figure 9. All of the modules operate
synchronously to a global clock. All the data transfer and signals are also synchronous to
the clock.

—L ! Input |g—p| DataProcessing |qg—p| Output >

Figure 9 Module ar chitecture.

The input, output, and processing sub-sections are implemented in separate processes
within a module. This allows for concurrent execution of the subsections, leading to
optimized performance. The processes communicate with each other using signals. The
input sub-section writes the input data into an input buffer. The data processing sub-
section operates on the data in the input buffer and writes the output into an output buffer.
The output sub-section reads the data from the output buffer and transfers it to the next
module.
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4.2 Handshake Signals

A simple handshake protocol ensures reliable data transfer between the modules. The
handshake protocol signals are described below. (Figure 10)

DIA DOA — | DIA DOA — & DIA DOA

DAI DAQ p=———Pp DAI DAO =P DAI DAO
RTR RTS [«— RTR RTS [«— RTR RTS

RAK RAR €4— RAK RAR [¢— RAK RAR

Module N-1 Module N Module N+1

Figure 10 Module ar chitecture.

* DOA (DataOut_Available): Output signal. Data is available for the next module.
Asserted by the sending module.

* RTR (Ready_To_Receive): Output signal from the receiving module. Indicates
module is ready to receive data.

* DIA (Dataln_Available): Input signal. Data is available to be received, asserted
by the sender.

* RAK (Receive AcKnowledge): Output signal. Acknowledgement from the
receiver.

* RTS(Request_To_Send): Input signal. Receiving module is ready to receive data

+ RAR (Recieve Ack_Received): Input Signal. The acknowledgement from the
receiving module indicating that it received data.

« DAI (Dataln): Input data to the module.

+ DAO (Data Out): Output data from the module.

Once a module is ready to receive more data, it asserts the RTR signal. The receiver
module then waits until the DIA signal is asserted and begins to read the data in. The
receiver acknowledges each data transfer across the bus (DAI) by asserting the RAK
signal.

On the sending side, the sender waits until the receiver asserts the RTS signal. Once it
sees RTS asserted, the sender asserts the DOA signal and writes out the data onto the
DAO bus. The sender then waits for the acknowledgement RAR before writing the next
data on to the bus.

The code for an input process is shown below. The input process is the same for all of the
modules as it is a well-defined common interface. The data transfer is synchronous with
handshake signals for acknowledgment. Data is transferred using a bus and the width of
the bus is 16bits. This code snippet only shows the synchronization and handshake
sections of the code. The code is taken from the interleaver encoder module.
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void inter_encoder::input()
{

input_reset();

walit();

while(true)

{

wait();

/ read input data from the bus

for(int i=0;i<IE_MEMORY _SIZE;++i)

{
walit();

//ready to accept the next word from the bus.
| GOT_YOUR BIT.write(false); //signal RAK
READY_TO_RECV.write(true); //signal RTR

/[Iwait till datais written to the bus
wait_until(DATAIN_AVAIL.delayed() ==true); //Signal DIA
word_input_data[i] = DATAIN.read(); /Iread from bus DAI

wait();

/lacknowledge the data
|_GOT_YOUR_BIT.write(true); //[signal RAK
READY_TO_RECV.write(false); /l[signa RTR
wait_until(DATAIN_AVAIL.delayed() == false); //signal DIA
walit();

}

wait();

/lcomplete data segment has been read from the previous module

The code for the data processing process of a module is shown below. The code snippet
shows only the handshake and synchronization sections. Again, the code is taken from
the interleaver module.

void inter_encoder::process_data()
{

/lprocess reset signal
process data reset();

wait();

while(true)

{
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processing_started.write(false);
walit();

/Iwait till the input process has read the data segment
wait_until(input_data_ready.delayed() == true) ;
processing_started.write(true);

//data processing code goes here

walit();

/lindicate to the output process that datais ready
input_data_processed.write(true);

output_data _ready.write(true);
input_ack_received.write(false);

output_ack received.write(false);

wait();

/Iwait for an ack from the output process.
wait_until(input_ack.delayed() == true);
input_data processed.write(false);
input_ack_received.write(true);

wait_until(output_ack.delayed() == true);
output_data ready.write(false);
output_ack_received.write(true);
wait();
}
}

The code for the output process is shown below. Again, only the handshake and
synchronization sections are shown.

void inter_encoder::output()

{
output_reset();
walit();
while(true)

{

wait();

// send output data

for(int i=0;i<IE_OUTPUT_SIZE;++i)
{

walit();

/Iwait until receiver is ready
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wait_until(READY_TO_SEND.delayed() ==true); //signal RTS

DATAOUT_AVAIL.write(true); //[signal DOA
DATAOUT.write(word_interleaved datd[i]); /write to bus DAO
walit();

/Iwait for an ack.
wait_until(YOU_GOT_MY _BIT.delayed() == true);//signa RAR
DATAOUT_AVAIL.write(false); //[singal DOA
wait();
}

wait();

output_ack.write(true);

wait_until(output_ack received.delayed() == true);
output_ack.write(false);

wait();
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5 Embedded Processor

For our study we chose the StarCore SC140 processor [15] as the embedded processor in
our SOC design. StarCore is an aliance between Motorola Semiconductor Products
Sector and Agere Systems for the purpose of developing DSP core technology. The
StarCore processor is targeted towards the communication market, and its architecture is
well suited for mobile handsets. One of the most important considerations was that the
StarCore is available as an IP core. Availability of StarCore DSP IP cores enables
designers to build their SOC systems around the processor. We also had a development
platform with a compiler and an instruction set simulator for the processor, which
enabled us to compile and run our code to get timing measurements. For the above-
mentioned reasons, the StarCore SC140 was chosen as our target embedded processor.

5.1 Computational Load of the Modules

To perform and study hardware-software partition tradeoffs, we need a measure of cost of
implementation in hardware and software. In addition to the cost of implementation, we
had to ensure that all the timing requirements were met. The measure of the cost of
implementation in hardware was chosen to be the number of clock periods needed to
perform the computation. The measure of the cost of implementation in software was
chosen to be the number of processor clock cycles required to perform the computation.
To smplify the calculations the hardware cost measurements were made at the same
clock frequency as that of the processor.

To get the timing measurements on the embedded processor, each module was manually
ported to run on the StarCore processor. Necessary changes in code were made to comply
with the requirements of StarCore C compiler. Each module was run independently and
the number of clock cycles required to process one block of data was recorded. The
recorded values are shown below. The processor was running at 300 MHz.
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Table 1 Execution time of the modules running on embedded processor.

