

Software Synthesis of SystemC Models

Brijesh Sirpatil

Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University in partial

fulfillment of the requirements for the degree of

Master of Science
in

Electrical Engineering

Dr. James M. Baker, Chair
Dr. James R. Armstrong

Dr. F. Gail Gray

July 2002
Blacksburg, Virginia

Keywords: SystemC, Software Synthesis, Embedded software, GSM

 ii

Abstract

Software Synthesis of SystemC Models.

Brijesh Sirpatil

Technological advances are providing us with the capability to integrate more and more
functionality into a single chip. This is leading to a new design paradigm, System On a
Chip (SOC). In SOC designs all the functionality of a system is put inside a single chip,
leading to increased performance, reduced power consumption, lower costs, and reduced
size. SOC design brings with it new challenges and difficulties, however. The designs are
now large, complicated and involve both software and hardware components. The
designs have to be modeled at a high level of abstraction before partitioning into
hardware and software components for final implementation.

SystemC is a system level modeling language useful for System On a Chip design. It
provides various features to perform system level modeling and simulation, which are
missing in the generic HDL’s such as VHDL and Verilog. The hardware portion of the
SystemC models can be synthesized into hardware using commercial tools . The software
portion can be rewritten as embedded software for the target processor.

The aim of this thesis is to explore the SOC design process and to define methods for
software synthesis of SystemC models. Software synthesis involves translation of
SystemC models into code that is suitable for execution on an embedded processor. A
simple scheduler that replaces the SystemC simulation kernel is proposed. This scheduler
allows SystemC models to be executed directly as embedded software without the need
for extensive modification or translation. Application of this process to the development
of a GSM speech processing system, including the translation of part of the SystemC
model into software that will execute on an embedded processor, is shown and the results
are presented.

 iii

Table of contents

1 Introduction ... 1

1.1 SOC Design Paradigm .. 2
1.2 SOC Design Issues .. 4
1.3 Modeling tools for SOC design paradigm .. 4
1.4 Aim of thesis ... 5
1.5 Overview of Thesis ... 6

2 SystemC Language.. 7
2.1 SystemC Language Features ... 7

2.1.1 Modules and processes.. 7
2.1.2 Ports and Signals ... 7
2.1.3 Data Types... 8

2.2 SystemC Simulation Kernel .. 8
3 GSM Speech Processing ... 11

3.1 Speech Encoder ... 12
3.2 Channel Encoding ... 12
3.3 Interleaving.. 12
3.4 Encryption ... 13
3.5 Packet Formatting ... 13
3.6 Differential Encoder.. 13
3.7 Transmission ... 14

4 SystemC Model of GSM Speech Processing .. 15
4.1 Module Architecture ... 16
4.2 Handshake Signals .. 17

5 Embedded Processor ... 21
5.1 Computational Load of the Modules... 21

6 Software Synthesis .. 23
6.1 Scheduler... 25
6.2 Software Implementation of Ports and Signals ... 25
6.3 Software Implementation of Clocked Threads.. 27
6.4 GSM Model... 29
6.5 Modeling Guidelines ... 32
6.6 Suggested Organization... 32

7 Results ... 35
8 Conclusion... 38
9 References ... 39
10 Appendix ... 40

 iv

List of Figures
Figure 1 Increasing system complexity. .. 1
Figure 2 Typical components of SOC design.. 2
Figure 3 SystemC simulation cycle. ... 9
Figure 4 SystemC simulation flow. .. 10
Figure 5 GSM speech processing. .. 11
Figure 6 Speech packet interleaving.. 13
Figure 7 Speech packet format. ... 13
Figure 8 SystemC model of GSM speech processing. .. 15
Figure 9 Module architecture... 16
Figure 10 Module architecture... 17
Figure 11 Inheritance diagram for the module organization...................................... 23
Figure 12 Scheduler for the software implementation .. 24
Figure 13 Handshake signals in software implementation.. 29
Figure 14 Handshake process on sending side.. 29
Figure 15 Handshake process on the receiving side... 30
Figure 16 Current Architecture of the SystemC model of GSM speech processing. 33
Figure 17 Hardware/software compatible module architecture................................. 34
Figure 18 Model implementation flow. ... 34

 v

List of tables.
Table 1 Execution time of the modules running on embedded processor. 22
Table 2 Execution times for the pure software implementation................................. 35
Table 3 Comparison of bit array and word array transfer models execution times.36
Table 4 Comparison of pure software implementation and SystemC derived

implementation .. 37

 1

1 Introduction
In recent years there have been rapid technological advances in the semiconductor
industry. Continuing advances in IC fabrication technology and material science have
made it possible to keep up with Moore’s Law [�19]. The number of transistors on a
chip and the clock frequency have been doubling every 18 months. This has made it
possible to design complex systems within a single chip, leading to new architectures and
design paradigms.

In the past, systems were built using discrete components such as microprocessors,
memory and analog components. These systems do not scale well, in terms of
complexity, performance, speed and cost. To increase the performance beyond that
possible with discrete components, one has to integrate functionality into a single chip.
The need for integration of functionality gave rise to VLSI designs. A single VLSI chip
usually implements a complete sub-system or a large part of the needed functionality. A
typical system today includes various VLSI cores, memory, microprocessors and the
embedded software running on the processors. Total system complexity now includes the
complexity in the silicon cores and the embedded software. Figure 1 shows the growth of
system complexity with time.

Figure 1 Increasing system complexity.

Increasing demands for more performance have taken the system designs based on VLSI
chips to their limits. Now the basic gate delay is no longer the speed/performance
bottleneck. The bottleneck now is the interconnect delays, power consumption and low
system bus speeds. One way to overcome the above bottlenecks is to put all the various
VLSI cores, memory, and processors into a single chip. This eliminates latency and
delays of accessing data external to the chip, thereby increasing the performance. The
tendency to put more functionality into a single chip has led to large and complex
designs. The older design flow and methodology cannot cope up with the increased
complexity. In the early stages of the design, not only the hardware, but also the entire
system including the software has to be modeled to verify and validate the
design.Engineers have begun to use a new design paradigm, System On a Chip (SOC), to
overcome the the above mentioned challenges.

Complexity
Embedded Software complexity

20001995

Si IP complexity

System complexity

 2

In the SOC design paradigm, all the functionality of a complete system is put into a
single silicon die. The usual SOC chip may consist of a microprocessor, memory, glue
logic, peripheral devices and analog modules (Figure 2). The SOC design paradigm
enables reuse of silicon IP cores. Designers can now build complete systems by putting
together various IP cores inside a single chip. This leads to reduced development time
and costs. Complete integration of all the functionality within a single chip means better
performance, speed, lower power and higher reliability.

Figure 2 Typical components of SOC design

The SOC design paradigm is made possible with recent advances in IC fabrication
technologies. With the capability to pack more and more transistors into a single die, we
are able to put more functionality into a single chip. This allows a designer to pack all the
functionality of a product into a single chip, giving rise to SOC designs.

1.1 SOC Design Paradigm
A typical SOC design is a complex system with hardware and software components
interacting with each other to perform a given task. As discussed above, the SOC may
consist of ASIC cores, peripherals, and a general processor with software . Various IP
cores that are fully developed and tested by third-party sources may be included. For
efficient implementation and reduced development time, it is important to have an early
and accurate high-level model of the entire system. A designer needs to explore the
architecture, develop software, integrate systems and measure system performance before

General
purpose

Processor

DSP Processor

RAM Flash Memory

Peripheral
Devices

Application
Specific Logic

Analog
Modules

Bus Interface

 3

the hardware is built. Based on the performance of the model, the designer can then
partition the system into hardware and software components and study the trade offs of a
given partition.

Figure 3 Typical SOC design flow.

A typical design flow of an SOC system is described in [1] and is shown in Figure . The
system is first modeled at the functional level or transaction level. The functional level
model is an un-timed model and composed of function calls. The transaction level model
is a timed model, and interactions between models are through signals and events. At this
level of modeling, the architecture and algorithms are verified. Any performance issues
and bottlenecks are studied and simulated. Once the architecture and algorithms are
verified, the next step is to determine which part of the system is to be implemented in
hardware and which part goes into software. This process is called hardware/software
partitioning. The software portion runs as embedded software on the general-purpose
microprocessor and the hardware portion is implemented as an embedded ASIC core.

Embedded Software

Functional Level

Transaction Level

Hardware – software
Co-synthesis

Gate netlist

Behavioral Model

Behavioral
Synthesis

RTL Model

RTL and Logic
Synthesis

 4

To partition the system, the computational complexity and implementation cost of each
of the sub-systems is measured or estimated. These values are then used to arrive at a
hardware/software partition that meets all the requirements in terms of timing
requirements, development and production costs, development time, and die area. The
usual measure of the cost of a software implementation is the computational load and
timing restrictions on the embedded software. For the hardware implementation, cost is
measured by die area (number of gates) and cost of production. Once a suitable partition
is obtained, the hardware subsystem may have to be re-written in a suitable HDL so as to
be compatible with the synthesis tools. The software part of the system would have to be
developed for the embedded processor. This transition from a high level of abstraction to
a lower level of abstraction is usually done manually.

1.2 SOC Design Issues
The development cycle of a complex SOC design involves modeling and testing of the
system at various levels of abstractions. The process of converting from one level of
abstraction to another is time-consuming and laborious. Added to that, at every step of
the transition between models, one needs to simulate and verify the design. This testing
and verification is again an expensive and time-consuming process. Often, one may have
to re-write the test benches if there is a shift in modeling platform.
A single modeling language that can used to describe a system at all levels of abstraction
would considerably reduce design time and effort. The need to rewrite the model during
design flow would be eliminated. The same test benches could be used at all the levels of
abstraction, leading to reduced costs and development time. Using a single language
would also ensure that the models are consistent and error-free across all levels of
abstraction. Thus, there is a need for a modeling language/platform that can scale
effectively from high-level behavioral modeling to low-level abstraction of RTL models.

The modeling platform should also support synthesis of the models into either hardware
or software components. An SOC modeling platform has to have native synthesis tools,
as conversion of models from one platform to another is an expensive process. Just like
there are tools for hardware synthesis, there is a need for tools to synthesize software.
There are tools that convert high-level abstract models into a hardware circuit, but similar
tools for software synthesis are non-existent. To manage the ever-growing complexity of
systems, the automation of software synthesis steps will no longer be an option but a
necessity. In the following sections we will exam the current state of tools available for
SOC designs.

