
GRAPHGEN
Control/Data Flow Graph Generator

For Full-VHDL

version 1.4

GraphGen: Implementor's Guide

2 © LEDA S.A. 1995

Copyright © 1994 - 1997 by LEDA S.A., Meylan, France. All rights reserved.

LEDA S.A.

35 Avenue du Granier
38240 Meylan, France

Tel: (+33) (0)4 76 41 92 43
Fax: (+33) (0)4 76 41 92 44
E-mail: sales@leda.fr, support@leda.fr

This software and manual are furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement.
No part of this publication may be reproduced, transmitted, or translated, in any form or by any
means, electronic, mechanical, manual, optical, or otherwise, without prior written consent of
LEDA S.A.

The information in this manual is subject to change without notice and does not represent a
commitment on the part of LEDA S.A.

Even though LEDA S.A. has taken every effort in the preparation of this manual and the test of
the software, LEDA S.A. makes no warranty of any kind, either express or implied, with
regards to this software and documentation, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.

LEDA S.A. acknowledges trademarks or registered trademarks of other organizations for their
respective products and services.

GRAPHGEN
Control/Data Flow Graph Generator for Full VHDL

LEDA S.A. 35 Avenue du Granier 38240 Meylan France
Tel: (+33) (0)4 76 41 92 43 — Fax: (+33) (0)4 76 41 92 44

Implementor's Guide
Version 1.4

© LEDA S.A. 1994-1997

TABLE OF CONTENTS

1 . Introduction. 5

2 . Insta l lat ion and Test . 7
2.1 Installing GRAPHGEN . 9
2 . 2 Testing GraphGen . 1 0

2.2.1 Testing Archive.. 10
2.2.2 Testing Executable .. 11

2 . 3 Command Line Options. 1 3
3 . GRAPHGEN: Rationale. 1 5

3.1 Control Flow Graph Nodes.. 1 6
3.2 Data Flow Graph Nodes . 1 7
3.3 Representing Full VHDL . 2 1

3.3.1 Synchronisation Statements.. 22
3.3.2 Flow of Control Statements.. 23
3.3.3 Data Flow Statements.. 26
3.3.4 Address Evaluation.. 30
3.3.5 Optimising CFG Construction.. 36

3.4 Graph Partitioning . 3 9
3.4.1 Basic Blocks .. 39
3.4.2 Execution Paths.. 41

4 . Procedural Interface. 4 3
4 . 1 GRAPHGEN Procedural Interface.. 4 4

4.1.1 Primitive Types.. 45
4.1.2 Procedure gphGraphGen.. 46
4.1.3 Procedure gphForceGraphGen .. 47

4 . 2 Global Procedural Interface. 4 8
4.2.1 Function elbGetScalarValue.. 51
4.2.2 Function elbGetCompositeValue .. 52
4.2.3 Function absExprHasValue .. 53
4.2.4 Function absExprAreEqual... 54
4.2.5 Function absExprIsZero.. 55
4.2.6 Function elbGetValue.. 56

5 . Schema Def in i t ion . 5 7
5 . 1 Primitive types . 5 8
5.2 Classes . 5 9

5.2.1 GRAPH ... 59
5.2.2 CFG_BB_ITEM... 59
5.2.3 CFG_CONDITION_EVALUATION....................................... 59
5.2.4 CFG_ITEM ... 59
5.2.5 CFG_PARTITION.. 59
5.2.6 CFG_PATH_ITEM... 60
5.2.7 CFG_VIF_OPERATION ... 60
5.2.8 DFG_ADDRESS_DECODE... 60
5.2.9 DFG_CONNECTION... 60
5.2.10 DFG_HARDWARE_RESOURCE ... 60
5.2.11 DFG_OPERAND ... 61
5.2.12 DFG_OPERATOR... 61
5.2.13 DFG_VERTEX.. 61
5.2.14 DFG_VIF_OPERATION ... 62
5.2.15 DFG_VIF_DECLARATION ... 62

GraphGen: Implementor's Guide

4 © LEDA S.A. 1996

5.2.16 DFG_VIF_GRAPH_NODE ... 62
5.3 Nodes . 6 3

5.3.1 bb_transition .. 63
5.3.2 cfg_basic_block.. 64
5.3.3 cfg_boolean_branch.. 65
5.3.4 cfg_general_operation... 66
5.3.5 cfg_guarded_successor .. 67
5.3.6 cfg_loop .. 68
5.3.7 cfg_multiple_branch... 69
5.3.8 cfg_path... 70
5.3.9 cfg_path_condition_test... 71
5.3.10 cfg_procedure_call . 72
5.3.11 cfg_wait... 73
5.3.12 control_flow_graph .. 74
5.3.13 data_flow_graph.. 75
5.3.14 dfg_abstract_operation.. 76
5.3.15 dfg_abstract_timer.. 77
5.3.16 dfg_allocated_address... 78
5.3.17 dfg_array_read.. 79
5.3.18 dfg_array_write.. 80
5.3.19 dfg_cfg_interface .. 81
5.3.20 dfg_constant.. 82
5.3.21 dfg_data_edge.. 83
5.3.22 dfg_function_call . 84
5.3.23 dfg_index_address .. 85
5.3.24 dfg_merge_read.. 86
5.3.25 dfg_merge_write... 87
5.3.26 dfg_operand_read .. 88
5.3.27 dfg_operand_write .. 89
5.3.28 dfg_parameter. 90
5.3.29 dfg_record_address .. 91
5.3.30 dfg_segment.. 92
5.3.31 dfg_select. 93
5.3.32 dfg_simple_operator_call. 94
5.3.33 dfg_slice_address.. 95
5.3.34 gph_functional_unit . 96

6 . Appendix A: LPIKEY . 9 7
6 . 1 Key Management using “lpikey” . 9 8

6.1.1 Validation of the LPI kernel archive (lvskernel.a) . 98
6.1.2 Validation of the user’s executable .. 98
6.1.3 Revalidating the same authorization key(s). 99
6.1.4 Checking the authorization key(s) . 99
6.1.5 Help .. 100

GraphGen: Implementor's Guide

© LEDA S.A. 1996 5

1 . INTRODUCTION

GRAPHGEN is a graphical representation for the synthesis of full-VHDL (both VHDL'87
and VHDL'93). This means that all the benefits of VHDL can be used for describing hardware.
The number of different nodes necessary is not significantly different from any other graphical
representation for synthesis.

The factor that enables such a set of graphs to be generated is the use of LVS, a full VHDL
87/93 compiler that generates an intermediate representation from which the graphs and other
synthesis-related information are extracted.

GRAPHGEN is a tool for the generation of Control Flow Graphs (CFG) and Data Flow
Graphs (DFG) from full-VHDL ('87 and '93). The graphs are intended to be used by
behavioral and logic-level synthesis tools. GRAPHGEN can also partition the graphs into
basic block and execution path structures enabling the application of some of the more common
high-level synthesis transformations.

GRAPHGEN is part of the LVS toolbox. It can be used alone or with other LVS tools such
as APEX or GEME. By using these tools together with GRAPHGEN, the graphs generated
can be optimized even further (see § 4.2). For further information about other tools in the LVS
toolbox, contact sales@leda.fr.

IMPORTANT

GRAPHGEN is not a standalone tool. It is part of the LEDA VHDL System (LVS) toolbox.
Therefore, GRAPHGEN must be used with the LVS compiler. This has the benefit of
enabling the user of GRAPHGEN to take advantage of all of the facilities of LVS: accessible
and expandable intermediate format, procedural interface to this format, browser and so on.
This version of GRAPHGEN must be used with versions after 4.1 of the LVS compiler.

GRAPHGEN can also be used with other elements of the LVS toolbox such as APEX and
GEME.

This document only describes the definitions in LVS relevant to GRAPHGEN. These
definitions include new intermediate nodes and primitives. All applicable routines in the original
LVS intermediate format are still valid (for example, vifOpenUnit, vifCreateNode,…). For
more details on LVS and its environment, the user is referred to the LVS Implementor's Guide.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 7

2 . INSTALLATION AND TEST

The installation diskette for GRAPHGEN contains the following files and directories:

GRAPHGEN/

README.FIRST Release/ Demo/ Example/ gphtest Utils/

graphgen.a
graphgen.h

vhdlgrph.dat
hdl.dat

graphgen.Z gcd.vhd
Makefile

Makebrowser
usermain.c

garbage/

lpikey
lvsexpr.h

File README.FIRST explains how to install GRAPHGEN once it has been copied to the
host machine;

Directory Release contains the following files:

graphgen.a: GRAPHGEN archive to be linked with applications;
graphgen.h: Header file to be included with all applications using GRAPHGEN;
vhdlgrph.dat: GRAPHGEN intermediate format. Used by schemagen to extend

the LVS schema to include GRAPHGEN nodes, classes and attributes.
vhdl.dat: Include file for schemagen. All files representing the LVS schema and

extended schema must be referred to here. For GRAPHGEN only (no
user-extension, the file contains two lines:

#include vhdlleda.dat
#include vhdlgrph.dat

 vhdlleda.dat is the LVS schema and vhdlgrph.dat is the
GRAPHGEN schema extension.