Index Module M/c Cycles Execution Time (ms)
1 A/D Converter 20.0000
2 Speech Encoder 1251510 41717
3 Parity encoder 12509 0.0417
4 Convolution. Encoder 71527 0.2384
5 Interleaving Encoder 105970 0.3532
6 Packet Encoder 6774 0.0226
7 A5 Encoder 43840 0.1461
8 Differential Encoder 9188 0.0306
9 Speech Decoder 488376 1.6279
10 Parity Decoder 12428 0.0414
11 Convolution Decoder 13387103 44.6237
12 Interleaving Decoder 97210 0.3240
13 Packet Decoder 4633 0.0154
14 A5 Decoder 42699 0.1423

15 Differential Decoder 8453 0.0282



6 Software Synthesis

If a C++ compiler is available for the embedded processor, then we could use the
inheritance feature of the C++ language to arrive at an organization of the modules which
lends itself to both hardware and software synthesis. We could encapsulate the core data
processing in a base class. This base class would do al the data processing using
synthesizable C language constructs. To simulate and synthesize it, we would derive the
SystemC class from the base class. The SystemC class would provide al the necessary
constructs for simulation and communication between modules. To implement it in
software, we would derive a C++ class from the base class (Figure 11). This class would
then take on the responsibility of creating threads, communication and synchronization
with other modules and registering it with the scheduler.

Base class
Data processing
Derived Class Derived Class
Using SystemC constructs Using C++

Figure 11 Inheritance diagram for the module or ganization.

Unfortunately, there is no C++ compiler for the chosen target embedded processor, the
StarCore SC140. Infact there are very few C++ compilers for embedded processors. For
this reason we had to come up with a different solution which only needs a C compiler. A
software implementation that mimics the organization and architecture of the high-level
SystemC model would be most easy and least time-consuming to implement as
embedded software. Since SystemC is based on a C++ class library, it is possible to port
the high-level model directly into software, including the simulation kernel. But, such a
design would be very inefficient and would have the large overhead of the cycle accurate
simulation kernel. Instead of porting the complete SystemC kernel, it is possible to
execute SystemC models as software using a simplified scheduler. This scheduler can be
easily implemented in C. A ssimplified scheduler would be lightweight and have much
less overhead than the SystemC kernel.

Current day hardware synthesis tools for SystemC support only CThreads. Hence, any
design that aims to be compatible with both hardware and software implementations has
to use only CThreads. CThreads are processes that are sensitive only to clock signals. So,
to execute a design based only on Cthreads, one needs a ssmple scheduler that schedules
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al the active processes at every cycle. The ssmplified scheduler operation isillustrated in
Figure 12.

Initialize

Execute Active
CThreads

v

Update Signals

Activate any
waiting CThreads.

Figure 12 Scheduler for the software implementation

A simplified scheduler executes all the active threads. Any changes in the signal values
are not immediately updated. Once all the threads in the present smulation cycle have
had a chance to execute, the scheduler then updates the signals. This ensures that al the
modules that read a certain signal see the same signal value in a given cycle. After
updating the signals, the scheduler activates any threads that were waiting and are now
ready to run. The scheduler then executes all the active threads, repeating the cycle.

The order of execution of the CThreads is not specified, which is also the case in a
SystemC simulation. Once a CThread suspends, it is guaranteed that all the other
CThreads get a chance to execute before the CThread is executed again. Since all the
signal values are updated at the end of the cycle, this process ensures that all the
CThreads read the same signal value in a given cycle. It also ensures that signal values
are updated before the CThread is rescheduled. This leads to a direct analogy between the
cycle of the scheduler and the hardware clock cycle of the SystemC simulation, athough
there is no concept of clock period and no guarantee that al the cycles take same amount
of time to execute. This mechanism does ensure that any model that simulated correctly
will execute correctly on the embedded software.

In summary, a scheduler that schedules CThread processes and updates signals can
execute a SystemC model on the embedded processor. To implement SystemC models as
embedded software, one has to implement a rudimentary scheduler along with support for
software signals. Using this scheduler, one can port the SystemC models to embedded
software with little or no modifications.

24



6.1 Scheduler

Craig Dry from Motorola has written and released a free scheduler, the Motorola 8101
Real-time Preemptive Scheduler (RPS). This scheduler formed the basis for our CThread
scheduler. The original scheduler was extensively modified and extra features added to
support threads and signals.

The scheduler initialization and thread creation functions are explained below.

Schedlnit(int stacksize)

This function call initializes the scheduler. This should be called once at the beginning of
the program. The argument st acksi ze is the size of the stack for the scheduler. The
stack sizeisin bytes.

Example:

Schedl ni t (8000) ;

SchedStart ()

A cal to this function starts the scheduler. Before calling this function, the scheduler
should be initialized and the threads created. Any mapping of ports and signals should
also be completed. (Ports and signals explained in the next section).

6.2 Software Implementation of Ports and Signals

Modules in SystemC exchange data and control information using ports and signals
connected to the ports. The port and signals were implemented as structures in the
embedded software.

The signal structure is shown below.

/lsignal structure
t ypedef struct signal _struct {

struct signal _struct *next; /I next signal in |ist
i nt nunByt es; //size of signal type
i nt updat eFl ag; [ I whet her signal has been
/I updat ed or not
void *current val; [l current value of signa
voi d *next _val; /I next val ue of signa
} Signal;

The scheduler stores all the signalsin alinked list. The field next stores the pointer to
the next signal in the linked list. The field nunByt es defines the length of the signal in
bytes. If one wants a 32-bit bus between two modules, then one has to create a signal
with a length of 4 bytes. The signal structure stores both the current value of the signal
and the next value of the signal. When a port connected to a signal is read, then the data
pointed to by current _val , the current value of the signal, is returned. Whenever a
signal is written to, the new value is stored in the location pointed to by next _val .

Only when the scheduler updates the signal, is the new value copied into the current
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value location. Since signals are al updated at the end of a cycle after all the active
threads have been executed, al the threads see the same vaue of the signal during a
simulation cycle. This ensures that model will work correctly without specifying any
order of execution of the threads.

The updat eFl ag is used to optimize the process of updating the signals. Only those
values that have been written in the present cycle will have the flag set. If the flag is set
then the signal values are updated by copying the next value into current value.