1.3 Modeling tools for SOC design paradigm
• VHDL and Verilog are the two most popular and widely used hardware

description languages. They are well suited for modeling hardware, and the
accompanying synthesis tools are mature and produce optimized hardware. But,
the drawback is that neither language has suitable constructs for high-level
system modeling. They also do not support hardware-software co-modeling and
co-simulation, and they are very poor in modeling software constructs. Other
limitations of VHDL and Verilog include poor simulation speed and efficiency,

 5

and the inability to incorporate existing C/C++ IP which has been tested,
debugged, and optimized into designs.

There is a need for a modeling language that can scale from high-level abstract modeling
to low-level RTL modeling. Some of the new languages that fall into this category are
SystemC, Cynlib, and Superlog.

SystemC [�2] is a C++ class library for modeling system level designs. SystemC is
primarily targeted towards modeling of complex System On Chip (SOC) designs. It is an
industry-sponsored open standard for system-level modeling platforms. Since SystemC is
based on C++ classes, it inherently supports the modeling of software. It also has classes
to model hardware constructs such as signals and ports. SystemC has a built in simulation
kernel. A general purpose C++ compiler can used to compile the SystemC model. The
output of the compiler is an executable file, which upon execution simulates the model.
Models can be developed and debugged using general tools such Visual Studio or GNU’s
gcc/gdb. SystemC models can output trace files that are compatible with standard
waveform display tools.

Cynlib is also based on a C++ class library [�3]. It is a set of C++ classes which
implement features necessary for modeling hardware. The library creates a C++
environment in which both the hardware and the test environment can be modeled and
simulated. However, the focus of Cynlib is more towards hardware modeling in C++
rather than system-level modeling.

Superlog is an extension of Verilog with support for C language features. It is not
compatible with general C/C++ compilers and needs its own set of tools for simulation.

From the above description of the languages, one can see that only SystemC is
specifically targeted towards system-level modeling. Since it is based on C++ class
libraries, it inherently supports all of the C++ language constructs. It can be compiled
using a general C/C++ compiler for simulation. Synopsis offers a compiler tool [�4] to
synthesize the SystemC models into hardware. SystemC offers a seamless design flow
from high-level modeling to RTL level modeling and final hardware synthesis. SystemC
does lack tools for automated software synthesis. But, since the SystemC is based on
C++, its models can be easily ported to run as embedded software. Hence, in today’s
market, it is a suitable candidate for hardware-software co-design and simulation.

1.4 Aim of thesis
A case study of using SystemC as a high-level modeling language is presented in [�5].
The authors conclude that SystemC is well suited for such a task. Behavioral synthesis of
SystemC models is presented in [�6]. Modeling guidelines and a study of hardware
compiler tools is presented in [�7][�8].

The aim of this thesis is to explore the process and to define methods for software
synthesis of SystemC models. Software synthesis involves the translation of SystemC
models into code that is suitable for execution on an embedded processor. The motivation
behind such a translation is to eliminate the time consuming process of re-implementing

 6

the models as embedded software. Some guidelines and restrictions for developing
SystemC models that are easily synthesized into software are presented. A method for
preserving the structure and semantics of SystemC models during the translation to
software code is proposed, based on the use of a simple scheduler that replaces the
SystemC simulation kernel . Application of this process to the design of a GSM
communication system, translating part of the SystemC model into software that will
execute on an embedded processor, is shown and the results presented. The work leading
to this thesis was also published in paper [�9].

1.5 Overview of Thesis
Chapter 2 describes in brief the features and modeling constructs of SystemC HDL. It
also elaborates the simulation steps and flow of the SystemC simulation kernel.

Chapter 3 presents the details of GSM speech processing and transmission. All the steps
involved in speech processing are explained in brief.

Chapter 4 presents the SystemC model of the GSM speech processing. It delves into
architecture of the modules and handshake signals used between the modules.

 Chapter 5 discusses the target embedded processor and reasons for its choice. It also
presents the computational load of all the modules on the target processor.

Chapter 6 delves into details of software synthesis. It presents the idea of using a
scheduler to schedule threads and gives the details of implementation of the scheduler. It
also contains pseudo code and examples of using the scheduler and software signals. The
chapter also presents modeling guidelines and coding restrictions for software synthesis.

Chapter 7 presents the results, performance and comparisons of the SystemC derived
implementation of embedded software against pure software implementation.

Chapter 8 concludes the thesis and provides pointers to future work.

 7

2 SystemC Language
SystemC is a C++ class library for modeling system-level designs[�2]. SystemC is
primarily targeted towards high-level modeling of complex systems. Using SystemC one
can effectively create cycle accurate models of algorithms, hardware architectures, and
the interfaces between them. Since SystemC is based on C++, it naturally supports
software algorithm development. On the other hand, to model hardware, it provides
necessary constructs for timing and concurrency. SystemC has a built in simulation
kernel, so it does not require any tools for simulation. SystemC can be compiled using
standard C++ tools to create an executable model that can be used for simulation and
validation.

2.1 SystemC Language Features
Important SystemC modeling constructs are described below in brief.

2.1.1 Modules and processes
VHDL uses an entity and Verilog uses a module to encapsulate the logic and structure of
hardware modules. Similarly SystemC has module, which encapsulates the data and
algorithms. Modules in turn contain processes, ports and signals. A process is used to
model concurrency and is the basic unit of simulation. Processes are sensitive to signals
and are executed concurrently. There are three types of processes available for modeling
– methods, threads, and clocked threads.

Methods: Methods are executed whenever an event occurs on a signal in the method's
sensitivity list. Once the execution begins it cannot be suspended; it completes execution
and returns control to the simulation kernel. Hence, a method may not contain an infinite
loop.

Thread: Threads can be suspended and activated by the simulation kernel. A wait()
function call suspends the thread. It is re-activated again whenever an event occurs on a
signal in the thread's sensitivity list, and execution continues from the next statement. A
thread can contain an infinite loop with at least one wait() function call.

Clocked Thread: Clocked threads are a special case of Threads sensitive only to the
clock signal. Clocked threads are useful for hardware synthesis and current synthesis
tools support only clocked thread processes.

2.1.2 Ports and Signals
Ports provide the external interfaces to modules and pass information between them.
They are similar in function to VHDL and Verilog input/output ports. There are three
types of ports – input, output and bi-directional ports, depending on the direction of data
flow.

 8

Just the way signals are used to interconnect ports in VHDL signals are also used in
SystemC to interconnect ports. Signals transfer data from one port to another. Ports and
Signals can be of any data type supported by SystemC.

When a port is read, the value of the signal the port is connected to is returned. When a
port is written, the value of the signal the port is connected to is updated. When a port is
written, the signal value is not updated immediately, however, but at the end of the
simulation cycle. This ensures that all the processes see the same value of the signal
within a simulation cycle.

2.1.3 Data Types
As SystemC is based on C++, it supports all the native data types of the C++ language,
such as integer, float, and char. Pointers can be used in high-level models and for
simulation, but cannot be synthesized with the current synthesis tools. SystemC also has
some additional data types for modeling logic and hardware, such as sc_bit and sc_logic.
Sc_bit is a 2-valued data type and sc_logic is a four valued (0,1,X,Z) data type. SystemC
also has fixed-precision signed and unsigned integer data types where the user can
specify the number of bits used to represent a number. SystemC also provides signed and
unsigned fixed-point data types that can be used to accurately model DSP systems.

2.2 SystemC Simulation Kernel
SystemC designs can be compiled using any ANSI C++ compiler. SystemC has a built in
cycle-based simulation kernel to simulate the designs. The resulting executable
specification realizes the model and the simulation kernel. The complete simulation
kernel is built into the class library and needs no external tools for simulation of the
model. The source code for the kernel and the library is available with the distribution of
the SystemC platform, from [�2]. Wolfgang Muller, et al, have published a rigorous
description and semantics of the SystemC simulation kernel [�16].

Each one of the user-defined processes is executed independently of the others and also
the kernel. Simulation begins with a call to the function sc_start(). At the start of the
simulation all the processes are initialized and scheduled for execution. All of the
processes get a chance to execute in every simulation cycle. The order of execution is not
defined. Any changes in the signal values are not immediately updated. Signals are
assigned new values only in the next simulation cycle. This makes the simulation cycle
accurate. A process that is executing or is scheduled to be executed is in an active state.
An active process goes into a suspended state after it completes its operation or reaches a
wait statement. Once all the processes are in a suspended state, the kernel then updates
the signals, advances simulation time and enters into the next simulation cycle. The
simulation cycle is illustrated in Figure 3 (adopted from [�16]).

 9

Figure 3 SystemC simulation cycle.

At the start of the simulation, the module initialization or the test bench generates the
initial events. These events then trigger processes (Figure 4). Any processes that were
activated are then executed. Clocked threads, referred to as Cthreads, are sensitive only to
the clock signal and are scheduled to be executed in the future. Once all the processes
have been executed, then the signals are updated. The updating of signals may cause new
events, which may trigger other processes. The triggered processes are then executed,
which may in turn trigger other processes. This cycle continues until there are no events
triggering any of the processes or all the processes have been executed. Once all the
processes are in the suspended state and there are no events, then the CThreads are
executed. After execution of the Cthreads, simulation time is advanced and the clock and
all the signals are updated. This completes one simulation cycle. This cycle is then
repeated until simulation comes to an end or is stopped.

Start of simulation

Initialization

Scheduling

Process 1 Process n Kernel Process

All process suspended
End of

Simulation

 10

Figure 4 SystemC simulation flow.

SystemC is based on a C++ class library; therefore, theoretically it is possible to port the
SystemC library to any embedded processor. By doing so, there would be no need for
software synthesis. However, this step is neither feasible nor practical. The SystemC
kernel carries with it a large overhead and performance penalty, which would be
unacceptable in embedded applications. Since the kernel is designed for cycle-accurate
simulation, it has large latency and will not meet the strict timing requirements of
embedded systems. Also, the SystemC library is currently available only on Windows,
Solaris and Linux OS platforms. The library depends on an operating system to provide
certain functionalities. To execute a SystemC model on an embedded system would
require the embedded system have an OS. The OS comes with its own overhead in terms
of memory and computational load, which again may not be acceptable in some
embedded applications. Hence, it is not viable to simply port the complete SystemC
library and simulation kernel over to the embedded processor. One needs to be able to
execute the SystemC models without the overhead of the cycle accurate simulation
kernel.