To build other extensions, this file must be modified to refer to files
containing other extensions. For example:

#include vhdlleda.dat
#include vhdlgrph.dat
#include vhdluser.dat

vhdluser.dat is a user schema extension.

For more information, please refer to the LVS Implementor's Guide,
Part I, Chapter "Schema Generator".

Demo is a directory containing a GRAPHGEN executable in compressed format.
This allows GRAPHGEN to be executed in standalone mode.

GraphGen: Implementor's Guide

8 © LEDA S.A. 1996

Example is a directory containing the following:

usermain.c: A sample C file showing how GRAPHGEN may be invoked from any
application.

gcd.vhd: A VHDL file used to test GRAPHGEN during installation.
Makefile: A make file linking an application to LVS (uvif.a, lvskernel.a)

and GRAPHGEN archive. This file is executed by gphtest.
Makebrowser: A make file linking the newly created VIF (uvif.a) to LVS archives

lvskernel.a and lvsbrowser.a. This generates an extended browser
allowing the VIF extensions created by GRAPHGEN to be viewed
normally. The executable generated is called "browser" (see LVS
Implementor's Guide, Part I, Chapter "Schema Generator").

garbage/: Temporary directory used to store object files.

gphtest is a script file that can be executed to install and test GRAPHGEN (see §2.2).

Utils is a directory containing the following:

lpikey: Executable for passing authorization key to application.
lvsexpr.h: Header file containing useful functions that may be called from an application.

If any of these functions is to be used, this file must be included in the
application.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 9

2.1 Installing GRAPHGEN

To install GRAPHGEN, change directory to where you want it to reside and execute the
command

tar xvpf /dev/fd0
Then, perform the following steps:

1. Install LVS

LVS is LEDA's VHDL System, containing a full VHDL'93 / VHDL'87 compiler and a
procedural interface allowing access to an intermediate representation of the compiled VHDL
model. GRAPHGEN uses and builds upon this intermediate format.

For information on how to install LVS, please refer to the "LEDA VHDL SYSTEM -
Implementor's Guide Part 1", Chapter 2.

IT IS ASSUMED THAT AT LEAST LVS VERSION 4.1 IS AVAILABLE

2. Set Environment Variables

It is recommended to set and use the environment variable LVS_PATH to indicate the physical
location of LVS. This is the directory that corresponds to "install_dir" when following the LVS
installation instructions (see step 1). This can be done by executing:

setenv LVS_PATH /usr/local/lvs

to indicate the installation directory of LVS. This directory will hereafter be called
$LVS_PATH.

3. Validate GRAPHGEN

The GRAPHGEN package has two usable files: graphgen.a in the Release directory is an
archive that can be linked with any user application and graphgen in the Demo directory is an
executable meaning that GRAPHGEN can be used in standalone mode. To use one or both of
these files, they have to be validated with an authorization key supplied by LEDA
(support@leda.fr).

Validation is done with lpikey in directory Utils of the GRAPHGEN diskette.

3.1 Validating archive
The LVS archive lvskernel.a must be updated with the authorization key for GRAPHGEN.
This is done by changing directory to $LVS_PATH/lvskern and executing:

lpikey <KEY>

where <KEY> is GRAPHGEN's authorization key.

3.2 Validating executable
The executable is validated directly.To do this, change directory to where the executable is
located (default: Demo) and type:

uncompress graphgen.Z
lpikey -f graphgen <KEY>

For more information on lpikey, please refer to the Appendix A of this document.

GraphGen: Implementor's Guide

10 © LEDA S.A. 1996

2 .2 Testing GraphGen

In this section we show how to test both graphgen.a and the executable graphgen.

2.2.1 Testing Archive

In the GRAPHGEN package, there is a script named gphtest that can be used not only to test
the graphgen.a archive but also serves as an example of how to build applications that use
GRAPHGEN.

To run the script, simply type:
gphtest <KEY>

where <KEY> is the authorization key for GRAPHGEN.

This has the effect of creating and validating a new archive, uvif.a which contains the
extended intermediate format. This archive is created in the Example directory.

The archive will be used when gphtest tests the installation. This is done by building a new
executable called mygph in the Example directory. The executable consists of one compiled
C file, usermain.c, linked with uvif.a, lvskernel.a and graphgen.a. A Makefile is
supplied in the Example directory to create mygph. GRAPHGEN is invoked in usermain.c
through the inclusion of the graphgen.h header file and by calling the function
gphGraphGen() which is part of GRAPHGEN's procedural interface (see section 4).

NOTE: The order in which these archives are linked is very important.

Also in the Example directory, a VHDL file called gcd.vhd is supplied. This file will be
compiled into a VHDL library, LIB, and mygph will be executed on the architecture
BEHAVIOR/GCD to extract the basic blocks and execution paths from the process contained
in the architecture. At the end of this execution, mygph should have created 7 (0 to 6) basic
blocks and 3 paths. The information shown below should be printed on the screen. If this is not
the case, please contact support@leda.fr.

NOTE: gphtest creates (and subsequently destroys) many files and directories. If, for
any reason, this script is interrupted, these files may be removed by executing the
last three lines of gphtest. If you want to save the created environment, simply
comment out these three lines.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 11

For Process GCD :
=================================
BLOCK 0
 node cfg_general_operation 12
 node cfg_general_operation 13
 node cfg_wait 14
Successors:
 Block 1
BLOCK 1
 node cfg_general_operation 15
 node cfg_general_operation 16
Successors:
 Block 2
BLOCK 2
 node cfg_loop 17
Successors:
 Block 3
 Block 6
BLOCK 3
 node cfg_boolean_branch
Successors:
 Block 4
 Block 5
BLOCK 4
 node cfg_general_operation 19
Successors:
 Block 2
BLOCK 5
 node cfg_general_operation 21
Successors:
 Block 2
BLOCK 6
 node cfg_general_operation 24
Successors:

 Block 0

For Process GCD :
=================================
PATH 1
 node cfg_general_operation 12
 node cfg_general_operation 13
 node cfg_wait 14
 node cfg_general_operation 15
 node cfg_general_operation 16
 node cfg_loop 17
 node cfg_boolean_branch
 node cfg_general_operation 19
SUCCESSOR cfg_loop 17
PATH 2
 node cfg_general_operation 12
 node cfg_general_operation 13
 node cfg_wait 14
 node cfg_general_operation 15
 node cfg_general_operation 16
 node cfg_loop 17
 node cfg_boolean_branch
 node cfg_general_operation 21
SUCCESSOR cfg_loop 17
PATH 3
 node cfg_general_operation 12
 node cfg_general_operation 13
 node cfg_wait 14
 node cfg_general_operation 15
 node cfg_general_operation 16
 node cfg_loop 17
 node cfg_general_operation 24
SUCCESSOR cfg_general_operation 12

2.2.2 Testing Executable

Before testing the executable, it must have been validated with lpikey. Make sure that step 3.2
in section 2.1 was carried out.

Change directory to Demo. Ensure that the executable for the LVS compiler ("v") is visible.
Then, type the following sequence of commands:
To enter the LVS environment, simply type:

$LVS_PATH/v

The prompt will change to LVS>

To create a new working library "LIB", type

LVS> new LIB

To create libraries STD and IEEE, type

LVS> createstd

to make theses libraries visible, type

LVS> add STD

LVS> add IEEE

GraphGen: Implementor's Guide

12 © LEDA S.A. 1996

to compile gcd.vhd in the Example directory, type

LVS> comp ../Example/gcd.vhd

This will create two library units in the library LIB: enity GCD and architecture
BEHAVIOR/GCD.

Finally, quit the LVS environment by typing

LVS> quit

There are several parameters that can be put on the graphgen command line. These are outlined
in section 2.3. To obtain the same results as in section 2.2.1, we type the following:

graphgen LIB BEHAVIOR/GCD -ps -b -d

If there is some discrepency between the results obtained here and in section 2.2.1, please
contact LEDA (support@leda.fr).