To create a signal, one has to call the Cr eat eSi gnal () function with the size of the
signal in bytes. The smallest signal that can be created is one byte. As this is not
hardware simulation, there is no overhead associated with the extra bits. The function
returns a pointer to the signal structure.

Example:
poi nter _to_signal = CreateSignal (size);

The port structure contains a pointer to the signal to which it is connected. The same port
typeisused for both input and output.

t ypedef struct port_struct {
Si gnal *signal; /1l signal connected to port
} Port;

A port has to be connected to a signal before it can be read or written. A code sample to
connect a port to asignal is shown below.

[/ declare a Port and signal.
Port portA;
Si gnal *si gA;

[/ Create a signal with length of 1 Byte.
sigA = CreateSignal (1);

/'l connect the signals to the ports
Connect Port ToSi gnal (&port A, sigA);

Once the port is connected to a signal, it can be read and written. To read a port, the
function por t Read( ) is called. The function accepts two arguments; one is a pointer to
the port. The other parameter is a pointer to the location where the read value is to be
stored. Care should be taken that enough memory has been allocated to hold the complete
signal.

port Read( struct port, char* ptr);

Code example:
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//read portA and store the read value into |ocation pointed
//to by data.
port Read( &port A, data);

To write to a port, the function portWrite() is called. The function accepts two arguments,
a pointer to the port and a pointer to data that is to be written to the port. The size of the
data to be written to the port should match the size of the signal connected to the port.

portWite( struct port, char* data);

Code example:

[/ Wite data present at the |ocation pointed to by the data
into the port portA

portWite(&portA, data);

6.3 Software Implementation of Clocked Threads

In the SystemC specification, clocked threads execute independently and concurrently.
To get the independent and concurrent execution in software, each clocked thread has to
be implemented as a thread. One has to create a thread for every clocked thread process
in SystemC and connect the modules using software signals. Any communication
between the threads has to be through the use of signals.

To create and register athread with the scheduler, the function call cr eat eThr ead()
has to be called.

extern void createThread(int stackSize,void(*entryPoint)()

)

This function call registers a new thread with the scheduler. It allocates memory space for
the stack used by the thread. The amount of memory is determined by the first argument
stackSi ze, whichisin bytes. The second argument, ent r yPoi nt, is a pointer to
the function that is called every time this thread is to be executed. The function is
analogous to the processes in SystemC. This function takes no arguments and returns no
value. Just like in the SystemC CThread process, the function should contain an infinite
loop with at least one call to function wait () or wait _until () to suspend the
thread. It is necessary to suspend the thread within the infinite loop so that other threads
get a chance to execute.

extern void wait()
This function does not take any arguments. When the function is called, control is
returned to the scheduler and the thread is put into a suspended state. The thread will be
rescheduled for execution in the next cycle. Execution will continue from the next line
after thecall towai t () .

extern void wait_until( int (*wait_fn) () )
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This function suspends the thread until a specified condition is true. It takes one
argument, a pointer to a function. If the thread is suspended and waiting on a signal or
condition, then this function is called at the beginning of every cycle to determine if the
thread is to be scheduled or not. If the function passed as a parameter returns 1, then the
thread is scheduled. If the function returns O, then the thread is not schedul ed.

This function can be used to wait on a signal. For example to wait on a signa r eady,
one has to write a function that reads the port connected to the signal ready and returns 1
if ready is asserted and O otherwise.

[/ code snippet to illustrate the use of wait_until ()
[/function to wait on a signal

Port Readyln; //port to which the ready signal is
/'l connect ed

[/this function is called whenever a thread is waiting on
[ /the port Readyln.

int ready( )

{
int val;
port Read( &Readyl n, &val);
return val;

}

//inside the thread

t hr eadA()

{

\./\./éi t_until (& eady); //wait until signal ready is
asserted.

}
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6.4 GSM Model

The SystemC implementation of the GSM speech processing has already been discussed in the
previous chapter. The handshake signals between modules and the module ar chitecture were
described. In the softwar e implementation of the GSM model, the cor e processing functions wer e | ft
untouched. The handshake signals, however, wer e optimized for speed. The interface between the
modulesis shown below in

Figure 13.

Readyl ReadyO———| Readyl ReadyO——— Readyl ReadyO

Datal DataOp=———Jp| Datel DataO =1y Datal DataO
AckO Ackl [¢&———AckO Ackl [ ¢——AckO Ackl

Module N-1 Module N Module N+1

Figure 13 Handshake signalsin softwar e implementation.

When a module has data to send, it asserts the output signal ReadyO and writes the data
on to the output bus DataO. It then waits on the signal Ackl, which is an
acknowledgement from the receiving module, before proceeding. Once it receives the
acknowledgement, the sending module un-asserts the ready signal and waits until
acknowledgement from the receiving module is un-asserted. A simple state diagram to
illustrate the handshake is shown in the Figure 14.

Ready to Send

WaitUntil
Ackl ==

Write Data
ReadvO ==

Figure 14 Handshake process on sending side.
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On the receiving side, the receiver waits on the input signa Readyl. Once this signa is
asserted, the receiving module reads the data of the input bus Datal. After reading the
data from the bus, it sends an acknowledgement back to sending module by asserting the
signal AckO. It then waits until the sending module un-asserts its ready signa before
proceeding to process the data. This handshake scheme ensures that sending module does
not overwrite the data before a receiver has read the data and also ensures the receiver
does not read same data twice. A simple state diagram to illustrate the handshake is
shown in the Figure 15.

Ready to Receive

WaitUnitl
Readyl ==

Read Data
AckO==1

Figure 15 Handshake process on thereceiving side.

The following code snippet further illustrates the use of signals to perform handshakes
and synchronization. The code snippet is from the interleaving encoder module. This
module receives data from the channel encoder module and sends data to the encryption
module.