Generate Events

Execute Processes

Schedule CThreads

Update Signals Check Events Execute CThreads

Advance Time

Update Clocks

events
No events

 11

3 GSM Speech Processing

To effectively study the software synthesis process and to come up with process, method
and design guidelines, we need a complex real world system. The system must have
modules, which can be modeled as processes. The modules should have interactions
among themselves and affect behavior of each other. Finally, the computational load
should be large enough that we would have to partition the system into hardware and
software for optimum performance.

The Global System for Mobile telecommunications (GSM) is a digital cellular
communications standard [�17][�18]. It was originally developed in Europe to create a
common European mobile telephone standard, but it has been rapidly accepted
worldwide. GSM speech processing is a complex and computationally heavy system. It
consists of various well-defined processing steps, some of which are mathematically
intensive and operate on integer values. Other processing steps are algorithmically
complex and process data in bits. Hence, we find that GSM speech processing is an ideal
candidate for our work.

The steps involved in GSM speech processing and transmission are illustrated in the
figure below (Figure 5). Each of the steps involved is briefly explained in the following
paragraphs.

Figure 5 GSM speech processing.

Channel De-coding

Voice

D/A conversion

Speech de-coding

De-Interleaving

Decryption

Packet Disassembling

Differential Decoding

De-modulation

Channel Coding

Voice

A/D conversion

Speech Coding

Interleaving

Encryption

Packet Formatting

Differential Encoding

Modulation

Transmission

 12

3.1 Speech Encoder
The speech codec used in GSM is RPE-LTP (Regular Pulse Excitation-Long Term
Prediction). The codec models the human vocal tract using two filters and an initial
excitation. It transmits the parameters necessary to model the vocal tract and to recreate
the speech at the other end. The speech encoder takes in 20ms of speech as input. Speech
is sampled at 8 KHz giving total of 160 signed 13 bit PCM samples in each 20ms
segment. The encoder then compresses the 160 samples into one frame of 260 bits. The
speech encoder outputs data at the rate of 13kbps (260bits / 20ms).

3.2 Channel Encoding
Channel coding is performed to detect and, if possible, correct errors that occurred during
the transmission. It adds redundancy bits to the original information in order to detect
and correct errors. GSM uses both a block code (parity encoding) and a convolutional
code. The coding differs for the data, speech and control channels. Since we are only
modeling the speech channel of the GSM system, speech channel encoding is described
in the following paragraph. More information regarding channel coding can found in
[�14].

The 260 bits of a GSM speech frame are divided into three different classes according to
their function and importance. The most important class is the class Ia, containing 50 bits.
Next in importance is the class Ib, which contains 132 bits. The least important is the
class II, which contains the remaining 78 bits. The different classes are coded differently.
First of all, the class Ia bits are block-coded (parity encoding). Three parity bits, used for
error detection, are added to the 50 class Ia bits. The resultant 53 bits are added to the
class Ib bits. Four zero bits are added to this block of 185 bits (50+3+132). A
convolutional code, with r = 1/2 and K = 5, is then applied, obtaining an output block of
378 bits. The class II bits are then added, without any protection. An output block of 456
bits is finally obtained.

3.3 Interleaving
Interleaving is used to obtain time diversity in a digital communications system without
adding any overhead. The interleaving decreases the possibility of losing whole bursts
during the transmission. The interleaving scheme used for the speech channel is
described in the following paragraph.

The total of 456 bits from the convolutional encoder, which constitutes 20ms of speech,
is subdivided into eight blocks of 57 bits each. These eight blocks are then transmitted in
consecutive time slots. If one of the blocks is lost due to burst errors, the other 7 blocks
would contain enough information so that whole segment can be recovered using error
correction. Each time slot carries two 57-bit sub-blocks of data from two different 20ms
speech segments. This is illustrated in the figure below (Figure 6).

 13

Figure 6 Speech packet interleaving.

3.4 Encryption
To provide privacy and prevent unauthorized network access, the eight blocks of
interleaved data are encrypted before burst formatting and transmission. Two types of
ciphering algorithms are used in GSM, which are referred to as the A3 and A5
algorithms. These algorithms are not published for security reasons. For our work, we
needed the computational load and complexity, but not the algorithmic details. Using
some information from the Internet [�10][�11] and textbooks on algorithms [�12],
Anup Varma [�8] implemented an approximation of the algorithms. This
implementation simulates the computational load of encrypting and decrypting the data,
which is sufficient for our work.

3.5 Packet Formatting
The encrypted data is placed into a packet (also referred to as a frame), which contains
additional information for synchronization, equalization and control signals. The
structure of the packet is shown below (Figure 7).

Figure 7 Speech packet format.

3.6 Differential Encoder
To demodulate a transmitted signal, a receiver needs to be synchronized with the
transmitter's clock or carrier wave. This is usually accomplished by transmitting the
carrier signal along with the modulated signal. Before the packet is transmitted, the
binary stream is differentially encoded. Differential encoding of data removes the need
for transmitting the carrier, as the data is encoded not in the phase of the carrier but in the

3 Start
Bits

57 bits of
speech data

26 training
Bits

57 bits of
speech data

1 stealing
flag

1 stealing
flag

3 Stop
Bits

8.25 guard
bits

1
5 8

43
7 5

1 2
6 7

3
6
2 4

8

speech sample n-1

speech sample n

speech sample n + 1

Time slots

 14

phase changes. The differential encoder output is the XNOR of the present bit and the
past bit.

3.7 Transmission
Once the bit stream is differentially encoded, it is ready for transmission. The modulation
scheme used by GSM is Gaussian Minimal Shift Keying (GMSK). GMSK is a type of
digital FM modulation, where the modulated signal is passed through a Gaussian filter to
smooth the rapid changes in frequency. Rapid changes in frequency would tend to spread
the energy of the modulated signal, thereby increasing the bandwidth. Therefore, passing
the signal through a filter minimizes the bandwidth.

GSM uses two bands of 25 MHz, for transmission and reception.

• 890-915 MHz band is used for subscriber-to-base transmissions
• 935-960 MHz band is used for base-to-subscriber transmissions.

 15

4 SystemC Model of GSM Speech Processing
A detailed description and tutorial of SystemC modeling is available in [13]. Anup
Varma has developed a SystemC model of the GSM speech processing for his master’s
thesis [8].

Speech is processed in 20ms segments. Data flow is linear from the first stage to the last
stage. Within stages, however, there are some feedback loops and buffering is needed.
The packet size varies as the data moves from one stage to another. Since any of the
stages could be implemented in hardware or software, the interface between the stages
had to be standardized. All the modules had a well-defined interface and architecture.

Figure 8 SystemC model of GSM speech processing.

Figure 8 shows the various modules in the SystemC model and the data flow among the
modules. The file reader module acts as a data source for the speech encoder. It reads in
20ms of speech data and transfers it to the speech encoder. The speech encoder processes
the data and transfers it down the chain to the next module, the channel encoder. The data
is processed and moves down the chain from the channel encoder to the interleaver, the
encryption module, the packet-formatting module, and finally, the differential encoder
module. In the real systems, the output of the differential encoder goes to a modulator
where it is modulated using the RF carrier frequency for transmission. In the SystemC
model, the output of the differential encoder is fed into a channel module. The channel
module adds random bit and burst errors to the bit stream, simulating the errors in signal
transmission and reception.

On the receiving side, the differential decoder gets the bit stream from the channel
module. This bit stream contains the random errors introduced by the channel. The
differential module processes the data and moves it up the chain to the packet

Channel De-coder

File Writer

Speech de-coder

De-Interleaver

Decryption

Packet Disassembler

Differential Decoder

Channel Coder

File Reader

Speech Coder

Interleaver

Encryption

Packet Formatting

Differential Encoder Channel

 16

disassembler. Data moves up the chain from the packet disassembler to the decryption
module, the channel decoder and the speech decoder. The output of the speech decoder is
an audio stream. The file writer module accepts the audio stream and writes it to a file for
later playback.

4.1 Module Architecture
The main data flow in GSM speech processing is linear. Each module has to get data
from the previous module, process the data, and then provide data to the next module in
the chain. To make the models compatible with hardware/software partitioning, the core
data processing and the data input/output functions were separated and implemented in
separate sub-modules, as illustrated in Figure 9. All of the modules operate
synchronously to a global clock. All the data transfer and signals are also synchronous to
the clock.

Figure 9 Module architecture.

The input, output, and processing sub-sections are implemented in separate processes
within a module. This allows for concurrent execution of the subsections, leading to
optimized performance. The processes communicate with each other using signals. The
input sub-section writes the input data into an input buffer. The data processing sub-
section operates on the data in the input buffer and writes the output into an output buffer.
The output sub-section reads the data from the output buffer and transfers it to the next
module.

Data Processing

Input

Output

 17

4.2 Handshake Signals
A simple handshake protocol ensures reliable data transfer between the modules. The
handshake protocol signals are described below. (Figure 10)

Figure 10 Module architecture.

• DOA (DataOut_Available): Output signal. Data is available for the next module.

Asserted by the sending module.
• RTR (Ready_To_Receive): Output signal from the receiving module. Indicates

module is ready to receive data.
• DIA (DataIn_Available): Input signal. Data is available to be received, asserted

by the sender.
• RAK (Receive_AcKnowledge): Output signal. Acknowledgement from the

receiver.
• RTS (Request_To_Send): Input signal. Receiving module is ready to receive data
• RAR (Recieve_Ack_Received): Input Signal. The acknowledgement from the

receiving module indicating that it received data.
• DAI (Data In): Input data to the module.
• DAO (Data Out): Output data from the module.

Once a module is ready to receive more data, it asserts the RTR signal. The receiver
module then waits until the DIA signal is asserted and begins to read the data in. The
receiver acknowledges each data transfer across the bus (DAI) by asserting the RAK
signal.

On the sending side, the sender waits until the receiver asserts the RTS signal. Once it
sees RTS asserted, the sender asserts the DOA signal and writes out the data onto the
DAO bus. The sender then waits for the acknowledgement RAR before writing the next
data on to the bus.

The code for an input process is shown below. The input process is the same for all of the
modules as it is a well-defined common interface. The data transfer is synchronous with
handshake signals for acknowledgment. Data is transferred using a bus and the width of
the bus is 16bits. This code snippet only shows the synchronization and handshake
sections of the code. The code is taken from the interleaver encoder module.