GraphGen: Implementor's Guide

© LEDA S.A. 1996 13

2 .3 Command Line Options

The GRAPHGEN executable can accept several parameters on the command line. These
correspond more or less to the actual parameters that can be passed when using graphgen.a and
calling GRAPHGEN from a user-application. In standard operation, GRAPHGEN
generates a control flow graph (CFG) for the process equivalent of each concurrent statement,
as well as for all subprogram bodies in the input description. For each CFG node, a data flow
graph (DFG) may be generated. If it is preferable to attach the graphs to the concurrent
statement nodes rather than to the equivalent process, the -n option must be used in the
executable and the CreateEquivalentProcess parameter must be set to False in the
procedural interface. Graph information may be attached to different concurrent statement nodes
(or their equivalent process) in the unit processed.

In the section on testing GRAPHGEN, we saw how to execute GRAPHGEN to simply
generate CFGs and DFGs. GRAPHGEN is also capable of partitioning CFGs and merging
DFGs. The two partitioning mechanisms available are basic blocks and execution paths.

If the user wants GRAPHGEN to generate basic block partitions, GRAPHGEN must be
executed with the "-b" argument. For example,

graphgen -b

which will prompt for the library and unit names, or

graphgen -b LIB behavior/gcd

which executes directly.

If execution paths are required, we can use the -p or -po option to generate optimised paths or
the -ps option to generate simple paths (see §3.4.2).

graphgen -ps LIB behavior/gcd

If both basic blocks and execution paths are required, both parameters should be entered on the
command line. For example:

graphgen -b -po LIB behavior/gcd

In general, conditional expressions of equality or inequality with the RHS a locally static value
are automatically assumed to be executed in the controller and the dfg_model attribute of the
corresponding cfg node is always NULL. However, an option exists, -d, which allows the
user to decide where such expressions should be evaluated. Consider the following code
segment:

if COND='1' then …

If the -d option does not appear on the command line, this statement generates a
cfg_boolean_branch node with the dfg_model attribute empty. The expression itself can be
found by following the cfg_vif_model attribute.If the -d option does appear on the command
line, the dfg_model for the above example will be filled.

Other options are:

- f Force regeneration of graphs regardless of whether they have already been generated.

-n Do not transform concurrent statements into their equivalent processes before
execution.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 15

3 . GRAPHGEN: RATIONALE

In this section we present the main principles and motivations behind GRAPHGEN in terms
of the graphs themselves. Throughout this section, we will use the VHDL example of figure 3
to illustrate the different concepts behind GRAPHGEN

Almost all synthesis tools start with some form of graphical representation that models the
control flow and/or the data flow of the original description in a hardware-oriented manner. In
general, each statement in the input description maps directly onto one or more nodes in the
graph domain. Synthesis then consists of applying transformation algorithms to the graph
domain in order to generate a netlist of hardware components and their interconnections.

The intermediate graphical representation tends not to receive as much attention as it deserves,
mainly because synthesis tool developers prefer to concentrate on the classical synthesis
algorithms such as scheduling and allocation. For example, many synthesis tools claim to start
with standard hardware description languages (such as VHDL) as their input whereas, in
reality, subsets of these languages are used.

The use of subsets is not only due to the limitation of the synthesis algorithms and/or the
irrelevance of some statements to hardware, but also due to the unavailability of front-end tools
(compilers generating intermediate formats, graph generation tools, etc.). If a VHDL statement
cannot be mapped directly onto an available graphical template, it is usually quite simply
rejected regardless of the benefits it may provide. This is unfortunate as languages such as
VHDL contain very powerful constructs, particularly for data typing and synchronisation, that
can considerably ease the design of hardware. Rejecting such constructs means that designers
have to find roundabout ways of describing equivalent statements thereby increasing the size of
the description and hence the design time and maintenance costs.

GRAPHGEN allows all VHDL constructs to be mapped onto the graphical domain for
synthesis. GRAPHGEN's model consists of a control flow graph (CFG) for each concurrent
statement in a VHDL input description. For each CFG node, a data flow graph (DFG) may be
created. CFG nodes may be grouped into control blocks or control paths and DFGs may be
subsequently merged for optimisation purposes. In this section we will show the nodes
available for representing full-VHDL in the graph domain.

GraphGen: Implementor's Guide

16 © LEDA S.A. 1996

3.1 Control Flow Graph Nodes

Control flow graphs are used to represent the different possible sequences of execution for each
set of statements in a VHDL process. From a hardware point of view this sequentiality is not
always necessary as some mutually exclusive statements can be executed in parallel if the
appropriate resources are available. It is the task of the synthesis algorithms, in particular the
scheduling algorithm, to identify and to group such statements into what are known as control
states.

A control flow graph (CFG) is defined as:
CFG=(Vc,Ec)

where Vc is a set of nodes corresponding to different VHDL statements:
Vc = Vw ∪ Vb ∪Vl ∪Ve

where
Vw = synchronisation nodes (wait)
Vb = branch nodes (if, case, exit, next)
Vl = loop nodes (while, loop)
Ve = other nodes (assignments, procedure calls,…)

and Ec is the set of edges identifying the flow of control
e = (v1, v2, c), where v1, v2 ∈ Vc.

In other words, the edge e represents the fact that node v2 is executed after v1 if condition "c"
is true. The node v2 is said to be a successor of v1. Only one successor can be taken from any
node. If a node has more than one successor then a condition must be evaluated to determine
which one is to be taken.

Figure 1 shows the set nodes (Vc) available for building a CFG.

C

n
General

Operation

0 1

Boolean
Branch

Loop

Procedure
Call P

C

Synchronisation

0 110

Begin

C

V1 Vn-1 Vn

Multi-Value
Branch

V

CFG

Guarded
Successor

Figure 1: Set of CFG nodes

GraphGen: Implementor's Guide

© LEDA S.A. 1996 17

3.2 Data Flow Graph Nodes

At first, for each CFG node, an independent DFG is generated depending on whether there is
any data flow in the CFG operation. These DFGs can subsequently be merged to produce a
more optimised result.

VHDL permits the usual set of unary, binary, boolean and logical operations as well as function
calls to evaluate expressions. With the exception of function calls, these operations can be
easily represented using standard DFGs. Where VHDL is most powerful however, is in the
different data types that are allowed as operands, parameters and targets of the expressions.
Most synthesis tools severely limit the data types accepted and thus lose a great amount of the
versatility offered by VHDL. In our graph domain, all VHDL data types can be represented.
The DFG nodes allowed are shown in figure 2. They can be divided into four sets
corresponding to the hardware that will be allocated to them.

(i) Operator nodes
These will be allocated functional units in the synthesised model. They are used to represent
unary and binary operations, functions appearing in function calls (possibly referring to
predefined functional units in a specific library), and an abstract timer node that is used to
model specific delays requested in the input description (wait for 10 ns; etc.). It is assumed
that, if such delays are requested, then the synthesis environment has access to a functional unit
capable of calculating them and which can be mapped directly onto this node.

(ii) Operand nodes
These nodes will eventually be allocated memory elements in the synthesised model. Different
nodes are used to model memory reads and writes. The operand nodes can represent ROMs
(simple constant values) or RAMs. RAMs can in fact be simple registers (operand read/write)
or memory devices necessitating an addressing mechanism (array read/write).

(iii) Edge nodes
These will be allocated to buses or multiplexors in the synthesised model, depending on the
target architecture. The nodes represent simple connections within the data-path (edge) and
between the data-path and the controller (dfg/cfg interface) as well as nodes for merging buses
when a VHDL aggregate is used.

(iv) Address nodes
The final set contains nodes that do not explicitly map onto a hardware resource but help to
determine the type of resource required. These include parameter nodes and operand addressing
nodes. Address nodes are used between operands and expressions that calculate the address of
the operand to be accessed. This address calculation can include nodes from all sets, including
address nodes.

GraphGen: Implementor's Guide

18 © LEDA S.A. 1996

op
Simple

Operator
Call

Read XOperand
Read

Read XArray
Read address

NConstant

F
Function

Call

Write X

Write X
address

slice
address

segment
bound

left_boundright_bound

index
address

record
address

allocated
address

actual

formal
Parameter

Edge

EDGE nodes

ADDRESS nodes

OPERATOR nodes

OPERAND Nodes

Array
Write

Operand
Write

merge
read

merge
write

DFG/CFG
Interface

dfg_side

…

cfg_side

Abstract
Timer cDelay

Abstract
Operator

…

Figure 2: Set of DFG nodes

A data-flow graph (DFG) is defined as:
DFG = (Vd ∪ Od ∪ Ad, Ed)

where,
• Vd is the set of operator nodes
• Od is the set of operand nodes
• Ad is the set of address nodes
• Ed is the set of edges linking operators and operands.