/la nodul e shall declare only output signals..
Si gnal *interAck;

Si gnal *interReady;

Si gnal *interData;

Port interAckQut;
Port interReadyQut;
Port i nterReadyl n;
Port i nterAckln;
Port interDataln;
Port i nterDataCQut;

)./This is the function which is registered with the
/I schedul er.
voi d interProcess()

{
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int i;

/lindicate that output data is not ready
intPortWite(& nterReadyQut, 0);

wait(); /I make sure other thread sees wite

/I processing 4 segnents only for exanple
for(i=0;i<4;++i)
{
[Iwait until the data is ready
wait_until (&nait Oni nt er Readyl n);

/I acknowl edge ready signa
intPort Wite(& nterAckQut, 1);

// Read data (bit array) fromthe input port
port Read(& nterDataln, inter _input_data);

[/wait till the sender sees ACK = 1;
wait_until (&nait Oni nt er Readyl n0) ;

[l acknowl edge data transfer
intPortWite(& nterAckQut, 0);

[/ process data here
i nter_enc_process_data();

/[/wite out bit array
portWite(& nterDataQut, interleaved data);

/lindicate that output data is ready
intPortWite(& nterReadyQut, 1);

/] wait for Ack = 1 so we know ot her thread has
/] seen

wait_until (&nait Oni nt er Ackl n);
intPortWite(& nterReadyQut, 0);

/] wait for Ack = 0 so we know that data has been

/| copi ed
wai t _unti | (&wai t Oni nt er Ackl n0O);
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In the code snippet, the function call wait_until() takes an argument which is a pointer to
a function. The return value of the function determines if the thread will be moved from
the suspended state to the active state by the scheduler. The code sample below illustrates
the use of the wait_until() function call to wait on a signal interAckin, with the use of
function waitOnlinter Ackin().

/[ wait for Ack =1
wait_until(&waitOninterAckln);

The function call waitOninter Ackin() reads the port and returns the value of the signal
connected to the port. The code snippet for the function is shown below.

[/ functions for the scheduler to wait on.
int waitOninterAckln()

{
int val;
port Read( & nt er Ackl n, &val);
return val;

}

6.5 Modeling Guidelines

Before delving into the architecture and modeling guidelines, a brief description of some
compatibility issuesis presented below.

Features in SystemC that cannot be used in software implementations:
* Primitives. sc_method, sc_thread, processes sensitive to signals other than
clock.
» DataTypes: sc_int, sc_uint etc.

Features in the C language that cannot be used in synthesizable SystemC models:
* Pointers.
* Floating point data types.

Features in the C language that cannot be used in SystemC model for simulation:
o SystemC isalibrary of C++ classes to model hardware, and C++ is a superset
of the C language. Hence, one should theoretically be able to use all the
language constructs of C.

6.6 Suggested Organization

The current architecture of the modules is shown below in Figure 16. The input and
output sections exist primarily to convert data from a word array to a bit array. The
processing section contains al the functionality needed for processing the data. The
processing section is primarily composed of C code and is encapsulated into a single C
function call. Input data is copied into an input buffer and the function associated with
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processing the data is called. Upon completing its task, the function writes the output into
an output buffer. The module has various handshake and data signals going to other
modules, which have been implemented using SystemC constructs.

<> Input <«4—» Processing [«—¥» Output [¢—F»

Typical Moduled

Figure 16 Current Architecture of the SystemC model of GSM speech processing.

The hardware synthesis tools and the software synthesis process are both compatible with
restricted C code. The maor part of the work in porting the GSM model to either
hardware or software would involve porting various algorithms and data processing steps.
Thus, if al the data processing within a module is encapsulated into a single C function
or afew functions, then the design would lend itself well for both hardware and software
synthesis. Another advantage of using native C code and data types for processing is that
it decreases simulation time under SystemC. SystemC data types such as sc_int have
overhead associated with them.

The control and communication aspects of the models should be implemented using
SystemC signals and ports (Figure 17). But, all the modules should be restricted to using
only Cthreads, as both the hardware tools and the software scheduler are not compatible
with any of the other SystemC processes. Any changes made to the system will affect
only the processing section that is implemented using the restricted C language (without
pointers and float data types). This section is common to all the implementations of the
model; i.e., abstract, hardware and software. Hence, any agorithmic or processing
changes in the system get automatically updated in both the hardware and software
implementation.
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<«——»| Control: |[«—» Processng. [«—» Control: |[¢——F»

Implement Implemented Implement
using inC using
SystemC SystemC

High-level Module

Figure 17 Hardwar e/softwar e compatible module ar chitecture..

Each of the modules should be coded in a separate file. All the variables and buffers used
for data processing should not be declared as member variables of the SystemC class. In
this way, the variable will be accessible to al the functions within a module and un-
accessible from outside the module. Any communication or exchange of data between the
modules should be restricted to using ports and signals. This will ensure that the software
version of the model will function as intended.

The control section handles all the handshake signals and data transfers. This will make it
easier to port the modules at the boundary of the hardware and software partition. At the
boundaries, the software modules running on the embedded processor have to interact
with the hardware modules implemented as ASIC logic. This will usualy involve the
implementation of specific driver software to interact with the hardware. Thus, having a
processing section separate from the control section isolates the data processing
agorithms from the hardware interface details.

High-level Abstract Model
Simulation and verification.

Synthesizable SytemC Mode Software Model
Little or no modification. Implemented using schedul er
and software signals and port.

Figure 18 M odel implementation flow.

In summary, a SystemC model following the above guidelines will be compatible with
hardware synthesis tools and lend itself to embedded software implementation (Figure
18). Hardware synthesis requires little or no changes to the model. For software



synthesis, the modules have to be altered to make them compatible with the software. The
amount of changes required is minima and restricted to the handshake signals and
control sections. Most of the aterations relate to changing from C++ syntax to C syntax
and function calls.

7 Results

A software tool was developed by Pradeep Adhipathi [22] to partition a high-level model
into hardware and software. Input to the tool is a representation of the model as a directed
graph. The nodes of the graph represent the modules and the arcs represent signals
between the modules. The tool also accepts timing restrictions and activation rates of the
processes to arrive at the partition. The GSM speech-processing model was partitioned
using the software tool. The resulting partition placed the speech encoder in hardware and
the rest of the modules in software. The modules that were to be implemented in software
were then ported to run as embedded software using the scheduler.

To evaluate and compare the performance of the embedded software implementation of
GSM speech processing derived from the SystemC model, we need a reference
implementation. GSM speech processing implemented in purely C from scratch is an
ideal reference platform. Therefore, all the modules in the GSM speech processing that
were to be implemented in software were ported to C manually. This implementation was
a pure software implementation without a scheduler or signals. The model was executed
for 4 speech segments and the timing was measured. Most of the modules processed
information in bits. Hence, each bit had to be stored in a native C data type (ex. integer or
character). To study the trade-offs of using character versus integer data types to store the
bits, two models were implemented. The first model used the integer data type to
represent each bit and the second model used the character data type to represent each bit.
The time taken by each module to execute 4 speech segmentsis given in the table below.