RTS

DAO

RAR

DOA DIA

DAI

RTR

RAK

Module N Module N+1 Module N-1

RTS

DAO

RAR

DOADIA

DAI

RTR

RAK

RTS

DAO

RAR

DOA DIA

DAI

RTR

RAK

 18

void inter_encoder::input()
{
 input_reset();
 wait();
 while(true)
 {

wait();

 // read input data from the bus
 for(int i=0;i<IE_MEMORY_SIZE;++i)

{
 wait();
 //ready to accept the next word from the bus.
 I_GOT_YOUR_BIT.write(false); //signal RAK
 READY_TO_RECV.write(true); //signal RTR

//wait till data is written to the bus
 wait_until(DATAIN_AVAIL.delayed() == true); //Signal DIA

 word_input_data[i] = DATAIN.read(); //read from bus DAI

 wait();
 //acknowledge the data
 I_GOT_YOUR_BIT.write(true); //signal RAK
 READY_TO_RECV.write(false); //signal RTR
 wait_until(DATAIN_AVAIL.delayed() == false); //signal DIA
 wait();
 }
 wait();

 //complete data segment has been read from the previous module
…
 }
}

The code for the data processing process of a module is shown below. The code snippet
shows only the handshake and synchronization sections. Again, the code is taken from
the interleaver module.

void inter_encoder::process_data()
{
//process reset signal
process_data_reset();
 wait();
 while(true)
 {

 19

 processing_started.write(false);
 wait();

//wait till the input process has read the data segment
wait_until(input_data_ready.delayed() == true) ;

 processing_started.write(true);

 //data processing code goes here

 wait();
 //indicate to the output process that data is ready
 input_data_processed.write(true);
 output_data_ready.write(true);
 input_ack_received.write(false);
 output_ack_received.write(false);

 wait();
 //wait for an ack from the output process.
 wait_until(input_ack.delayed() == true);
 input_data_processed.write(false);
 input_ack_received.write(true);

 wait_until(output_ack.delayed() == true);
 output_data_ready.write(false);
 output_ack_received.write(true);
 wait();
 }
}

The code for the output process is shown below. Again, only the handshake and
synchronization sections are shown.

void inter_encoder::output()
{
 output_reset();
 wait();
 while(true)
 {
 wait();

// send output data

 for(int i=0;i<IE_OUTPUT_SIZE;++i)
 {
 wait();

//wait until receiver is ready

 20

wait_until(READY_TO_SEND.delayed() == true); //signal RTS
 DATAOUT_AVAIL.write(true); //signal DOA
 DATAOUT.write(word_interleaved_data[i]); //write to bus DAO
 wait();

 //wait for an ack.
 wait_until(YOU_GOT_MY_BIT.delayed() == true);//signal RAR
 DATAOUT_AVAIL.write(false); //singal DOA
 wait();
 }
 wait();

 output_ack.write(true);
 wait_until(output_ack_received.delayed() == true);
 output_ack.write(false);
 wait();

 }
}

 21

5 Embedded Processor
For our study we chose the StarCore SC140 processor [15] as the embedded processor in
our SOC design. StarCore is an alliance between Motorola Semiconductor Products
Sector and Agere Systems for the purpose of developing DSP core technology. The
StarCore processor is targeted towards the communication market, and its architecture is
well suited for mobile handsets. One of the most important considerations was that the
StarCore is available as an IP core. Availability of StarCore DSP IP cores enables
designers to build their SOC systems around the processor. We also had a development
platform with a compiler and an instruction set simulator for the processor, which
enabled us to compile and run our code to get timing measurements. For the above-
mentioned reasons, the StarCore SC140 was chosen as our target embedded processor.

5.1 Computational Load of the Modules
To perform and study hardware-software partition tradeoffs, we need a measure of cost of
implementation in hardware and software. In addition to the cost of implementation, we
had to ensure that all the timing requirements were met. The measure of the cost of
implementation in hardware was chosen to be the number of clock periods needed to
perform the computation. The measure of the cost of implementation in software was
chosen to be the number of processor clock cycles required to perform the computation.
To simplify the calculations the hardware cost measurements were made at the same
clock frequency as that of the processor.

To get the timing measurements on the embedded processor, each module was manually
ported to run on the StarCore processor. Necessary changes in code were made to comply
with the requirements of StarCore C compiler. Each module was run independently and
the number of clock cycles required to process one block of data was recorded. The
recorded values are shown below. The processor was running at 300 MHz.

 22

Table 1 Execution time of the modules running on embedded processor.

Index Module M/c Cycles Execution Time (ms)

1 A/D Converter 20.0000
2 Speech Encoder 1251510 4.1717
3 Parity encoder 12509 0.0417
4 Convolution. Encoder 71527 0.2384
5 Interleaving Encoder 105970 0.3532
6 Packet Encoder 6774 0.0226
7 A5 Encoder 43840 0.1461
8 Differential Encoder 9188 0.0306

9 Speech Decoder 488376 1.6279
10 Parity Decoder 12428 0.0414
11 Convolution Decoder 13387103 44.6237
12 Interleaving Decoder 97210 0.3240
13 Packet Decoder 4633 0.0154
14 A5 Decoder 42699 0.1423
15 Differential Decoder 8453 0.0282

 23

6 Software Synthesis

If a C++ compiler is available for the embedded processor, then we could use the
inheritance feature of the C++ language to arrive at an organization of the modules which
lends itself to both hardware and software synthesis. We could encapsulate the core data
processing in a base class. This base class would do all the data processing using
synthesizable C language constructs. To simulate and synthesize it, we would derive the
SystemC class from the base class. The SystemC class would provide all the necessary
constructs for simulation and communication between modules. To implement it in
software, we would derive a C++ class from the base class (Figure 11). This class would
then take on the responsibility of creating threads, communication and synchronization
with other modules and registering it with the scheduler.

Figure 11 Inheritance diagram for the module organization.

Unfortunately, there is no C++ compiler for the chosen target embedded processor, the
StarCore SC140. Infact there are very few C++ compilers for embedded processors. For
this reason we had to come up with a different solution which only needs a C compiler. A
software implementation that mimics the organization and architecture of the high-level
SystemC model would be most easy and least time-consuming to implement as
embedded software. Since SystemC is based on a C++ class library, it is possible to port
the high-level model directly into software, including the simulation kernel. But, such a
design would be very inefficient and would have the large overhead of the cycle accurate
simulation kernel. Instead of porting the complete SystemC kernel, it is possible to
execute SystemC models as software using a simplified scheduler. This scheduler can be
easily implemented in C. A simplified scheduler would be lightweight and have much
less overhead than the SystemC kernel.

Current day hardware synthesis tools for SystemC support only CThreads. Hence, any
design that aims to be compatible with both hardware and software implementations has
to use only CThreads. CThreads are processes that are sensitive only to clock signals. So,
to execute a design based only on Cthreads, one needs a simple scheduler that schedules

Base class
Data processing

Derived Class
Using SystemC constructs

Derived Class
Using C++

 24

all the active processes at every cycle. The simplified scheduler operation is illustrated in
Figure 12.

Figure 12 Scheduler for the software implementation

A simplified scheduler executes all the active threads. Any changes in the signal values
are not immediately updated. Once all the threads in the present simulation cycle have
had a chance to execute, the scheduler then updates the signals. This ensures that all the
modules that read a certain signal see the same signal value in a given cycle. After
updating the signals, the scheduler activates any threads that were waiting and are now
ready to run. The scheduler then executes all the active threads, repeating the cycle.

The order of execution of the CThreads is not specified, which is also the case in a
SystemC simulation. Once a CThread suspends, it is guaranteed that all the other
CThreads get a chance to execute before the CThread is executed again. Since all the
signal values are updated at the end of the cycle, this process ensures that all the
CThreads read the same signal value in a given cycle. It also ensures that signal values
are updated before the CThread is rescheduled. This leads to a direct analogy between the
cycle of the scheduler and the hardware clock cycle of the SystemC simulation, although
there is no concept of clock period and no guarantee that all the cycles take same amount
of time to execute. This mechanism does ensure that any model that simulated correctly
will execute correctly on the embedded software.

In summary, a scheduler that schedules CThread processes and updates signals can
execute a SystemC model on the embedded processor. To implement SystemC models as
embedded software, one has to implement a rudimentary scheduler along with support for
software signals. Using this scheduler, one can port the SystemC models to embedded
software with little or no modifications.

Initialize

Execute Active
CThreads

Update Signals

Activate any
waiting CThreads.

 25

6.1 Scheduler
Craig Dry from Motorola has written and released a free scheduler, the Motorola 8101
Real-time Preemptive Scheduler (RPS). This scheduler formed the basis for our CThread
scheduler. The original scheduler was extensively modified and extra features added to
support threads and signals.

The scheduler initialization and thread creation functions are explained below.

SchedInit(int stacksize)
This function call initializes the scheduler. This should be called once at the beginning of
the program. The argument stacksize is the size of the stack for the scheduler. The
stack size is in bytes.
Example:
SchedInit(8000);

SchedStart()
A call to this function starts the scheduler. Before calling this function, the scheduler
should be initialized and the threads created. Any mapping of ports and signals should
also be completed. (Ports and signals explained in the next section).

6.2 Software Implementation of Ports and Signals
Modules in SystemC exchange data and control information using ports and signals
connected to the ports. The port and signals were implemented as structures in the
embedded software.

The signal structure is shown below.

//signal structure
typedef struct signal_struct {

struct signal_struct *next; //next signal in list
int numBytes; //size of signal type
int updateFlag; //whether signal has been

//updated or not
void *current_val; //current value of signal
void *next_val; //next value of signal

} Signal;

The scheduler stores all the signals in a linked list. The field next stores the pointer to
the next signal in the linked list. The field numBytes defines the length of the signal in
bytes. If one wants a 32-bit bus between two modules, then one has to create a signal
with a length of 4 bytes. The signal structure stores both the current value of the signal
and the next value of the signal. When a port connected to a signal is read, then the data
pointed to by current_val, the current value of the signal, is returned. Whenever a
signal is written to, the new value is stored in the location pointed to by next_val.
Only when the scheduler updates the signal, is the new value copied into the current

 26

value location. Since signals are all updated at the end of a cycle after all the active
threads have been executed, all the threads see the same value of the signal during a
simulation cycle. This ensures that model will work correctly without specifying any
order of execution of the threads.

The updateFlag is used to optimize the process of updating the signals. Only those
values that have been written in the present cycle will have the flag set. If the flag is set
then the signal values are updated by copying the next value into current value.

To create a signal, one has to call the CreateSignal() function with the size of the
signal in bytes. The smallest signal that can be created is one byte. As this is not
hardware simulation, there is no overhead associated with the extra bits. The function
returns a pointer to the signal structure.

Example:
pointer_to_signal = CreateSignal(size);

The port structure contains a pointer to the signal to which it is connected. The same port
type is used for both input and output.

typedef struct port_struct {

Signal *signal; // signal connected to port
} Port;

A port has to be connected to a signal before it can be read or written. A code sample to
connect a port to a signal is shown below.