Each DFG is built as a directed acyclic graph.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 19

To show the generation of control and data flow graphs for various VHDL statements more
clearly, we will use the VHDL code outlined in figure 3. The process describes a bubble-sort
algorithm that sorts a set of records according to the date in one of the record fields. The
numbers in comments will be used when referring to statements on the same line. When a
rising edge appears on the "START" port (statement 1), a loop is executed in order to read in
the records to be sorted (statements 3 to 8). This loop terminates when either the maximum
number of records is specified, as indicated by the generic parameter "MAXSIZE" or when a
special terminating record is encountered. This record is identified by the fact that the date field
has all elements set to zero (statement 7).

Once all records have been read into the RAM, bubble sorting can begin. This algorithm
consists of two nested loops. The inner loop compares two adjacent records. For this example,
a comparison of the day of the month only is executed (statement 15). It is assumed that the
month and year are equal for clarity purposes. A swop is then executed if necessary. A pointer
to the RAM is incremented and the inner loop iterates. In this way a wrongly-positioned record
"bubbles" its way, element by element, to the correct position. The outer loop iterates when a
full pass of the RAM, less the sorted elements, has been executed by the inner loop.

The description in figure 3 makes good use of VHDL's data typing capabilities to represent the
data. It also uses powerful assignment statements to modify data
(statements 5, 6, 19 and 20). Most synthesis tools do not accept such descriptions and, in
order to describe such an algorithm, require both more and simpler object declarations that will
possibly lead to more hardware.

GraphGen: Implementor's Guide

20 © LEDA S.A. 1996

package DATATYPES is
type DATEARRAY is array (0 to 2) of integer;
type DATAPACKAGE is array (0 to 255) of bit;
type INFO is record

DATE : DATEARRAY ; --day,month,year
DATA : DATAPACKAGE ; --not interested in contents

end record;
end DATATYPES ;

use work.DATATYPES .all;
entity BUBBLE is

generic (MAXSIZE : integer := 255);
port(START : in bit;

ACKOUT : out bit;
VALIDIN : in bit;
DATEIN : in DATEARRAY ;
DATAIN : in DATAPACKAGE);

end BUBBLE ;

use work.DATATYPES .all;
architecture BEHAVIOR of BUBBLE is

type MEMORY is array (0 to MAXSIZE) of INFO;
begin

BUBBLESORT : process
variable I,K,ITER,NUMELTS : integer;
variable TEMP1 : INFO;
variable RAM : MEMORY ;

begin
wait until START'EVENT and START = '1'; --1 Executed in CFG
NUMELTS:= 0; --2
while (NUMELTS<= MAXSIZE) loop --3

wait until VALIDIN = '1'; --4
RAM(NUMELTS) := (DATEIN,DATAIN); --5 Assign by record agg
ACKOUT<='1','0' after 5 ns; --6 Acknowledge receipt
exit when RAM(NUMELTS).DATE=(0,0,0); --7 Last packet
NUMELTS:= NUMELTS+ 1; --8

end loop;
I := 1; --9
while I <= NUMELTS loop --10

ITER := NUMELTS + 1; --11
while ITER > I loop --12

ITER := ITER - 1; --13
TEMP1 := RAM(ITER); --14
if TEMP1.DATE(0) < RAM(ITER-1).DATE(0) then --15 Swop

RAM(ITER) := RAM(ITER-1); --16
RAM(ITER-1) := TEMP1; --17
if RAM(ITER).DATE(0)<=0 then --18 Last Packet

RAM(ITER).DATE(1 to 2) := (2=>99,1=>13); --19 Assign by named agg
RAM(ITER).DATA := ('0',others=>'1'); --20 Assign by pos agg

end if;
end if;

end loop;
I := I + 1; --21

end loop;
end process BUBBLESORT;

end BEHAVIOR;

Figure 3: VHDL description of bubble-sort algorithm

GraphGen: Implementor's Guide

© LEDA S.A. 1996 21

3.3 Representing Full VHDL

For each VHDL sequential statement, a CFG Node is created (this is not entirely true, as will be
explained in the section on CFG optimisation). This node contains a (possibly NULL) pointer
to a DFG modelling the data flow through that statement. It also contains a (possibly empty) list
of pointers to other CFG nodes that are the successors of that node. The CFG for the process in
figure 3 is shown in figure 4. The numbers indicate which statement of figure 3 corresponds to
the CFG node. The arcs indicate the successors of a given node.

CFG

10

2

1 0

1

5

6

1 0

11

1

13

14

01

6

17

01

19

0

1

3

10

12

15

18

1

Figure 4: Control flow graph for description of figure 3

A brief discussion of the different CFG nodes and the corresponding DFGs follows:

GraphGen: Implementor's Guide

22 © LEDA S.A. 1996

3.3.1 Synchronisation Statements

Synchronisation in VHDL is modelled by the "wait" statement. VHDL "wait" statements are
normally treated by synthesis tools as implying a change of state. In other words, statements
appearing before and after a "wait" statement can never execute in the same control state (i.e.
potentially in parallel). Therefore, depending on where statements are placed with respect to
"wait" statements, the resulting hardware can change radically. For example, in the following
code:

A:=B+1;
wait until CLK='1';
X:=Y-1;

both variable assignments can execute before or after the "wait" statement with no affect on the
result. If both appear on the same side of the "wait" statement, they can be executed in parallel
thereby possibly speeding up the overall execution. However, being on different sides means
that they execute in different states and can thus potentially share hardware resources.

Most logic synthesis tools severely restrict the use of "wait" statements. They must normally be
used with one and only one synchronisation signal per process (identified as a clock signal and
having only '0' to '1' or '1' to '0' transitions). The reason for this limitation is the fact that the
target architectures of such synthesis tools are completely synchronous and it must be possible
to easily identify the clock.

With behavioural synthesis tools, the use of any number of "wait" statements each using
complex conditions involving different signals is becoming possible. Although a "wait"
statement still implies a change of state, there is no longer a need to identify a system clock.
It is very important to treat "wait" statements efficiently in the graph domain. Thus, a dedicated
synchronisation node is used uniquely to model these statements. In figure 4, we see that
synchronisation nodes are generated by statements 1 and 4 of figure 3. Both model the
synchronisation of the process with the rising edge of an incoming signal. This is stated
explicitly in statement 1 through the use of the "EVENT" attribute and implicitly in statement 4,
as a "wait until" statement automatically implies that an event must occur. Thus, both
synchronisation statements are modelled in exactly the same manner in the graph domain.

Neither synchronisation statement provokes the generation of a DFG. This is because the
condition is a simple bit equality operation and, from the hardware point of view, it is more
efficient to execute such operations in the controller. If the condition was more complex
(involving types other than bits) a DFG would be generated. This DFG returns a boolean value
indicating the result of the condition. This can be seen in figure 5.

wait until C>10 and D-1>0;

sensitivity

TRUEFALSE

CFG

CFG

Read D 1

-

>

Read C

>

10

&

fg_cfg_interface

Figure 5: Wait condition executed in DFG

GraphGen: Implementor's Guide

© LEDA S.A. 1996 23

The "wait" condition can in fact contain three different clauses: a sensitivity clause ("wait on"),
a condition clause ("until") and a timeout clause ("for"). If the sensitivity clause is present, the
process waits until there is an event on one of the items of the sensitivity list. If the condition
clause is also present, the process only continues if the condition evaluates to true. If the
timeout clause is present, the process continues when this time has elapsed regardless of the
state of the other two clauses.

Figure 6 depicts the graphs generated for a complex "wait" statement. The sensitivity clause
creates no DFG, but a list of signals to which it is sensitive (along with the appropriate edges)
is attached to the node. In hardware terms, the test for events on elements of this list will be
performed in the controller. The condition clause and the timeout clause both create independent
sub-DFGs. These sub-DFGs are independent because while the condition DFG is invoked only
on events, the timeout DFG is invoked immediately, regardless of any events.

function f (a : integer) return time;
…
wait on A,B until C>10 and D-1>0 for f(10);

sensitivity

A'EVENT
B'EVENT

TRUEFALSE

CFG

CFG

Read D 1

-

>

0

Read C

>

10

&

F PARAM

Read A

10

dfg_cfg_interface

Figure 6: Modelling complex wait statements

3.3.2 Flow of Control Statements

Apart from "wait" statements, the main flow of control statements in VHDL processes include
branch statements ("if", "case", "exit" and "next"), loop statements ("while", "loop", "for") and
procedure calls. Other statements such as assignments generate a CFG general operation node
having only one successor. The complexity of such statements is passed to the DFG.