Table 2 Execution timesfor the pure softwar e implementation.

Processing time for 4 speech segments.

Implementation Machine Cycles | Instructions Time (ms)
Pure software implementation using 1432757 947573 4.77
integers
Pure software implementation using 1363869 892544 4.54
character.

The software implemented with the character data type is faster than integer data type by
4.8%. Hence, the character data type implementation was used as the reference design
and the SystemC derived models were evaluated against it.

In the SystemC model of the GSM speech processing, the modules processed the datain
bit format (all modules except the speech encoder). The data was transferred from one
module to another using a 16-bit bus. Thus, the data, which is a bit stream, was converted
into a word array and transferred across to another module where it was converted back
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into a bit stream before processing. In the software implementation the bits were stored
using native data types such as integers or character, so one integer variable stores one
bit. To transfer the data from one module to another in software, one could just transfer
the bit array or convert the bit array into a word array and transfer the word array. This
transfer would involve using the software signals and handshakes between the modules
for reliable transmission. To compare the transfer methods, a part of the speech
processing chain was implemented using both of the transfer methods. The parity encoder
and the convolution encoder modules were implemented using both bit array transfers
and word array transfers. The execution time for both implementations was measured and
compared with the pure software implementation. The results for processing four speech
segments are shown in the table below.

Table 3 Comparison of bit array and word array transfer models execution times.

Implementation Number of Number of Time (ms)
Machine Cycles Instructions

Bit array transfer 164,161 111,262 0.54
Word array transfer 486,606 312,072 1.62
Software Model 124,906 83,212 0.41

500,000+

400,000+

300,000 OBit Array

B Word Array
200,000+ O Software

100,000+

04

M/c Cyles Instructions

Overhead for WORD transfer model:
Computation load for 4 speech segments:. 3.8 times software version
Overhead: 289% the computation for software version

Overhead for BIT ARRAY transfer model
Computation load for 4 speech segments:. 1.31 times software version.
Overhead: 31% the computation for software version

The large overhead in word transfer model was primarily due to the computational load
of converting the bit array into a word array and vice versa. It is clear that any
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implementation in software cannot use the word transfer model of the speech processing.
Therefore, it was decided that the embedded software version would be implemented
using bit arrays. The reference software model uses char arrays for storing bits and it was
faster than the integer array model. Therefore, it was decided to store the bit array in a
char data type for the SystemC derived software model to maintain consistency across the
models.

The complete speech encoding chain, from parity encoding to differential encoding, was
implemented in embedded software using the scheduler and software signals. The
implementation was tested using the same speech samples that were used for testing the
SystemC model. The output of every module was compared to the output of the
corresponding SystemC module and was found to be identical. This proves that the
software implementation using the scheduler and signals is accurate and identical to
SystemC model. The time required to process four speech segments was measured and is
tabulated in the table below.

Table 4 Comparison of pure softwar e implementation and SystemC derived implementation

Processing time for 4 speech segments.
Implementation Machine Cycles | Instructions | Time (ms)

Pure software implementation 1378784 892544 4.59
using character.
Software implementation 1656004 1096601 5.52
derived from SystemC

2000000+

15000001

O Software
B System C Derived

10000004

500000

04

M/c Cycles Instructions

The embedded software implementation with scheduler and software signals had a 20.1%
overhead compared to the pure software implementation.

37



8 Conclusion

This thesis explored the idea of using SystemC to implement embedded software. A
simple scheduler was proposed to implement SystemC models in software by scheduling
and executing the SystemC clocked threads. Software constructs were developed to
support signals. The scheduler and software signals were implemented and tested.

The SystemC model of the GSM speech processing was implemented as embedded
software using the scheduler and software signals. The performance and overhead of this
implementation was measured and compared with a pure software implementation of the
system.

Initial resultsindicate that the idea of directly implementing embedded software from
SystemC modelsis viable. The overhead of the scheduler would greatly reduce with more
complex and computationally intensive modules.

This thesis looked into converting SystemC models to embedded C software. Future
work can look into using C++ for embedded software implementation where a C++
compiler is available for the embedded processor. Emulation of hardware constructs like
signals and ports is easier in C++ with its data encapsulation, function over-loading, and
inheritance features. The models were manually ported to run on the embedded processor
using the simplified scheduler. This process can be automated by developing tools for the
synthesis of SystemC models into software using the scheduler.

Another direction that holds promise is the porting of a light SystemC kernel to the
embedded processor. This is possible only if there is a suitable C++ compiler for the
processor. The lightweight kernel should have all the syntax and semantics of the original
kernel but without the overhead of the cycle accurate simulation requirements.
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10 Appendix

”**************************************************************************

/I SystemC software scheduler -- This file contains the code for the

/I SystemC software scheduler.

1

/I Author -- Mac Baker and Brijesh Sirpatil

/I Note -- much of this code was inspired by an 8101 RTOS scheduler
/ written by Craig Dry.

”**************************************************************************

#ifndef SCHEDULER_H
#define SCHEDULER_H

/I Integer signal and port
typedef struct int_signal_struct {

int current_val; /* current value of signal */

int next_val; /* next value of signal */
} IntSignal;
typedef struct int_port_struct {

IntSignal *signal; [* signal bound to this port */
} IntPort;

/I Non-integer signal and port
typedef struct signal_struct {

struct signal_struct *next; I/l next signal in list
int numBytes; /I size of signal type
int updateFl ag; I/ whether signal has been updated or not
void *current_val; /I current value of signal
void *next_val; /I next value of signal
} Signal;
typedef struct port_struct {
Signal *signal; // signal connected to port
} Port;

/I function declarations

extern void SchedStart();

extern void Schedlnit(int StackSize);

extern void createThread(int stackSize, void (*entryPoint)() );
extern void wait_until(int (*wait_fn) () );

extern void wait();

extern void ConnectPortToSignal (Port *port, Signal *signal);
extern Signal * CreateSignal (int numBytes);

extern void portRead(Port *port, void *dest);

extern void portWrite(Port *port, void *val);

extern int intPortRead(Port * port);

extern void intPortWrite(Port *port, int val);

/lextern void ConnectPortTolntSignal (IntPort *port, IntSignal *signal);
/lextern Signal *CreatelntSignal ();
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#endif

/**************************************************************************

/I SystemC software scheduler -- This file contains the code for the

/I SystemC software scheduler.