//declare a Port and signal.
Port portA;
Signal *sigA;

//Create a signal with length of 1 Byte.
sigA = CreateSignal(1);

// connect the signals to the ports
ConnectPortToSignal(&portA, sigA);

Once the port is connected to a signal, it can be read and written. To read a port, the
function portRead()is called. The function accepts two arguments; one is a pointer to
the port. The other parameter is a pointer to the location where the read value is to be
stored. Care should be taken that enough memory has been allocated to hold the complete
signal.

portRead(struct port, char* ptr);

Code example:

 27

//read portA and store the read value into location pointed
//to by data.
portRead(&portA, data);

To write to a port, the function portWrite() is called. The function accepts two arguments,
a pointer to the port and a pointer to data that is to be written to the port. The size of the
data to be written to the port should match the size of the signal connected to the port.

portWrite(struct port, char* data);

Code example:
//Write data present at the location pointed to by the data
into the port portA.
portWrite(&portA, data);

6.3 Software Implementation of Clocked Threads
In the SystemC specification, clocked threads execute independently and concurrently.
To get the independent and concurrent execution in software, each clocked thread has to
be implemented as a thread. One has to create a thread for every clocked thread process
in SystemC and connect the modules using software signals. Any communication
between the threads has to be through the use of signals.

To create and register a thread with the scheduler, the function call createThread()
has to be called.

extern void createThread(int stackSize,void(*entryPoint)()
)
This function call registers a new thread with the scheduler. It allocates memory space for
the stack used by the thread. The amount of memory is determined by the first argument
stackSize, which is in bytes. The second argument, entryPoint, is a pointer to
the function that is called every time this thread is to be executed. The function is
analogous to the processes in SystemC. This function takes no arguments and returns no
value. Just like in the SystemC CThread process, the function should contain an infinite
loop with at least one call to function wait() or wait_until() to suspend the
thread. It is necessary to suspend the thread within the infinite loop so that other threads
get a chance to execute.

extern void wait()
This function does not take any arguments. When the function is called, control is
returned to the scheduler and the thread is put into a suspended state. The thread will be
rescheduled for execution in the next cycle. Execution will continue from the next line
after the call to wait().

extern void wait_until(int (*wait_fn) ())

 28

This function suspends the thread until a specified condition is true. It takes one
argument, a pointer to a function. If the thread is suspended and waiting on a signal or
condition, then this function is called at the beginning of every cycle to determine if the
thread is to be scheduled or not. If the function passed as a parameter returns 1, then the
thread is scheduled. If the function returns 0, then the thread is not scheduled.

This function can be used to wait on a signal. For example to wait on a signal ready,
one has to write a function that reads the port connected to the signal ready and returns 1
if ready is asserted and 0 otherwise.

//code snippet to illustrate the use of wait_until()
//function to wait on a signal

Port ReadyIn; //port to which the ready signal is
//connected

//this function is called whenever a thread is waiting on
//the port ReadyIn.
int ready()
{

int val;
portRead(&ReadyIn, &val);
return val;

}

//inside the thread
threadA()
{

…
wait_until(&ready); //wait until signal ready is

asserted.
…

}

 29

6.4 GSM Model
The SystemC implementation of the GSM speech processing has already been discussed in the
previous chapter. The handshake signals between modules and the module architecture were

described. In the software implementation of the GSM model, the core processing functions were left
untouched. The handshake signals, however, were optimized for speed. The interface between the

modules is shown below in

Figure 13.

Figure 13 Handshake signals in software implementation.

When a module has data to send, it asserts the output signal ReadyO and writes the data
on to the output bus DataO. It then waits on the signal AckI, which is an
acknowledgement from the receiving module, before proceeding. Once it receives the
acknowledgement, the sending module un-asserts the ready signal and waits until
acknowledgement from the receiving module is un-asserted. A simple state diagram to
illustrate the handshake is shown in the Figure 14.

Figure 14 Handshake process on sending side.

Process
Data

Write Data
ReadyO == 1

WaitUntil
AckI == 1

ReadyO == 0

WaitUntil
AckI == 0

Ready to Send

Module N Module N+1 Module N-1

ReadyO

DataO

AckI

ReadyI

DataI

AckO

 ReadyO

DataO

AckI

ReadyI

DataI

AckO

 ReadyO

DataO

AckI

ReadyI

DataI

AckO

 30

On the receiving side, the receiver waits on the input signal ReadyI. Once this signal is
asserted, the receiving module reads the data of the input bus DataI. After reading the
data from the bus, it sends an acknowledgement back to sending module by asserting the
signal AckO. It then waits until the sending module un-asserts its ready signal before
proceeding to process the data. This handshake scheme ensures that sending module does
not overwrite the data before a receiver has read the data and also ensures the receiver
does not read same data twice. A simple state diagram to illustrate the handshake is
shown in the Figure 15.

Figure 15 Handshake process on the receiving side.

The following code snippet further illustrates the use of signals to perform handshakes
and synchronization. The code snippet is from the interleaving encoder module. This
module receives data from the channel encoder module and sends data to the encryption
module.

//a module shall declare only output signals..
Signal *interAck;
Signal *interReady;
Signal *interData;

Port interAckOut;
Port interReadyOut;
Port interReadyIn;
Port interAckIn;
Port interDataIn;
Port interDataOut;
..
..
//This is the function which is registered with the
//scheduler.
void interProcess()
{

Process
Data

WaitUnitl
ReadyI == 1

Read Data
AckO == 1

WaitUntil
Ready1 == 0

AckI == 0

Ready to Receive

 31

int i;

//indicate that output data is not ready
intPortWrite(&interReadyOut,0);

wait(); //make sure other thread sees write

//processing 4 segments only for example
for(i=0;i<4;++i)
{

//wait until the data is ready
wait_until(&waitOninterReadyIn);

//acknowledge ready signal
intPortWrite(&interAckOut,1);

//Read data (bit array) from the input port
portRead(&interDataIn, inter_input_data);

//wait till the sender sees ACK = 1;
wait_until(&waitOninterReadyIn0);

//acknowledge data transfer
intPortWrite(&interAckOut,0);

//process data here
inter_enc_process_data();

//write out bit array
portWrite(&interDataOut, interleaved_data);

//indicate that output data is ready
intPortWrite(&interReadyOut,1);

// wait for Ack = 1 so we know other thread has
//seen

wait_until(&waitOninterAckIn);
intPortWrite(&interReadyOut,0);

// wait for Ack = 0 so we know that data has been
//copied
wait_until(&waitOninterAckIn0);

}
}

 32

In the code snippet, the function call wait_until() takes an argument which is a pointer to
a function. The return value of the function determines if the thread will be moved from
the suspended state to the active state by the scheduler. The code sample below illustrates
the use of the wait_until() function call to wait on a signal interAckIn, with the use of
function waitOnIinterAckIn().

// wait for Ack = 1
wait_until(&waitOnInterAckIn);

The function call waitOnInterAckIn() reads the port and returns the value of the signal
connected to the port. The code snippet for the function is shown below.

//functions for the scheduler to wait on.
int waitOninterAckIn()
{

int val;
portRead(&interAckIn, &val);
return val;

}

6.5 Modeling Guidelines
Before delving into the architecture and modeling guidelines, a brief description of some
compatibility issues is presented below.

Features in SystemC that cannot be used in software implementations:

• Primitives: sc_method, sc_thread, processes sensitive to signals other than
clock.

• Data Types: sc_int, sc_uint etc.

Features in the C language that cannot be used in synthesizable SystemC models:

• Pointers.
• Floating point data types.

Features in the C language that cannot be used in SystemC model for simulation:

• SystemC is a library of C++ classes to model hardware, and C++ is a superset
of the C language. Hence, one should theoretically be able to use all the
language constructs of C.

6.6 Suggested Organization
The current architecture of the modules is shown below in Figure 16. The input and
output sections exist primarily to convert data from a word array to a bit array. The
processing section contains all the functionality needed for processing the data. The
processing section is primarily composed of C code and is encapsulated into a single C
function call. Input data is copied into an input buffer and the function associated with

 33

processing the data is called. Upon completing its task, the function writes the output into
an output buffer. The module has various handshake and data signals going to other
modules, which have been implemented using SystemC constructs.

Figure 16 Current Architecture of the SystemC model of GSM speech processing.

The hardware synthesis tools and the software synthesis process are both compatible with
restricted C code. The major part of the work in porting the GSM model to either
hardware or software would involve porting various algorithms and data processing steps.
Thus, if all the data processing within a module is encapsulated into a single C function
or a few functions, then the design would lend itself well for both hardware and software
synthesis. Another advantage of using native C code and data types for processing is that
it decreases simulation time under SystemC. SystemC data types such as sc_int have
overhead associated with them.

The control and communication aspects of the models should be implemented using
SystemC signals and ports (Figure 17). But, all the modules should be restricted to using
only Cthreads, as both the hardware tools and the software scheduler are not compatible
with any of the other SystemC processes. Any changes made to the system will affect
only the processing section that is implemented using the restricted C language (without
pointers and float data types). This section is common to all the implementations of the
model; i.e., abstract, hardware and software. Hence, any algorithmic or processing
changes in the system get automatically updated in both the hardware and software
implementation.

Input

Output

Processing

Typical Moduled

 34

Figure 17 Hardware/software compatible module architecture..

Each of the modules should be coded in a separate file. All the variables and buffers used
for data processing should not be declared as member variables of the SystemC class. In
this way, the variable will be accessible to all the functions within a module and un-
accessible from outside the module. Any communication or exchange of data between the
modules should be restricted to using ports and signals. This will ensure that the software
version of the model will function as intended.

The control section handles all the handshake signals and data transfers. This will make it
easier to port the modules at the boundary of the hardware and software partition. At the
boundaries, the software modules running on the embedded processor have to interact
with the hardware modules implemented as ASIC logic. This will usually involve the
implementation of specific driver software to interact with the hardware. Thus, having a
processing section separate from the control section isolates the data processing
algorithms from the hardware interface details.

Figure 18 Model implementation flow.

In summary, a SystemC model following the above guidelines will be compatible with
hardware synthesis tools and lend itself to embedded software implementation (Figure
18). Hardware synthesis requires little or no changes to the model. For software

Control:

Implement
using

SystemC

Control:

Implement
using

SystemC

Processing:
Implemented

in C

High-level Module

Synthesizable SytemC Model
Little or no modification.