3.3.2.1 Branch Statements

VHDL branch statements are mapped onto boolean branch nodes and multi-value branch nodes
(for "case" statements only) in the CFG. Conditions are treated as for synchronisation
statements. In other words, if it is a simple binary equality operation, it is assumed that it will
be executed in the controller and no DFG is generated. Otherwise a DFG is generated and the
result fed back via a dfg_cfg_interface node.
VHDL "next" statements are treated like "exit" and simple "if" statements in that they create a
single boolean branch node. The difference between "exit" and "next" statements is their
successors within a loop. For "next" statements, the true output points to the containing loop
statement and the false output points to the succeeding statement. For "exit" statements, the true
output points to the statement succeeding the loop region and the false output points to the

GraphGen: Implementor's Guide

24 © LEDA S.A. 1996

statement succeeding the exit statement. Figure 7 depicts a CFG containing both "exit" and
"next" statements.

while A='1' loop
A; --block of general opeations
exit when A='0';
B; --block of general operations
next when X='1'
C; --block of general operations

end loop;
D; --block of general operations

0

01

1

A='1'

A

A='0'

X='1'

B

01

C

D

Figure 7: CFG containing "exit" and "next" statements

"Case" statements are mapped directly onto multi-value branch nodes. These nodes have as
many outputs as there are VIF case alternatives. Thus, if a case alternative contains a slice of
values, one output is generated. Each alternative, with the exception of the "others" alternative,
generates a guarded successor node which points to a CFG node, corresponding to the first
statement in one of the case alternative branches, and the value required in order to execute this
node. If the alternative has a slice of possible values, the guarded value is the higher slice value.
Condition guards are always static values. The guarded successor corresponding to the "others"
alternative of a "case" statement has no guarded value. This node is taken only if none of the
other guards were matched by the result of the "case" condition expression.

Simple "if" statements containing at most two alternatives (if…else…end if;) are mapped onto
boolean branch nodes. If more than two alternatives are available (if…elsif…elsif…else…end
if;), a set of boolean branch nodes is created. The number of boolean branch nodes created is
one less than the number of alternatives if the "else" clause appears, otherwise it is equal to the
number of alternatives.

The difference between a "case" statement and an "if…elsif…else…end if;" statement is that the
former implies no priority whereas the latter does. This is, in fact, why an "if…elsif" statement
is represented by a succession of boolean branch nodes rather than a single multi-value branch.
Figure 8 shows the difference more clearly. The alternatives beside each output of the multiple
branch node represent guarded successor nodes, the value "E" corresponds to all other possible
values of X other than 0 and 1.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 25

case X is
when 0 => A;
when 1 => B;
when others => C;

end case;
D;

if X=0 then
A;

elsif X=1 then
B;

else
C;

end if;
D;

X
0 1 E

A B C

D

X=0

01

A
X=1

01

CB

D

Figure 8: Difference between "case" statement and "if…elsif…else" statement

3.3.2.2 Loop Statements

Loop statements include VHDL "while", "for" and "loop" statements. In our graph domain
there is only one node for treating loops (if we ignore for the moment implicit loops due to
synchronisation statements and process statements). All "for" loops have either been unrolled
or transformed into "while" loops.

Statement 3 of figure 3 is expanded in figure 9. This statement generates a simple DFG that
compares the values contained by two variable objects and returns a boolean result to the CFG
via an interface node.

<=

01

Read NUMELTS Read MAXSIZE

dfg_cfg interface

Figure 9: Expanded graphs for statement 3 of figure 4

One point worth noting however, is the fact that the loop boundaries are dynamically evaluated.
This kind of loop is generally not accepted by logic synthesis tools and, in order for it to be
accepted by higher-level tools, it must contain at least one synchronisation statement in every
possible control flow path through the loop.

3.3.2.3 Procedure Call Statements

A procedure call statement is mapped onto a dedicated CFG procedure call node in the graph
domain. This node has one successor which points to the first node of a CFG modelling the
body of the procedure and a second successor which points to the node representing the
statement to be executed immediately after control has returned from the procedure body. An
example is shown in figure 10.

GraphGen: Implementor's Guide

26 © LEDA S.A. 1996

procedure P (A:in bit,B: out bit) is
begin

if A='0' then
B;

else
C;

end P;
…
process
begin

P(X,Y);
wait;

end process;

P

CFG

CFG

01

C

A='0'
10

Figure 10: Example of a procedure call node

Synthesis tools usually limit the complexity of procedure bodies. They are normally used to
represent frequently executed code or to model either a previously-synthesized functional unit,
or a resolution function having no direct hardware equivalent. In the former case, the synthesis
tool can replace the call by the procedure body. In the latter case, it is to be treated as a black
box and its contents are not relevant to the current synthesis session.

A third case not normally treated by synthesis tools is the use of procedures as a partitioning
mechanism. In other words, the body of a procedure is to be synthesised separately from the
calling environment. No limitations are made on the VHDL accepted.

Our graph domain caters for all three possibilities. For in-line expansion, the two successors of
the procedure call node permit the two corresponding CFGs to be merged. At the same time,
the fact that the body and calling environment are separate allows the contents of the body to be
ignored. Finally, the generation of an independent CFG (and associated DFGs) for the
procedure body facilitate an independent treatment by a synthesis tool. This tool must, of
course, add any communication protocols necessary to interface the two partitions.

3.3.3 Data Flow Statements

From the control flow point of view, other VHDL statements create a single CFG general
operation node having at most, one successor. The complexity of these nodes is in their data
flow. In VHDL, there are two main areas of data flow: the calculation of expressions for
assignments and the calculation of expressions for address evaluation. In this section we
concentrate on the former.

3.3.3.1 Simple Assignment Statements

In VHDL, an assignment consists of a target and a source. The target can be one or more
declared objects or parts of declared objects. The source can be one or more expressions.

In the simplest case, VHDL permits direct assignments from one general used object to another
or sources containing simple operator calls whose operands are general used objects or static
values. Examples from figure 3 include statements 2, 8, 9, 11, 13 and 21. Figure 11(a) shows
the expanded CFG nodes for the first two of these statements. Figure 11(b) shows the
representation of a more complex expression involving two simple operator calls. Note that
although the operand "B" is used twice, there is only one instantiation of the corresponding
operand read node in the DFG. This is because the DFG is constructed as a directed acyclic
graph and common sub-expressions are eliminated during generation.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 27

From the synthesis point of view, the simple operator call nodes will map onto functional units,
the operand access nodes will map onto registers and the edges will map onto bus segments or
multiplexors, depending on the target architecture. Expressions involving more than one simple
operator call are usually split into intermediate expressions by the synthesis tool. Therefore, the
number of registers required may be increased by the number of intermediate results have to be
stored.

+

NUMELTS := NUMELTS + 1;

Write NUMELTS

1

A <= B / (B / C);

/

Read B

Write A

/

Read C

(a)

(b)

Read NUMELTS

8

CFG

CFG

0

NUMELTS := 0;

Write NUMELTS

2

CFG

CFG

8

CFG

CFG

Figure 11: Simple assignments statements (a) Statements 2 and 8 of figure 3
(b) Statement involving two simple operator calls

3.3.3.2 Delayed Signal Assignments, Type Conversions and Qualified
Expressions

VHDL also allows the concept of delayed signal assignments through the "after" clause. The
time of delay may itself be the result of a complex expression evaluation. In the DFG, this delay
information is appended to the final edge before the operand write node. In figure 12, the DFG
for statement 6 of figure 3 is shown. The 5ns delay is represented as a constant node pointed to
by the final edge.

Other information attached to the final edge before an operand write includes type conversion
and qualification information. This is also shown in figure 12 for a qualified expression. The
information pertaining to the qualification was generated during compilation and is readily
available in the VIF model. As this information need only be read when appropriate, the graph
points directly to it through a DFG/VIF interface attached as a property of the edge.

GraphGen: Implementor's Guide

28 © LEDA S.A. 1996

Synthesis tools generally ignore this additional information as they are not easily interpreted in
hardware terms. For example, does the time evaluated in an "after" clause represent the
minimum, maximum or typical value of the real delay? It is therefore important to separate this
information from the main DFG while at the same time we must not penalise synthesis tools
that do interpret this information.

ACKOUT <= BIT'('1'), '0' after 5 ns;

Write ACKOUT

5 ns VIF
qualified

has_constraint

ascending_range_constraint

STD.STANDARD.BIT

is_type

10

Figure 12: Appending information to assignment edge

3.3.3.3 Function Calls

An operand in VHDL may also be a function call. The body of a function may or may not be
visible from the calling environment. In addition, the function call, like the procedure call, may
be used to instantiate a synthesised functional unit in the DFG and in this case it must be viewed
as a black box. In the pre-synthesis graph domain therefore, we must simply evaluate the
parameters.