1

/I Author -- Mac Baker and Brijesh Sirpatil

/' Note -- much of this code was inspired by (and taken from) an 8101
1 RTOS scheduler written by Craig Dry.

”**************************************************************************

#include <stdio.h> I/ for error printing routine
#include <string.h> /I for memcpy
#include "scheduler.h"

#define FALSE 0

#defineTRUE 1

#define MAX_NUM_SIGNALS 256
#define MAX_NUM_THREADS 256

typedef struct thread struct {

int (*wait_fn) (; /* function for thread to wait on */
int StatePtr; [* pointer to thread's state */
int StackPtr; [* stack pointer for thisthread */
struct thread_struct * next; [* pointer to next thread in list */
} Thread;

/I External variables

/I External functions
externvoid _ QCtxtSave();
externvoid __ QCtxtRestore();

/I Global variables

static Signal *signals= NULL; /I signalsin the system

static int numSignals = 0; // number of signals defined in system
static int numT hreads = 0; /I number of threadsin the system

static Thread *activelist = NULL; /'list of active threads

static Thread *waitingList = NULL; /I list of waiting threads

static Thread *currentThread = NULL; /I current active thread

static int NextStackStart; /I next available address for a thread's stack

/I Local function declarations

static void updateSignals();

static void updateSignal (Signal *sig);

static void activateWaitingThreads();

static Thread *addThread(Thread *threadList, Thread *this_thread);
static Thread *removeThread(Thread *threadList, Thread *this _thread);
static Thread * getNextThread(Thread *thisT hread);

static int SuspendThread(Thread *thisThread);

static int SwitchToThread(Thread *thisThread);

static void error(char *str);

static void StartThread();

static void StopThread();
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1
/I CreateSignal -- Creates a new signal object.
/I Input:
/I numBytes = size (number of bytes) of signa
I
Signal *CreateSignal (int numBytes)
{

Signal *sig;

/I allocate the signal struct
sig = (Signal *) NextStackStart;
NextStackStart += sizeof(Signal);

/I alocate the current and next values of signal
sig->current_val = (void *) NextStackStart;
NextStackStart += numBytes;

sig->next_va = (void *) NextStackStart;
NextStackStart += numBytes;

/I re-align the stack
NextStackStart = (NextStackStart + 8) & ~0x7;

[/l initialize rest of signal structure
sig->updateFlag = FALSE;
sig->numBytes = numBytes;

// add signal to list
sig->next = signals,
signals=4dig;

[l increment number of signals
numSignals++;

return sig;

1
/I ConnectPortToSignal -- Logically connects (binds) a port to asignal.
1

/I Input;
1 port -- port data structure
1 signal -- signal data structure

Il
void ConnectPortToSignal (Port *port, Signal *signal)
{

/I connect port to signal

if ((port !=NULL) && (signal '= NULL)) {

port->signal = signal;

}

}
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1
/I updateSignal -- Sets a signal's current value equal to its next value.
/I Input;

/I §ig = pointer to signal

i
void updateSignal (Signal *sig)

Il copy numBytes from next_val to current_val
memcpy( sig->current_val, sig->next_val, sig->numBytes);

1
/I portRead -- Reads the current value of the signal connected to a port,
/I storing the value in a given destination.

/I Input:

/I port = pointer to port

/I Output:

/I dest = pointer to memory location where value will be stored

1
void portRead(Port *port, void *dest)

/I copy numBytes from current_val to dest
memcpy( dest, port->signal->current_val, port->signal->numBytes);
}

i
/I portWrite -- Sets the next value of the signal connected to the port
/I tothe given value.
/I Input:
/I port = pointer to port
/I val = pointer to value to be written
1
void portWrite(Port *port, void *val)
{
/I copy numBytes from val to next_val
memcpy( port->signal->next_val, val, port->signal->numBytes);
port->signal->updateFlag = TRUE;
}

i
/I intPortRead -- Reads the current value of the signal connected to a port,
/I storing the value in a given destination.

/I Input;

/[ port = pointer to port

/I Output:

/I returns current value of integer signal

1
int intPortRead(Port * port)

return *((int *)(port->signal->current_val));

I
/I IntPortWrite -- Sets the next value of the signal connected to the port



/I tothegiven vaue.

/I Input;

/I port = pointer to port

/I val = integer value to be written
1
void intPortWrite(Port *port, int val)

*((int *)(port->signal->next_val)) = val;
port->signal->updateFlag = TRUE;
}

1
/I wait -- Suspends the current thread and switches to the next active thread.
/I'1f all active threads have been processed for this cycle, then the signals

/I will be updated before re-executing the first active thread.

/I Input -- none

1
void wait()

/I suspend the current thread
if (1SuspendThread(currentThread)) {

/I get the next ready thread (updating signals if necessary)
currentThread = getNextThread(currentThread);

I switch to the new thread
SwitchToThread(currentThread);

1
/I wait_until -- Suspends the current thread and switches to the next active

/I thread. Similar to wait(), the signal will be updated if this was the last

/I thread to execute during this cycle. Also, if the condition function evaluates

// to FALSE, the suspending thread will be placed in the WAITING state; otherwise,
/I it will remaininthe ACTIVE state.

/I Input -- condition_fn = function specifying condition thread waits for

i
void wait_until(int (*wait_fn) () )

{

Thread *thisThread,;

/I attach wait_fn to this thread
currentThread->wait_fn = wait_fn;

/I remember this thread
thisThread = currentThread;

/I get the next thread to execute
currentThread = getNextThread(thisThread);

/I suspend current thread



if (! SuspendT hread(thisT hread)) {

/I if condition is false, change thread to WAITING state
if ('wait_fn()){

Il remove thread from ActiveL ist

activelList = removeThread(activelist, thisThread);

/l add thread to WaitingList
waitingList = addThread(waitingList, thisT hread);

/I if this was the only thread, then try to find another one
if (currentThread == thisThread) {
currentThread = getNextThread(activeList);

}
}
/I switch to next thread
SwitchToThread(currentThread);
}
}
1

/I updateSignals -- Updates the values of all signalsin the system.
I
void updateSignals()
{

Signal *sig;

for (sig=dignals, sig!=NULL; sig = sig->next) {
if (sg->updateFlag == TRUE) {
updateSignal(sig);
sig->updateFlag = FALSE;
}
}
}

1
/I activateWaitingThreads -- Tests the condition function for each waiting
/I thread. If the condition is true, then the thread is removed from the

/I WaitingList and added to the ActivelList of threads.