High-level Abstract Model
Simulation and verification.

Software Model
Implemented using scheduler
and software signals and port.

 35

synthesis, the modules have to be altered to make them compatible with the software. The
amount of changes required is minimal and restricted to the handshake signals and
control sections. Most of the alterations relate to changing from C++ syntax to C syntax
and function calls.

7 Results
A software tool was developed by Pradeep Adhipathi [22] to partition a high-level model
into hardware and software. Input to the tool is a representation of the model as a directed
graph. The nodes of the graph represent the modules and the arcs represent signals
between the modules. The tool also accepts timing restrictions and activation rates of the
processes to arrive at the partition. The GSM speech-processing model was partitioned
using the software tool. The resulting partition placed the speech encoder in hardware and
the rest of the modules in software. The modules that were to be implemented in software
were then ported to run as embedded software using the scheduler.

To evaluate and compare the performance of the embedded software implementation of
GSM speech processing derived from the SystemC model, we need a reference
implementation. GSM speech processing implemented in purely C from scratch is an
ideal reference platform. Therefore, all the modules in the GSM speech processing that
were to be implemented in software were ported to C manually. This implementation was
a pure software implementation without a scheduler or signals. The model was executed
for 4 speech segments and the timing was measured. Most of the modules processed
information in bits. Hence, each bit had to be stored in a native C data type (ex. integer or
character). To study the trade-offs of using character versus integer data types to store the
bits, two models were implemented. The first model used the integer data type to
represent each bit and the second model used the character data type to represent each bit.
The time taken by each module to execute 4 speech segments is given in the table below.

 Table 2 Execution times for the pure software implementation.

Processing time for 4 speech segments.

Implementation Machine Cycles Instructions Time (ms)
Pure software implementation using
integers

1432757 947573 4.77

Pure software implementation using
character.

1363869 892544 4.54

The software implemented with the character data type is faster than integer data type by
4.8%. Hence, the character data type implementation was used as the reference design
and the SystemC derived models were evaluated against it.

In the SystemC model of the GSM speech processing, the modules processed the data in
bit format (all modules except the speech encoder). The data was transferred from one
module to another using a 16-bit bus. Thus, the data, which is a bit stream, was converted
into a word array and transferred across to another module where it was converted back

 36

into a bit stream before processing. In the software implementation the bits were stored
using native data types such as integers or character, so one integer variable stores one
bit. To transfer the data from one module to another in software, one could just transfer
the bit array or convert the bit array into a word array and transfer the word array. This
transfer would involve using the software signals and handshakes between the modules
for reliable transmission. To compare the transfer methods, a part of the speech
processing chain was implemented using both of the transfer methods. The parity encoder
and the convolution encoder modules were implemented using both bit array transfers
and word array transfers. The execution time for both implementations was measured and
compared with the pure software implementation. The results for processing four speech
segments are shown in the table below.

Table 3 Comparison of bit array and word array transfer models execution times.

Implementation Number of
Machine Cycles

Number of
Instructions

Time (ms)

Bit array transfer 164,161 111,262 0.54
Word array transfer 486,606 312,072 1.62
Software Model 124,906 83,212 0.41

0

100,000

200,000

300,000

400,000

500,000

M/c Cyles Instructions

Bit Array
Word Array
Software

Overhead for WORD transfer model:
Computation load for 4 speech segments: 3.8 times software version
Overhead: 289% the computation for software version

Overhead for BIT ARRAY transfer model
Computation load for 4 speech segments: 1.31 times software version.
Overhead: 31% the computation for software version

The large overhead in word transfer model was primarily due to the computational load
of converting the bit array into a word array and vice versa. It is clear that any

 37

implementation in software cannot use the word transfer model of the speech processing.
Therefore, it was decided that the embedded software version would be implemented
using bit arrays. The reference software model uses char arrays for storing bits and it was
faster than the integer array model. Therefore, it was decided to store the bit array in a
char data type for the SystemC derived software model to maintain consistency across the
models.

The complete speech encoding chain, from parity encoding to differential encoding, was
implemented in embedded software using the scheduler and software signals. The
implementation was tested using the same speech samples that were used for testing the
SystemC model. The output of every module was compared to the output of the
corresponding SystemC module and was found to be identical. This proves that the
software implementation using the scheduler and signals is accurate and identical to
SystemC model. The time required to process four speech segments was measured and is
tabulated in the table below.

Table 4 Comparison of pure software implementation and SystemC derived implementation

Processing time for 4 speech segments.

Implementation Machine Cycles Instructions Time (ms)
Pure software implementation
using character.

1378784 892544 4.59

Software implementation
derived from SystemC

1656004 1096601 5.52

0

500000

1000000

1500000

2000000

M/c Cycles Instructions

Software
SystemC Derived

.

The embedded software implementation with scheduler and software signals had a 20.1%
overhead compared to the pure software implementation.

 38

8 Conclusion
This thesis explored the idea of using SystemC to implement embedded software. A
simple scheduler was proposed to implement SystemC models in software by scheduling
and executing the SystemC clocked threads. Software constructs were developed to
support signals. The scheduler and software signals were implemented and tested.

The SystemC model of the GSM speech processing was implemented as embedded
software using the scheduler and software signals. The performance and overhead of this
implementation was measured and compared with a pure software implementation of the
system.

Initial results indicate that the idea of directly implementing embedded software from
SystemC models is viable. The overhead of the scheduler would greatly reduce with more
complex and computationally intensive modules.

This thesis looked into converting SystemC models to embedded C software. Future
work can look into using C++ for embedded software implementation where a C++
compiler is available for the embedded processor. Emulation of hardware constructs like
signals and ports is easier in C++ with its data encapsulation, function over-loading, and
inheritance features. The models were manually ported to run on the embedded processor
using the simplified scheduler. This process can be automated by developing tools for the
synthesis of SystemC models into software using the scheduler.

Another direction that holds promise is the porting of a light SystemC kernel to the
embedded processor. This is possible only if there is a suitable C++ compiler for the
processor. The lightweight kernel should have all the syntax and semantics of the original
kernel but without the overhead of the cycle accurate simulation requirements.

 39

9 References
1. SystemC – A modeling platform supporting multiple design abstractions, Preti

Rajan Panda, Synopsis Inc.
2. SystemC, www.systemc.org. (Current as of May 2002).
3. Cynlib: Forte Design Systems, http://www.forteds.com/products/cynlib.html

(current as of March 2002).
4. Synopsys Inc, “Synopsys CoCentric SystemC Compiler”,

http://www.synopsys.com/products/cocentric_systemC/cocentric_systemC.html
(current as of March 2002).

5. J. R. Armstrong and Y. Ronen, Modeling with SystemC: A Case Study, 2000.
6. G. Economakos, P. Oikonomakos, I. Panagopoulos, I. Poulakis, and G.

Papakonstantinou, "Behavioral Synthesis with SystemC", Proceedings of
Design, Automation and Test in Europe, 2001, pp 21-25.

7. A. Varma, J. Armstrong, J. Baker, "A SystemC GSM Model for Hardware/Software
Co-Design," International HDL Conference and Exhibition (HDLCon 2002),
March 2002.

8. A. Varma, “Modeling and Synthesis with SystemC”, Master of Science thesis,
Bradley Department of Electrical Engineering, Virginia Tech, 2001.

9. B. Sirpatil, J. Armstrong, J. Baker, "Using SystemC to Implement Embedded
Software", International HDL Conference and Exhibition (HDLCon 2002),
March 2002.

10. L. Green, “A5/1 Pedagogical Implementation”, http://jya.com/a51-pi.htm (current
as of May 2002).

11. “Crack A5”, http://crypto.radiusnet.net/archive/cryptanalysis/crack-a5.htm (current
as of May 2002)

12. B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons Inc, New
York, 1996

13. “SystemC: Users Guide.”, Synopsys Inc, (www.systemc.org).
14. S.M. Redl, M.K.Weber, M.W.Oliphant, “An Introduction to GSM”, Artech House

Inc, 1995.
15. StarCore SC140, http://www.starcore-dsp.com./
16. W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, W. Rosenstiehl, "The

Simulation Semantics of SystemC," Proceedings Design Automation and Test
in Europe, 2001, pp. 64-70.

17. Raymond Steele, Mobile Radio Communications, IEEE Press, 1992.
18. T.S. Rappaport, Wireless Communications, Princeples and practices, Prentice Hall

PTR, 1996.
19. Moore’s Law, http://www.intel.com/research/silicon/mooreslaw.htm.
20. Rochit Rajsuman, System-on-a-chip, Design and Test. Artech House, 2000.
21. T. Grotker, S.Liao, G.Martin, S.Swan, System Design with SystemC, Kluwer

Academic Publishers, 2002.
22. J.R. Armstrong, P. Adhipathi, J.M. Baker, Jr., "Model and Synthesis Directed Task

Assignment for Systems On a Chip," to be presented at the 15th International
Conference on Parallel and Distributed Computing Systems (PDCS 2002),
September 2002.

http://www.systemc.org/
http://www.forteds.com/products/cynlib.html
http://crypto.radiusnet.net/archive/cryptanalysis/crack-a5.htm
http://www.systemc.org/
http://www.starcore-dsp.com./
http://www.intel.com/research/silicon/mooreslaw.htm

 40

10 Appendix

//**
// SystemC software scheduler -- This file contains the code for the
// SystemC software scheduler.
//
// Author -- Mac Baker and Brijesh Sirpatil
// Note -- much of this code was inspired by an 8101 RTOS scheduler
// written by Craig Dry.
//**

#ifndef SCHEDULER_H
#define SCHEDULER_H

// Integer signal and port
typedef struct int_signal_struct {
 int current_val; /* current value of signal */
 int next_val; /* next value of signal */
} IntSignal;

typedef struct int_port_struct {
 IntSignal *signal; /* signal bound to this port */
} IntPort;

// Non-integer signal and port
typedef struct signal_struct {
 struct signal_struct *next; // next signal in list
 int numBytes; // size of signal type
 int updateFlag; // whether signal has been updated or not
 void *current_val; // current value of signal
 void *next_val; // next value of signal
} Signal;

typedef struct port_struct {
 Signal *signal; // signal connected to port
} Port;

// function declarations
extern void SchedStart();
extern void SchedInit(int StackSize);
extern void createThread(int stackSize, void (*entryPoint)());
extern void wait_until(int (*wait_fn) ());
extern void wait();

extern void ConnectPortToSignal(Port *port, Signal *signal);
extern Signal *CreateSignal(int numBytes);
extern void portRead(Port *port, void *dest);
extern void portWrite(Port *port, void *val);
extern int intPortRead(Port *port);
extern void intPortWrite(Port *port, int val);