VHDL allows full expressions to be used in the evaluation of actual parameters or parts of
actual parameters. It is not even necessary to use all parameters. In addition, VHDL'93 allows
type conversion functions to be executed on formal parameters. For each parameter therefore,
the DFG contains a parameter node which points to the evaluation of both the actual and the
formal.

Figure 13(a) shows the declaration and call of a function containing one parameter. Note that
the parameter node evaluates both actual and formal expressions. If the formal parameter was
type converted, this would appear as a property of the edge pointing from the parameter node to
the formal parameter expression.

In figures 13(b) and 13(c) the function is called without the second parameter. In one case, it is
completely omitted, in the other the "open" key word is used. Note that the DFG for both cases
is identical with the default value being used as the actual parameter.

Figure 13(d) shows another possibility permitted in VHDL, that of partially associating an
unconstrained formal parameter. The partial associations are gathered together through the DFG
merge read node. For each partial association, a segment of the merge read node points to an
expression evaluating the partial actual and to a DFG address node that in turn points to an
expression evaluating the partial address of the formal with which the actual is associated.
Address nodes will be discussed in more detail in the following section.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 29

Write F

Func_call
P Param

Read M

Read A
function P (M:integer)
 return bit_vector;
…
F <= 1 + P(A) ;

function P (P1 : bit := '0'; P2 : bit := '1'; P3 : bit := '0') return integer;
…
F <= P(P1=>A,P3=>B);

Write F

Func_call
P

Param

Read P1 Read A

Param

Read P2 Read B

Param

Read P31

function P (P1 : bit := '0'; P2 : bit := '1'; P3 : bit := '0') return integer;
…
F <= P(A, open, P3=>B);

Write F

Func_call
P

Param

Read P1 Read A

Param

Read P2 Read B

Param

Read P31

(a)

(b)

(c)

+

1

function Q (K : bit_vector) return integer;
…
A <= Q(K(1)=>'0', K(2 to 3) => F);

Write A

Func_call
Q Param

Read K

1

slice

2

index

0Read F
3

(d)

Figure 13: Using function calls as operands (a) General case (b) Second
parameter omitted (c) Second parameter unconnected (d) Parameter partially

associated

GraphGen: Implementor's Guide

30 © LEDA S.A. 1996

3.3.4 Address Evaluation

In the previous section, all operands were either function calls or scalar object types.
Sometimes, as illustrated by figure 3, it is more convenient to group blocks of data into the
same structure. VHDL has some very powerful data typing facilities to implement this.
Unfortunately, synthesis tools do not take advantage of this facility, mainly due to the lack of
an efficient synthesis-oriented representation.

All non-scalar VHDL operands that are partially addressed are mapped onto array read and
write nodes in the graph domain. This is valid for operands declared as arrays (1 or multi-
dimensional), enumerated types or even records (as a record can be seen as an array with
elements of varying length). The difference between these operands lies in the manner in which
the array index (the address) is calculated. VHDL also permits multiple and array aggregate
assignments, all of which must be considered.

The graph domain contains six DFG nodes in order to facilitate the address evaluation. In the
case of a dynamic address evaluation, the DFG points to the VIF representation of the
expression which contains all of the available information.

3.3.4.1 Index Addressing

The most simple form of addressing is the simple indexing of array objects, as in statement 16
of figure 3. In this case, a single index address node will be used for both accesses of array
"RAM". In both cases, the index address node points to the expression evaluating the index, as
depicted in figure 14(a). For multi-dimensional arrays, as many index address nodes as there
are dimensions will be used. These nodes point to a list of expressions, each calculating the
address corresponding to a single dimension. This is shown in figure 14(b). Note that the same
representation is used for both type of multi-dimensional array access.

RAM(ITER) := RAM(ITER-1);

Read RAM index

1Read ITER

Write RAM index

-

A(I+1,J+1) <= 0;
A(I+1)(J+1) <= 0;

Write A

0

index

Read I Read J1

+ +

(a)

(b)

index

Figure 14: Indexing array objects (a) 1-dimensional arrays (b) N-dimensional
arrays

GraphGen: Implementor's Guide

© LEDA S.A. 1996 31

3.3.4.2 Record Addressing

In figure 3, the array "RAM" contains a set of record items, each having two fields. These
fields can be accessed individually or simultaneously. Consider statement 5 of figure 3, whose
DFG is shown in figure 15(a). In this statement, we simultaneously assign both fields of the
record situated in address "NUMELTS" of array RAM. In the graph domain, all simultaneous
reads and writes are modelled by the DFG merge read and write nodes. In hardware, this node
represents a bus merge or split function. The merge read node of figure 15(a) has two
segments, one for each field. Each segment has a pointer to an expression representing the
value to be read. In this case, it is a simple operand read. Each segment also has a pointer to an
address node that evaluates the partial address of the operand to be written. In the case of
records, these will always be constant values corresponding to the position of the field in the
record declaration.

WRITE RAM

1

index

Read DATEIN

Read RAM

index

Read DATAIN

0

index

index

0

Read NUMELTS

index

1Read ITER

-

Read TEMP1

index

Record
DATE

Record
DATE

<

dfg_cfg
interface

(a)

(b)

RAM(NUMELTS) := (DATEIN, DATAIN);

if TEMP1.DATE(0) < RAM(ITER-1).DATE(0) then…

Figure 15: Addressing record objects (a) Simultaneous access of all fields (b)
Accessing one field

GraphGen: Implementor's Guide

32 © LEDA S.A. 1996

In figure 15(b), we see the DFG corresponding to the condition evaluation of statement 15 of
figure 3. On the left hand side of this statement, we access an element of an array that is stored
in one of the record fields. Thus, two addressing nodes will be required, one to calculate the
record address (the field) and one to calculate the field's array address. We can interpret the
nodes as accessing index "0" of the array stored in record address "DATE" of record "TEMP".
The right hand side of the expression is slightly more complicated as the record itself is an
element of an array. Thus three address nodes will be necessary. We interpret the nodes shown
for this operand as accessing index "0" of record address "DATE" situated at address "ITER-1"
of array "RAM".

Another form of record addressing is to use allocated pointers. This is discussed in the next
section.

3.3.4.3 Allocated and Access Addressing

Another form of addressing in VHDL permits the use of accesses. Consider the code shown in
figure 16.

type R1 is record
F1 : integer;

end record;
type P is access R1;
type T is access integer;
…
process

variable P2,P3 : P;
variable T2 : T;

begin
T2.all := 1; --1
P2.F1 := 2; --2 same as P2.all.F3.F2(0 to 2)…
P3.all := P2.all; --3
wait; --4

end process;
…

Figure 16: VHDL showing access and allocated addressing

The first three statements of figure 16 use access types to refer to different memory elements.
An access declaration may be seen as a pointer to an address. Thus, it is not a memory location
corresponding to the declaration that is to be modified but rather the memory location pointed to
by the declaration. This is why, when modelling access types the array read and write nodes do
not have a name corresponding to a VHDL item. Figure 17 shows the DFGs generated for the
first three statements of the process in the above code segment.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 33

Write *

1

T2 := 1;

allocated
T2

Write *

2

record
F1

P2.F1:= 2;

Write *

Read *

P3.all := P2.all;

allocated
P2

allocated
P2

allocated
P3

(c)

(a)

(b)

Figure 17: Modelling allocated and access addressing (a) Pointer to a memory
element storing an integer value (b) Pointer to record field (c) Allocated

memory accesses

3.3.4.4 Slice Addressing

VHDL allows slices of arrays to be simultaneously accessed, as in statement 19 of figure 3.
Figure 18 shows the DFG model corresponding to statement 19. The DFG merge read node is
used to combine the different values to be assigned to the RAM address. This type of aggregate
addressing is discussed in more detail later. A DFG slice node is used to point to the
expressions that evaluate the upper and lower bounds of the array slice. If the bounds cannot be
evaluated during graph generation, an interface to the VIF is created which points to all
available information at compile and/or elaboration time.

Write RAM

1

2

Read ITER

Record
DATE

index

99

index

13

index

RAM(ITER).DATE(1 to 2) := (2=>99,1=>13);

slice

Figure 18: Writing to an array slice: statement 19 of figure 3

GraphGen: Implementor's Guide

34 © LEDA S.A. 1996

Figure 19 shows three different array slice accesses. In figure 19(a) and figure 19(b) the
bounds of the slice can be evaluated. In figure 19(c) however, we assume that the attribute
A'RANGE cannot be evaluated statically. In this case the slice address attribute "static_bounds"
is set to "false" and no DFGs are created for the bound attributes. However, the slice address
node also points to the VIF representation of the slice expression. The information necessary to
evaluate the range attribute at execution time is available in the VIF representation.