1
void activateWaitingThreads()

{
Thread *this_thread, *next_thread,;

/I for each thread, test if thread is now ready
this_thread = waitingList;

while (this_thread '= NULL) {
if (this_thread->wait_fn() ) {
/I thread is now ready, so remember next thread in list
next_thread = this_thread->next;
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/I remove from WaitingList, add it to ActiveList
waitingList = removeT hread(waitingList, this_thread);
activelist = addThread(activelList, this_thread);

/I repeat for next_thread
this_thread = next_thread;

}

else{

/I thread still not ready, so check next thread

this_thread = this _thread->next;

}

}
}

i
/I addThread -- Adds athread to alist of threads. Note that the threads
/[ are not ordered, so we can simply add thread to beginning of the list.
/I Input:
/I threadList -- pointer to list of threads
/I this thread -- thread to be added to list
/I Output:
/I threadList -- pointer to updated list of threads
1l
Thread *addThread(Thread *threadList, Thread *this_thread)
{

/I add thread to beginning of list

this_thread->next = threadL.ist;

/I return pointer to thread (new head of list)
return this_thread;

1
/I removeThread -- Searches through alist of threads until it finds
/I the given thread. It will then remove the thread from the list.

/I Input;

/I threadList -- pointer to list of threads

/I this thread -- thread to be removed

/I Output:

/I threadList -- pointer to updated list of threads

i
Thread *removeThread(Thread *threadList, Thread *this_thread)

{

Thread *thread ptr;

/I first, seeif thread isthe first onein the list
if (this_thread == threadL.ist) {
/I remove thread from list, return rest of list
thread ptr = this_thread->next;
this_thread->next = NULL;
return thread_ptr;
}

/I else, search through the list until we find this_thread
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thread ptr = threadList;

while ((thread_ptr '= NULL) && (thread_ptr->next != this_thread)) {
thread ptr = thread ptr->next;

}

// did we find it?

if (thread_ptr != NULL) {
/I must have, so remove thread from list
thread ptr->next = this_thread->next;
this thread->next = NULL;

}

/I return pointer to updated list
return threadList;

1
/I getNextThread -- Returns the next active thread. If al the threads have
/I been processed for this cycle, then first the signals are updated, and then
/I any waiting threads that are now ready are activated.

/I Input;

/I thisThread -- pointer to current active thread
1 activeThreads -- list of active threads

/ waitingThreads -- list of waiting threads
/I Output:

1 nextThread -- next thread to execute

1
Thread *getNextThread(Thread *thisThread)

{

Thread *nextThread;

if (thisThread '= NULL) {
nextThread = thisT hread->next;
}
ese{
nextThread = NULL;

}

if (nextThread == NULL) {
I/l we've executed everything this cycle, so we need to update
I signals and waiting threads
updateSignals();
activateWaitingT hreads();

Il next thread will be first thread in active list (if there are no

/I active threads, well keep updating signals and activate waiting
/I threads until there is one)

nextThread = activelLigt;

if (nextThread == NULL) {
printf("No more active threads\n");
exit(1);
}
}
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/I if we got here, there must be an active thread
return nextThread;
}

i
/I SuspendThread -- Saves the environment of the current thread. This gets

/I alittle hairy because we have to mix some C and assembly, and also keep
/I track of what's on the stack. If this routine is ever modified, you may

/I need to update the assembly-language part of it because that code expects
/I a certain-sized stack frame. If you modify the C-code, you may be changing
/I the size of the stack frame. Look at the assembly .4l file to see.

/I Input;

/I currentThread -- pointer to current thread

/I Output:

I Returns 0 upon invocation, returns non-zero when thread is resumed
I (see SwitchToThread for more details)

i
int SuspendT hread(Thread *thisT hread)

{

static int currSP; /I current stack pointer
static int currStatePtr;  // current state pointer

/I disable interrupts while suspending thread

asm("di");

/I save this thread's SP

asm("tfrasp,rd"); /I save SPinr0
asm("move.l r4,__currSP"); /I saverQin currSP

thisThread->StackPtr = currSP;

/I save the context of this thread

currStatePtr = thisT hread->StatePtr; /I pointer to state info
asm("move.l __ currStatePtr,r4"); /l'load pointer into SP
asm("tfrar4d,sp");

__ QCtxtSave();

/I restore the SP
asm("movel __currSP,r4");
asm("tfrar4,sp");

/l duplicate the stack frame -- if you change the C-code,
/I thiswill probably need to be updated.
asm("adda #24,5p");

asm("move.l (sp-56),d4"); /' wait_fn
asm("move.l d4,(sp-24)");

asm("move.l (sp-52),d4"); /I thisThread
asm("move.l d4,(sp-20)");

asm("move.l (sp-48),d4"); /I return value
asm("move.l d4,(sp-16)");

asm("move.l (sp-40),d4"); // return address
asm("move.l d4,(sp-8)");

asm("move.l (sp-36),d4"); Il return flag reg

asm("move.l d4,(sp-4)");



/I re-enable interrupts
asm("ei");

/I return O (when this thread is restored, it will return 1 -- see SwitchToThread
/I for details)

asm("clr d0");

asm("'rtstk");

/l thisisjust to keep the compiler happy. It never executes
return O;

1
/I SwitchToThread -- Restores the environment of a suspended thread. The
/I thread will resume execution asiif it has returned from a call to

/I SuspendThread() with areturn value of 1.

/I Input:

I currentThread -- pointer to thread to switch to

1
int SwitchToThread(Thread *thisT hread)

{

static int SP; /I SP of currentThread
static int StatePtr; // state pointer of currentThread

/I disable interrupts while we're restoring thread
asm("di");

/I remember threads SP
SP = thisThread->StackPtr;

/I restore state ptr for this thread

StatePtr = thisT hread->StatePtr + 34* 2* sizeof (int);
asm("move.l <__StatePtr,r4");

asm("tfrar4d,sp");

/I restore the thread's context
__QCixtRestore();

/I restore stack ptr for this thread
asm("movel __ SP,r4");
asm("tfrard,sp");

asm("'suba#8,5p"); /I clean up local vars off stack

/I re-enable interrupts
asm("ei");

/I set return value to 1
asm("move.l #1,d0");

/ return
asm("rtstk");

/I thisis here to keep the compiler happy. It never gets executed



return 1;