//extern void ConnectPortToIntSignal(IntPort *port, IntSignal *signal);
//extern Signal *CreateIntSignal();

 41

#endif

//**
// SystemC software scheduler -- This file contains the code for the
// SystemC software scheduler.
//
// Author -- Mac Baker and Brijesh Sirpatil
// Note -- much of this code was inspired by (and taken from) an 8101
// RTOS scheduler written by Craig Dry.
//**

#include <stdio.h> // for error printing routine
#include <string.h> // for memcpy
#include "scheduler.h"

#define FALSE 0
#define TRUE 1
#define MAX_NUM_SIGNALS 256
#define MAX_NUM_THREADS 256

typedef struct thread_struct {
 int (*wait_fn) (); /* function for thread to wait on */
 int StatePtr; /* pointer to thread's state */
 int StackPtr; /* stack pointer for this thread */
 struct thread_struct *next; /* pointer to next thread in list */
} Thread;

// External variables
// External functions
extern void __QCtxtSave();
extern void __QCtxtRestore();

// Global variables
static Signal *signals = NULL; // signals in the system
static int numSignals = 0; // number of signals defined in system
static int numThreads = 0; // number of threads in the system
static Thread *activeList = NULL; // list of active threads
static Thread *waitingList = NULL; // list of waiting threads
static Thread *currentThread = NULL; // current active thread
static int NextStackStart; // next available address for a thread's stack

// Local function declarations
static void updateSignals();
static void updateSignal(Signal *sig);
static void activateWaitingThreads();
static Thread *addThread(Thread *threadList, Thread *this_thread);
static Thread *removeThread(Thread *threadList, Thread *this_thread);
static Thread *getNextThread(Thread *thisThread);
static int SuspendThread(Thread *thisThread);
static int SwitchToThread(Thread *thisThread);
static void error(char *str);
static void StartThread();
static void StopThread();

 42

//--
// CreateSignal -- Creates a new signal object.
// Input:
// numBytes = size (number of bytes) of signal
//--
Signal *CreateSignal(int numBytes)
{
 Signal *sig;

 // allocate the signal struct
 sig = (Signal *) NextStackStart;
 NextStackStart += sizeof(Signal);

 // allocate the current and next values of signal
 sig->current_val = (void *) NextStackStart;
 NextStackStart += numBytes;

 sig->next_val = (void *) NextStackStart;
 NextStackStart += numBytes;

 // re-align the stack
 NextStackStart = (NextStackStart + 8) & ~0x7;

 // initialize rest of signal structure
 sig->updateFlag = FALSE;
 sig->numBytes = numBytes;

 // add signal to list
 sig->next = signals;
 signals = sig;

 // increment number of signals
 numSignals++;

 return sig;
}

//--
// ConnectPortToSignal -- Logically connects (binds) a port to a signal.
//
// Input:
// port -- port data structure
// signal -- signal data structure
//--
void ConnectPortToSignal(Port *port, Signal *signal)
{
 // connect port to signal
 if ((port != NULL) && (signal != NULL)) {
 port->signal = signal;
 }
}

 43

//--
// updateSignal -- Sets a signal's current value equal to its next value.
// Input:
// sig = pointer to signal
//--
void updateSignal(Signal *sig)
{
 // copy numBytes from next_val to current_val
 memcpy(sig->current_val, sig->next_val, sig->numBytes);
}

//--
// portRead -- Reads the current value of the signal connected to a port,
// storing the value in a given destination.
// Input:
// port = pointer to port
// Output:
// dest = pointer to memory location where value will be stored
//--
void portRead(Port *port, void *dest)
{
 // copy numBytes from current_val to dest
 memcpy(dest, port->signal->current_val, port->signal->numBytes);
}

//--
// portWrite -- Sets the next value of the signal connected to the port
// to the given value.
// Input:
// port = pointer to port
// val = pointer to value to be written
//--
void portWrite(Port *port, void *val)
{
 // copy numBytes from val to next_val
 memcpy(port->signal->next_val, val, port->signal->numBytes);
 port->signal->updateFlag = TRUE;
}

//--
// intPortRead -- Reads the current value of the signal connected to a port,
// storing the value in a given destination.
// Input:
// port = pointer to port
// Output:
// returns current value of integer signal
//--
int intPortRead(Port *port)
{
 return *((int *)(port->signal->current_val));
}

//--
// IntPortWrite -- Sets the next value of the signal connected to the port

 44

// to the given value.
// Input:
// port = pointer to port
// val = integer value to be written
//--
void intPortWrite(Port *port, int val)
{
 *((int *)(port->signal->next_val)) = val;
 port->signal->updateFlag = TRUE;
}

//--
// wait -- Suspends the current thread and switches to the next active thread.
// If all active threads have been processed for this cycle, then the signals
// will be updated before re-executing the first active thread.
// Input -- none
//---
void wait()
{
 // suspend the current thread
 if (!SuspendThread(currentThread)) {

 // get the next ready thread (updating signals if necessary)
 currentThread = getNextThread(currentThread);

 // switch to the new thread
 SwitchToThread(currentThread);
 }
}

//---
// wait_until -- Suspends the current thread and switches to the next active
// thread. Similar to wait(), the signal will be updated if this was the last
// thread to execute during this cycle. Also, if the condition function evaluates
// to FALSE, the suspending thread will be placed in the WAITING state; otherwise,
// it will remain in the ACTIVE state.
// Input -- condition_fn = function specifying condition thread waits for
//--
void wait_until(int (*wait_fn) ())
{
 Thread *thisThread;

 // attach wait_fn to this thread
 currentThread->wait_fn = wait_fn;

 // remember this thread
 thisThread = currentThread;

 // get the next thread to execute
 currentThread = getNextThread(thisThread);

 // suspend current thread

 45

 if (!SuspendThread(thisThread)) {

 // if condition is false, change thread to WAITING state
 if (!wait_fn()) {
 // remove thread from ActiveList
 activeList = removeThread(activeList, thisThread);

 // add thread to WaitingList
 waitingList = addThread(waitingList, thisThread);

 // if this was the only thread, then try to find another one
 if (currentThread == thisThread) {
 currentThread = getNextThread(activeList);
 }
 }

 // switch to next thread
 SwitchToThread(currentThread);
 }
}

//---
// updateSignals -- Updates the values of all signals in the system.
//---
void updateSignals()
{
 Signal *sig;

 for (sig = signals; sig != NULL; sig = sig->next) {
 if (sig->updateFlag == TRUE) {
 updateSignal(sig);
 sig->updateFlag = FALSE;
 }
 }
}

//--
// activateWaitingThreads -- Tests the condition function for each waiting
// thread. If the condition is true, then the thread is removed from the
// WaitingList and added to the ActiveList of threads.
//--
void activateWaitingThreads()
{
 Thread *this_thread, *next_thread;

 // for each thread, test if thread is now ready
 this_thread = waitingList;

 while (this_thread != NULL) {
 if (this_thread->wait_fn()) {
 // thread is now ready, so remember next thread in list
 next_thread = this_thread->next;

 46

 // remove from WaitingList, add it to ActiveList
 waitingList = removeThread(waitingList, this_thread);
 activeList = addThread(activeList, this_thread);

 // repeat for next_thread
 this_thread = next_thread;
 }
 else {
 // thread still not ready, so check next thread
 this_thread = this_thread->next;
 }
 }
}

//--
// addThread -- Adds a thread to a list of threads. Note that the threads
// are not ordered, so we can simply add thread to beginning of the list.
// Input:
// threadList -- pointer to list of threads
// this_thread -- thread to be added to list
// Output:
// threadList -- pointer to updated list of threads
//--
Thread *addThread(Thread *threadList, Thread *this_thread)
{
 // add thread to beginning of list
 this_thread->next = threadList;

 // return pointer to thread (new head of list)
 return this_thread;
}

//--
// removeThread -- Searches through a list of threads until it finds
// the given thread. It will then remove the thread from the list.
// Input:
// threadList -- pointer to list of threads
// this_thread -- thread to be removed
// Output:
// threadList -- pointer to updated list of threads
//--
Thread *removeThread(Thread *threadList, Thread *this_thread)
{
 Thread *thread_ptr;

 // first, see if thread is the first one in the list
 if (this_thread == threadList) {
 // remove thread from list, return rest of list
 thread_ptr = this_thread->next;
 this_thread->next = NULL;
 return thread_ptr;
 }

 // else, search through the list until we find this_thread

 47

 thread_ptr = threadList;
 while ((thread_ptr != NULL) && (thread_ptr->next != this_thread)) {
 thread_ptr = thread_ptr->next;
 }

 // did we find it?
 if (thread_ptr != NULL) {
 // must have, so remove thread from list
 thread_ptr->next = this_thread->next;
 this_thread->next = NULL;
 }

 // return pointer to updated list
 return threadList;
}

//--
// getNextThread -- Returns the next active thread. If all the threads have
// been processed for this cycle, then first the signals are updated, and then
// any waiting threads that are now ready are activated.
// Input:
// thisThread -- pointer to current active thread
// activeThreads -- list of active threads
// waitingThreads -- list of waiting threads
// Output:
// nextThread -- next thread to execute
//--
Thread *getNextThread(Thread *thisThread)
{
 Thread *nextThread;

 if (thisThread != NULL) {
 nextThread = thisThread->next;
 }
 else {
 nextThread = NULL;
 }

 if (nextThread == NULL) {
 // we've executed everything this cycle, so we need to update
 // signals and waiting threads
 updateSignals();
 activateWaitingThreads();

 // next thread will be first thread in active list (if there are no
 // active threads, we'll keep updating signals and activate waiting
 // threads until there is one)
 nextThread = activeList;

 if (nextThread == NULL) {
 printf("No more active threads.\n");
 exit(1);
 }
 }

 48

 // if we got here, there must be an active thread
 return nextThread;
}

//---
// SuspendThread -- Saves the environment of the current thread. This gets
// a little hairy because we have to mix some C and assembly, and also keep
// track of what's on the stack. If this routine is ever modified, you may
// need to update the assembly-language part of it because that code expects
// a certain-sized stack frame. If you modify the C-code, you may be changing
// the size of the stack frame. Look at the assembly .sl file to see.
// Input:
// currentThread -- pointer to current thread
// Output:
// Returns 0 upon invocation, returns non-zero when thread is resumed
// (see SwitchToThread for more details)
//---
int SuspendThread(Thread *thisThread)
{
 static int currSP; // current stack pointer
 static int currStatePtr; // current state pointer