A(0 to N-1) <= (others=>0);

Write A

0

slice

Read N 1

-

Write A

0

slice

static_bounds

False

vif_model
VIF

slice
has_index_range

subtype_indicator

has_constraint

range_attribute_constraint

has_attribute_prefix

A

A(A'range) <= (others=>0);

Write A

0

slice

A'LOW A'HIGH

(a) (b)

(c)

A(A'range) <= (others=>0);

Figure 19: Slice addressing of arrays (a) simple slice (b) static range attribute
(c) dynamic range attribute

3.3.4.5 Aggregate Addressing

As shown in figure 18, VHDL allows individual elements of a non-scalar object to be
simultaneously accessed. This is known as aggregate addressing and is not unlike the partial
association of sub-program parameters discussed in previously.

Figure 20 gives some examples of aggregate addressing. In figure 20(a), The elements of the
slice are assigned a value according to their position. In other words, array element A(0) is
assigned 4, A(1) 5 and A(2) 6. This is in contrast to figure 18 where each element of the
aggregate was assigned by its name. The result is the same and thus the graph domain treats
position aggregates and named aggregates in the same manner. In order to model aggregate
reads we use a merge read node that concatenates different expressions and assigns them to the
target.

Figure 20(b) shows how the "others" clause is interpreted in an aggregate expression. This is in
fact the DFG corresponding to statement 20 of figure 3. In this case, "DATA(0)" receives the
value '0' and all elements of the slice "DATA(1 to 255)" receive the value '1'.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 35

A(0 to 2) <= (4,5,6);

Write A slice

0

2

index1

index

5

index

4

RAM(ITER).DATA := ('0',others=>'1');

Write RAM

0

Record
DATA

255

slice

index

1

Read ITER

index

(a)

(b)

6

Figure 20: Using the merge read node to resolve positional array aggregate
assignments

In the statement of figure 21, the target is an aggregate of four different signals. In other words,
four different memory writes are being executed simultaneously. This is modelled by the merge
write node, each signal being assigned a segment of the merge node. On the right hand side, we
note that elements in position 0 and 3 and elements in position 1 and 2 of the target aggregate
receive the same values (6 and 5 respectively). This is modelled by the merge read node of
figure 21. Note that one segment of the merge read node has a slice address corresponding to
the slice "1 to 2". The others (0 and 3) have been given individual index addresses.

GraphGen: Implementor's Guide

36 © LEDA S.A. 1996

type BIT_4 is bit_vector(0 to 3);
…
(S1,S2,S3,S4)<= BIT_4'(1 to 2 => '0', 0 | 3 => '1');

0
2

slice

1

3

Write S4

Write S2

Write S3

Write S1

index

index
index

index

indexindex

Figure 21: Using merge read/write nodes to model array aggregates

3 .3 .5 Optimising CFG Construction

After a VHDL unit has been compiled by LVS, all locally static expressions are evaluated. This
means that, rather than constructing a graph representing the input expression, we can construct
a graph for the value of this expression. In terms of data flow this means replacing whole
DFGs by a simple constant node. In terms of control flow, if we can identify locally static
condition expressions, it means the possibility of eliminating entire execution paths. This
optimisation can easily be extended to globally static expressions when the elaboration phase is
complete.

Take for example the following code:
if GENPARAM=1 then

X; --execution path containing N1 statements
e l se

Y; --execution path containing N2 statements
end if;

Suppose we know that GENPARAM=1. Then we need not generate CFG nodes for the N2
statements of the "else" branch. Subsequently, we do not need to generate a boolean branch
node as the same branch is always taken.
Similar tests are performed on all VHDL control flow statements ("case", "while", "loop",
"exit",…).

GraphGen: Implementor's Guide

© LEDA S.A. 1996 37

3 . 3 . 5 . 1 Branch statements

Apart from "if" statements, "else" and "next" statements also generate boolean branch nodes.
These statements can be treated similarly to "if" statements, as shown in figure 22. If the
condition of an "exit" statement resolves to true or there is no condition then no node is
generated but the successor of the node preceding the "exit" statement is modified so that it is
the first node outside the containing "loop" statement. Similarly, a "next" statement having a
condition that evaluates to true does not generate a node but rather modifies the successor of the
preceding node so that it points to the containing "loop" node. If the condition is false, the
preceding node simply points to the node succeeding the "next" statement.

process
begin

wait until CLK='1';
if TRUE then

A;
else

B;
end if;

end process;

CLK='1'
10

CFG

A

process
begin

wait until CLK='1';
while X=Y loop

A;
 next;
B;

end loop;
 C;
end process;

CLK='1'
10

CFG

A

1 0

C

Figure 22: CFGs generated for branch statements with static conditions

3 . 3 . 5 . 2 Case statements

If a case condition is static then only one of the branches will be taken. This is reflected in the
graph created for such a case statement as shown in figure 23. Although this code is not very
realistic, we can imagine the situation where X is a generic parameter evaluated during
elaboration.

GraphGen: Implementor's Guide

38 © LEDA S.A. 1996

process
begin

wait until CLK='1';
X := 1;
case X is

when 0 => A;
 when 1 to 5 => B;
when 6 => C;
when others => D;

end case;
 E;
end process;

CLK='1'
10

CFG

X:=1

B

E

Figure 23: CFG generated for case statement with static condition

3 . 3 . 5 . 3 Loop statements

If a loop condition can be evaluated we can not only remove the CFG loop node, but also some
of the statements within the loop as shown in figure 24. It should be noted that the "loop…end
loop" statement never generates a node. Flow of control edges within the loop are modified.
Another situation that often arises with loops is that the number of iterations is known. In this
case the loop can be unrolled. However, this is not always a desirable effect therefore we do
not unroll loops at this stage but leave it as an optimisation option for the user.

process
begin

wait until CLK='1';
while TRUE loop

A;
 exit;
B;

end loop;
 C;
end process;

CLK='1'
10

CFG

A

C

Figure 24: CFG generated for loop statement with static condition

GraphGen: Implementor's Guide

© LEDA S.A. 1996 39

3.4 Graph Partitioning

Once the graphs have been generated, we can perform some pre-synthesis tasks normally
executed by synthesis tools. One of these tasks is the partitioning of the control flow graph into
sets of contiguous nodes. The most popular partitions are basic blocks and execution paths.
From a synthesis point of view, if there are no data dependencies or hardware limitations, each
partition can execute all of its nodes in parallel. From a software point of view, partitioning into
independent blocks enables a large class of high-level transformation algorithms to be
performed, improving the overall execution time and resource requirements.

3.4.1 Basic Blocks

A basic block is a sequence of consecutive statements in which flow of control enters at the
beginning and leaves at the end without halt or possibility of branching except at the end. To
generate basic blocks for full VHDL, the basic algorithm presented in "Compilers: Principles
Techniques and Tools" by Aho et al was extended slightly.

The first step is to get all block leaders. A block leader is the first node in a basic block. For our
CFG these are:

• The first node.

• All cfg_loop nodes.

• Any node that is the successor of a cfg_loop, cfg_boolean_branch,
cfg_multiple_branch or cfg_wait node.

For each leader, its basic block consists of all nodes upto but not including the next leader or a
node with no successors. Figure 25 shows the basic block representation of the CFG of figure
4. The numbers in each block correspond to the number associated with each node in figure 4.

GraphGen: Implementor's Guide

40 © LEDA S.A. 1996

16,17,18

13,14,15

19,20

21

12

11

10

9

8

5,6,7

4

3

2

1

Figure 25: Basic block representation of VHDL CFG of figure 4.

For each basic block, a new DFG is created by merging the individual DFGs of the individual
CFG nodes that constitute the block. This new DFG is constructed as a directed acyclic graph
which automatically enables us to eliminate common sub-expressions between the nodes of the
CFG. For example, suppose we have the nodes representing the following code in a basic
block:

X := B+C;
Y := B+C;

The DFG constructed for this basic block is shown in figure 26. Note that only one add
operation node is necessary and the result is written to both X and Y.

Write X Write Y

Read B Read C

+

Figure 26: Optimising resource sharing by eliminating common sub-
expressions

GraphGen: Implementor's Guide

© LEDA S.A. 1996 41

3.4.2 Execution Paths

Execution paths are another way of partitioning CFGs both for optimisation and synthesis
purposes. As their name suggests, execution paths gather together CFG nodes that can be
executed during one complete pass of the graph. Thus, at any node with more than one
successor, a new set of paths is generated, one for each successor. Nodes can therefore appear
in more than one path. DFGs for each path are constructed as for basic blocks. The execution
paths for the CFG of figure 4 are shown in figure 27. Each node of the CFG is represented by
a circle containing the corresponding number. The box at the end of each path contains the
number of the node that will execute immediately after the execution of the current path. It is
known as the path successor. All paths start with the first node. Successor nodes are
sequentially appended until either a node has no successor or the next node already appears in
the path.