1

/I createThread -- Creates a new thread, adding the thread to the list of

/I active threads.
/I Input:

1 stackSize -- size of the stack needed for this thread
1 entryPoint -- function to be executed by thread

1

void createThread(int stackSize, void (*entryPoint)() )

{
Thread *newThread,;

int *SP;

/I alocate the signal struct
newThread = (Thread *) NextStackStart;
NextStackStart += sizeof(Thread);

NextStackStart = (NextStackStart + 8) & ~0x7;

newThread->wait_fn= NULL;
newThread->next = NULL;

/I increment number of threads
numThreads++;

/I add thread to active list

activelList = addThread(activelL ist, newThread);

/I allocate space for the thread's state
newT hread->StatePtr = NextStackStart;
NextStackStart += 35* 2*sizeof(int);

/I dlocate a stack for the thread
SP = (int *) NextStackStart;
NextStackStart += stackSize;

NextStackStart = (NextStackStart + 8) & ~0x7;

Il stack must be aligned

/I set up stack to execute thread. The thread will initially execute
// the StartThread function, then the entryPoint() function, and (if
/I entryPoint() ever returns), the StopThread function.

*(SP++) = (int) &StopThread;  // return address

*(SP++) = 0x000c000c; /I status register:

rounding,
*(SP++) = (int) entryPoint; /I return address
*(SP++) = 0x0004000c; /I status (same as before, but

*(SP++) = (int) & StartThread;  // the first return will jump here

*(SP++) = 0x000c000c;

1

1
1

1

1

on 8-byte boundary

disable interrupts, use
ESP, 2's complement

saturation mode

enable interrupts)
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SP++; /I dummy stack vars
SP++;

newT hread->StackPtr = (int) SP;

I
/I Schedinit -- This function initializes the data structures used by the
/I scheduler. It figures out a "relatively safe" place in memory to put
/I the threads stacks and initializes the lists of active threads and

[/l waiting threads.

/I Input;

1 StackSize -- amount of stack space (in bytes) to reserve for the

I main program. The threads' stacks will be located
I after thisin memory

1
void Schedlnit(int StackSize)

{
[/l initially, set NextStackStart to the current stack pointer value
asm("tfrasp,rd"); // r0 = current SP
asm("move.l r4, NextStackStart"); /l savein NextStackStart
/I now, make sure we reserve at least StackSize bytes for the main program
NextStackStart += StackSize;
/I stack must be aligned on 8-byte boundary
NextStackStart = (NextStackStart + 8) & ~0x7;

}

1l

/I SchedStart -- This routine starts the scheduler. It is assumed that

/I Schedinit has already been called, and also that the threads have been
/I created. This routine will transfer control to one of the active threads.
/I Input; none

1!
void SchedStart()

/I make head of active list the current thread
currentThread = activeList;

/I now switch to current thread
SwitchToThread(currentThread);

}

1
/I error -- Prints an error message on stderr and exits.
/I Input:

/I str = string to be printed

1
void error(char *str)

{
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fprintf(stderr, "ERROR: %s\n", str);

exit(1);
}
I
/I StartThread -- does nothing
1
void StartThread()
{
asm("rte");
}
1
/I StopThread -- does nothing
I
void StopThread()
Thread *nextThread;
/I get next thread

nextThread = getNextThread(currentThread);

/1 kill this thread
activeList = removeThread(activeList, currentThread);

/I switch to next thread

if (activeList = NULL) {
currentThread = nextThread;
SwitchToThread(currentThread);

}

/I if we get here, there are no more active threads, so exit
exit(0);
}

/**************************************************************************

/I SystemC software scheduler -- This file contains the code to test the
/I SystemC software scheduler.

1

/I Author -- Mac Baker and Brijesh Sirpatil

”**************************************************************************

#include <stdio.h> /I for printf

#include "scheduler.h"

Signal *Ready; /I handshake signals

Signal *Ack;

Port InA; /I input and output ports for ThreadA
Port InB; /I and ThreadB

Port OutA;

Port OutB;
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int count = 0; /I counter passed between threads

1

/I Wait functions -- to use wait_until(cond), you have to have

1 afunction that tests the condition. It should return
1 1if the condition istrue, O if false.

1

int AckO() { /l wait until Ack ==

intval;

portRead(&InA, &val);
return lval;

}

int Ack1() { [/l wait until Ack ==
int val;

portRead(&InA, &val);
returnval;

}

int Ready0() { /I wait until Ready ==
int val;

portRead(&InB, &val);
return !val;

}

int Ready1() { /I wait until Ready ==
int val;

portRead(&InB, &val);
return val;

}

1
/I Thread A code -- This thread updates the shared counter,
I and then initiates the handshake (notifies other thread
I that count is ready and waits for acknowledgement).
1
void ThreadA()
{
int temp;
inti;

// set Ready to O
temp =0;
portWrite(& OutA, & temp);

wait(); /I make sure other thread sees write
for (i=0; i < 10; i++) {

/I increment the counter (i.e., update shared data)
count++;



// set Ready to 1
temp =1,
portWrite(& OutA, &temp);

// wait for Ack = 1 so we know other thread has seen
/I Ready
wait_until( &Ackl);

/I set Ready to O
temp =0;
portWrite(& OutA, &temp);
/I wait for Ack =0
wait_until( &AckO0);

}

exit(0);

1

/I Thread B code
Il

void ThreadB()
{

int temp;
inti;

Il set Ack=0
temp =0;
portWrite(& OutB, &temp);

for (i = 0; i < 10; i++) {
/I wait for Ready = 1
wait_until( & Readyl);

/Il set Ack = 1 to acknowledge that we saw data
temp = 1;
portWrite(& OutB, &temp);

/I read updated count value
printf(" Thread B got Ready signal %d.\n", count);

/I wait for Ready = 0
wait_until( & Ready0 );

/l set Ack=0

temp = 0;

portWrite(& OutB, &temp);
}

exit(0);



I

/I Main code
1

void main()

{
Schedinit(1024);

/I create the signals
Ready = CreateSignal (sizeof(int));
Ack = CreateSignal (sizeof(int));

Il connect the signals to the ports
ConnectPortToSignal (& OutA, Ready);
ConnectPortToSignal (&InA, Ack);

ConnectPortToSignal (& OutB, Ack);
ConnectPortToSignal (& 1nB, Ready);

/I create the threads
createThread(1024, & ThreadA);
createThread(1024, & ThreadB);

/I start the scheduler
SchedStart();
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