 // disable interrupts while suspending thread
 asm("di");

 // save this thread's SP
 asm("tfra sp,r4"); // save SP in r0
 asm("move.l r4,__currSP"); // save r0 in currSP
 thisThread->StackPtr = currSP;

 // save the context of this thread
 currStatePtr = thisThread->StatePtr; // pointer to state info
 asm("move.l __currStatePtr,r4"); // load pointer into SP
 asm("tfra r4,sp");
 __QCtxtSave();

 // restore the SP
 asm("move.l __currSP,r4");
 asm("tfra r4,sp");

 // duplicate the stack frame -- if you change the C-code,
 // this will probably need to be updated.
 asm("adda #24,sp");
 asm("move.l (sp-56),d4"); // wait_fn
 asm("move.l d4,(sp-24)");
 asm("move.l (sp-52),d4"); // thisThread
 asm("move.l d4,(sp-20)");
 asm("move.l (sp-48),d4"); // return value
 asm("move.l d4,(sp-16)");
 asm("move.l (sp-40),d4"); // return address
 asm("move.l d4,(sp-8)");
 asm("move.l (sp-36),d4"); // return flag reg
 asm("move.l d4,(sp-4)");

 49

 // re-enable interrupts
 asm("ei");

 // return 0 (when this thread is restored, it will return 1 -- see SwitchToThread
 // for details)
 asm("clr d0");
 asm("rtstk");

 // this is just to keep the compiler happy. It never executes
 return 0;
}

//---
// SwitchToThread -- Restores the environment of a suspended thread. The
// thread will resume execution as if it has returned from a call to
// SuspendThread() with a return value of 1.
// Input:
// currentThread -- pointer to thread to switch to
//---
int SwitchToThread(Thread *thisThread)
{
 static int SP; // SP of currentThread
 static int StatePtr; // state pointer of currentThread

 // disable interrupts while we're restoring thread
 asm("di");

 // remember threads SP
 SP = thisThread->StackPtr;

 // restore state ptr for this thread
 StatePtr = thisThread->StatePtr + 34*2*sizeof(int);
 asm("move.l <__StatePtr,r4");
 asm("tfra r4,sp");

 // restore the thread's context
 __QCtxtRestore();

 // restore stack ptr for this thread
 asm("move.l __SP,r4");
 asm("tfra r4,sp");

 asm("suba #8,sp"); // clean up local vars off stack

 // re-enable interrupts
 asm("ei");

 // set return value to 1
 asm("move.l #1,d0");

 // return
 asm("rtstk");

 // this is here to keep the compiler happy. It never gets executed

 50

 return 1;
}

//---
// createThread -- Creates a new thread, adding the thread to the list of
// active threads.
// Input:
// stackSize -- size of the stack needed for this thread
// entryPoint -- function to be executed by thread
//---
void createThread(int stackSize, void (*entryPoint)())
{
 Thread *newThread;
 int *SP;

 // allocate the signal struct
 newThread = (Thread *) NextStackStart;
 NextStackStart += sizeof(Thread);
 NextStackStart = (NextStackStart + 8) & ~0x7;

 newThread->wait_fn = NULL;
 newThread->next = NULL;

 // increment number of threads
 numThreads++;

 // add thread to active list
 activeList = addThread(activeList, newThread);

 // allocate space for the thread's state
 newThread->StatePtr = NextStackStart;
 NextStackStart += 35*2*sizeof(int);

 // allocate a stack for the thread
 SP = (int *) NextStackStart;
 NextStackStart += stackSize;
 NextStackStart = (NextStackStart + 8) & ~0x7; // stack must be aligned
 // on 8-byte boundary

 // set up stack to execute thread. The thread will initially execute
 // the StartThread function, then the entryPoint() function, and (if
 // entryPoint() ever returns), the StopThread function.
 *(SP++) = (int) &StopThread; // return address
 *(SP++) = 0x000c000c; // status register:
 // disable interrupts, use
 // ESP, 2's complement
rounding,
 // saturation mode
 *(SP++) = (int) entryPoint; // return address
 *(SP++) = 0x0004000c; // status (same as before, but
 // enable interrupts)
 *(SP++) = (int) &StartThread; // the first return will jump here
 *(SP++) = 0x000c000c;

 51

 SP++; // dummy stack vars
 SP++;

 newThread->StackPtr = (int) SP;

}

//---
// SchedInit -- This function initializes the data structures used by the
// scheduler. It figures out a "relatively safe" place in memory to put
// the threads' stacks and initializes the lists of active threads and
// waiting threads.
// Input:
// StackSize -- amount of stack space (in bytes) to reserve for the
// main program. The threads' stacks will be located
// after this in memory
//---
void SchedInit(int StackSize)
{
 // initially, set NextStackStart to the current stack pointer value
 asm("tfra sp,r4"); // r0 = current SP
 asm("move.l r4,_NextStackStart"); // save in NextStackStart

 // now, make sure we reserve at least StackSize bytes for the main program
 NextStackStart += StackSize;

 // stack must be aligned on 8-byte boundary
 NextStackStart = (NextStackStart + 8) & ~0x7;
}

//--
// SchedStart -- This routine starts the scheduler. It is assumed that
// SchedInit has already been called, and also that the threads have been
// created. This routine will transfer control to one of the active threads.
// Input: none
//--
void SchedStart()
{
 // make head of active list the current thread
 currentThread = activeList;

 // now switch to current thread
 SwitchToThread(currentThread);
}

//---
// error -- Prints an error message on stderr and exits.
// Input:
// str = string to be printed
//---
void error(char *str)
{

 52

 fprintf(stderr, "ERROR: %s\n", str);
 exit(1);
}

//--
// StartThread -- does nothing
//--
void StartThread()
{
 asm("rte");
}

//--
// StopThread -- does nothing
//--
void StopThread()
{
 Thread *nextThread;

 // get next thread
 nextThread = getNextThread(currentThread);

 // kill this thread
 activeList = removeThread(activeList, currentThread);

 // switch to next thread
 if (activeList != NULL) {
 currentThread = nextThread;
 SwitchToThread(currentThread);
 }

 // if we get here, there are no more active threads, so exit
 exit(0);
}

//**
// SystemC software scheduler -- This file contains the code to test the
// SystemC software scheduler.
//
// Author -- Mac Baker and Brijesh Sirpatil
//**

#include <stdio.h> // for printf
#include "scheduler.h"

Signal *Ready; // handshake signals
Signal *Ack;

Port InA; // input and output ports for ThreadA
Port InB; // and ThreadB
Port OutA;
Port OutB;

 53

int count = 0; // counter passed between threads

//
// Wait functions -- to use wait_until(cond), you have to have
// a function that tests the condition. It should return
// 1 if the condition is true, 0 if false.
//
int Ack0() { // wait until Ack == 0
 int val;

 portRead(&InA, &val);
 return !val;
}

int Ack1() { // wait until Ack == 1
 int val;

 portRead(&InA, &val);
 return val;
}

int Ready0() { // wait until Ready == 0
 int val;

 portRead(&InB, &val);
 return !val;
}

int Ready1() { // wait until Ready == 1
 int val;

 portRead(&InB, &val);
 return val;
}

//--
// Thread A code -- This thread updates the shared counter,
// and then initiates the handshake (notifies other thread
// that count is ready and waits for acknowledgement).
//--
void ThreadA()
{
 int temp;
 int i;

 // set Ready to 0
 temp = 0;
 portWrite(&OutA, &temp);

 wait(); // make sure other thread sees write

 for (i=0; i < 10; i++) {
 // increment the counter (i.e., update shared data)
 count++;

 54

 // set Ready to 1
 temp = 1;
 portWrite(&OutA, &temp);

 // wait for Ack = 1 so we know other thread has seen
 // Ready
 wait_until(&Ack1);

 // set Ready to 0
 temp = 0;
 portWrite(&OutA, &temp);

 // wait for Ack = 0
 wait_until(&Ack0);
 }

 exit(0);

}

//--
// Thread B code
//--
void ThreadB()
{
 int temp;
 int i;

 // set Ack = 0
 temp = 0;
 portWrite(&OutB, &temp);

 for (i = 0; i < 10; i++) {
 // wait for Ready = 1
 wait_until(&Ready1);

 // set Ack = 1 to acknowledge that we saw data
 temp = 1;
 portWrite(&OutB, &temp);

 // read updated count value
 printf("Thread B got Ready signal %d.\n", count);

 // wait for Ready = 0
 wait_until(&Ready0);

 // set Ack = 0
 temp = 0;
 portWrite(&OutB, &temp);
 }

 exit(0);

}

 55

//
// Main code
//
void main()
{
 SchedInit(1024);

 // create the signals
 Ready = CreateSignal(sizeof(int));
 Ack = CreateSignal(sizeof(int));

 // connect the signals to the ports
 ConnectPortToSignal(&OutA, Ready);
 ConnectPortToSignal(&InA, Ack);

 ConnectPortToSignal(&OutB, Ack);
 ConnectPortToSignal(&InB, Ready);

 // create the threads
 createThread(1024, &ThreadA);
 createThread(1024, &ThreadB);

 // start the scheduler
 SchedStart();
}

 56

Vita
Brijesh Sirpatil was born on April 5, 1976 in Gulbarga, a city in the state of Karnataka in
India. He graduated with a Bachelor of Engineering degree in plied Electronics and
Communication Engineering from Gulbarga University in the year 1998. After
working in the Robotics and Automation industry for more than a year, he decided to
pursue his higher studies in the field of computer Engineering. He graduated with a
Master of Science degree in Electrical Engineering from Virginia Tech in Summer of
2002.

	1	Introduction	1
	Introduction
	SOC Design Paradigm
	SOC Design Issues
	Modeling tools for SOC design paradigm
	Aim of thesis
	Overview of Thesis

	SystemC Language
	SystemC Language Features
	Modules and processes
	Ports and Signals
	Data Types

	SystemC Simulation Kernel

	GSM Speech Processing
	Speech Encoder
	Channel Encoding
	Interleaving
	Encryption
	Packet Formatting
	Differential Encoder
	Transmission

	SystemC Model of GSM Speech Processing
	Module Architecture
	Handshake Signals

	Embedded Processor
	Computational Load of the Modules

	Software Synthesis
	Scheduler
	Software Implementation of Ports and Signals
	Software Implementation of Clocked Threads
	GSM Model
	Modeling Guidelines
	Suggested Organization

	Results
	Conclusion
	References
	Appendix