1

2

3

4

5

6

7

9

10

11

14

16

17

15

12

13

18

20

19

12

1

2

3

4

5

6

7

9

10

11

12

21

10

1

2

3

4

5

6

7

9

10

1

1

2

3

4

5

6

7

8

3

20

20

14

16

17

15

12

13

18

12

1

2

3

9

10

11

1

2

3

4

5

6

7

9

10

11

14

16

17

15

12

13

18

12

1

2

3

4

5

6

7

9

10

11

12

14

15

12

13

1

2

3

9

10

11

14

16

17

15

12

13

18

20

19

12

20

14

15

12

13

1

2

3

9

10

11

12

1

2

3

9

10

11

20

20

12

21

10

1

2

3

9

10

1

Figure 27: Execution paths for CFG of figure 4

The next step performed by GRAPHGEN is to eliminate duplicated paths. All path successors
will in fact become leaders of a new set of paths. We can therefore remove all sub-paths
beginning with this node from the original paths (except, of course, if this node is already the
path leader). The final set of paths can be see in figure 28.

GraphGen: Implementor's Guide

42 © LEDA S.A. 1996

1

2

3 4

5

6

7

9

10

11

10

1

4

5

6

7

8

3

20

14

16

17

15

12

13

18

12

3

9

14

16

17

15

12

13

18

20

19

12

14

15

12

13

12

20

12

21

10

10

123 10

4

Figure 28: Final set of paths for CFG of figure 4

Synthesis tools can now start scheduling these nodes. The first property we can identify is that
there will be at least 5 states in the controlling FSM, one for each path leader.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 43

4 . PROCEDURAL INTERFACE

The procedural interface to GRAPHGEN can be split into two parts: GRAPHGEN 's
procedural interface and a more global procedural interface that contains more general
subprograms.

GraphGen: Implementor's Guide

44 © LEDA S.A. 1996

4 .1 GRAPHGEN Procedural Interface

To use GRAPHGEN 's procedural interface, the application must be linked with
graphgen.a, lvskernel.a and the extended uvif.a as shown in section 2. The Makefile in
the Example directory of the GRAPHGEN package shows how this can be done. The script
gphtest shows how to build the extended schema.

Note: The order on linking the archives is very important.

The application will consist of one or more C files that must be compiled. To have access to the
functions and procedures of GRAPHGEN's procedural interface, the application must include
the directive:

#include "graphgen.h"

where graphgen.h is the header file in the Release directory of the GRAPHGEN package.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 45

4.1 .1 Primitive Types

GRAPHGEN introduces one new primitive type, gphPathOptions.

typedef gphPathOptions {
NoPaths,
SimplePaths,
OptimizedPaths
ControlFlowPaths

}

This type is used for specifying the type of paths to generate. It is used as one of the parameters
to gphGraphGen(). Each element can be specified as a parameter on the command line of the
executable.

NoPaths: No paths generated, path generation options do not appear on command
line.

SimplePaths: Classic execution paths for synthesis, -ps option on command line

OptimizedPaths: Simple paths cut to create new paths at wait statements and to identify
and isolate all path headers, -p or -po option on command line.

ControlFlowPaths: Different possible flows of control between the 1st node and the last node
of a set of sequential statements, -pc option on command line.

GraphGen: Implementor's Guide

46 © LEDA S.A. 1996

4.1 .2 Procedure gphGraphGen

Parameters

Name Mode Type
LibNode in vifLibraryUnit
gphBasicBlocks in vifBoolean
gphExecutionPaths in vifBoolean
PathOptions in gphPathOptions
GenerateDFG in vifBoolean
ControlInDFG in vifBoolean
CreateEquivalentProcess in vifBoolean

Description

Generate a control flow graph (CFG) structure for different concurrent statements in the design
unit pointed to by LibNode. If gphBasicBlocks is True, basic blocks are extracted for each
CFG. If gphExecutionPaths is True, execution paths are extracted for each CFG. The type
of execution path is determined by the value of PathType:

switch (PathType){
when NoPaths : break
when SimplePaths : simple paths
when OptimisedPaths : optimised paths
when ControlFlowPaths : control flow paths

}

For all CFG structures (nodes, basic blocks, paths), if gphGenerateDFG is True, a
corresponding data flow graph (DFG) is generated. If ControlInDFG is True all data flow is
executed in the DFG (equivalent to the -d option of the executable - see §2.3). If
ControlInDFG is False, all equality and inequality expressions having one locally static
operand will be executed in the CFG (no DFG will be built).

If CreateEquivalentProcess is True, concurrent statements selected_signal_assign,
conditional_signal_assign, concurrent_assert and concurrent_procedure_call will first be
transfromed into their equivalent processes before being treated. If it is False, this is equivalent
to setting the -n option in the executable. The graphs will be attached to the concurrent
statements themselves.

If GRAPHGEN has already been executed on the unit, this procedure will return without
performing any transformations. To always force the execution of GRAPHGEN, use
gphForceGraphGen().

GraphGen: Implementor's Guide

© LEDA S.A. 1996 47

4.1 .3 Procedure gphForceGraphGen

Parameters

Name Mode Type
LibNode in vifLibraryUnit
gphBasicBlocks in vifBoolean
gphExecutionPaths in vifBoolean
PathOptions in gphPathOptions
GenerateDFG in vifBoolean
ControlInDFG in vifBoolean
CreateEquivalentProcess in vifBoolean

Description

Generate a control flow graph (CFG) structure for different concurrent statements in the design
unit pointed to by LibNode. If gphBasicBlocks is True, basic blocks are extracted for each
CFG. If gphExecutionPaths is True, execution paths are extracted for each CFG. The type
of execution path is determined by the value of PathType:

switch (PathType){
when NoPaths : break
when SimplePaths : simple paths
when OptimisedPaths : optimised paths
when ControlFlowPaths : control flow paths

}

For all CFG structures (nodes, basic blocks, paths), if gphGenerateDFG is True, a
corresponding data flow graph (DFG) is generated. If ControlInDFG is True all data flow is
executed in the DFG (equivalent to the -d option of the executable - see §2.3). If
ControlInDFG is False, all equality and inequality expressions having one locally static
operand will be executed in the CFG (no DFG will be built).

If CreateEquivalentProcess is True, concurrent statements selected_signal_assign,
conditional_signal_assign, concurrent_assert and concurrent_procedure_call will first be
transfromed into their equivalent processes before being treated. If it is False, this is equivalent
to setting the -n option in the executable. The graphs will be attached to the concurrent
statements themselves.

GraphGen: Implementor's Guide

48 © LEDA S.A. 1996

4 .2 Global Procedural Interface

Subprograms used by all LVS toolbox products are supplied in the lvsexpr.h file located in
the Utils directory of the distribution package. To use these functions, add the following line
to the C code:

#include "lvsexpr.h"

For more information about other elements of the LVS toolbox, contact
sales@leda.fr.

In the global procedural interface, there is a set of functions used to recover information
generated by GEME, the GEneric Mapper and Elaborator (another element of the LVS
toolbox). However, if GEME is not present in the current user-application, the GEME
Schema Extension is, naturally enough, not present. Thus, we have developed part of the
global procedural interface that consists of a set of function pairs. Each pair has the same name
and profile (same header file), but whereas one works on the GEME Schema Extension, the
other is used if GEME is not included. This set of functions is in lvsexpr.h.

Function elbGetScalarValue:

For a scalar expression, if it is locally static, its value is returned in 32 bits.

If it is globally static and GEME has been executed, a 32 bit value corresponding to the
expression is returned.

If it is globally static and GEME has not been executed, no value is returned.

If it is not globally static, no value is returned.

Function elbGetCompositeValue

For a composite expression, if it is locally static, its value is returned in 32 or 64 bits.

If it is globally static and GEME has been executed, its value is returned in a predefined data
structure (see GEME Schema Extension). The value is split into 32 bit blocks.

If it is not globally static, no value is returned.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 49

For example, look at the following code:

entity E i s
generic (G : INTEGER);
port (CLK : in BIT;

CNT : in INTEGER;
DAT : out INTEGER);

end E;
architecture A of E is
begin

P:process
variable V : INTEGER;

begin
wait until CLK='1' and CLK'EVENT; --1
V := CNT; --2
if G = 1 then --3

while V > 0 loop --4
DAT := DAT + V; --5
V := V - 1; --6
wait until CLK='0' and CLK'event; --7

end loop; --8
e l se --9

DAT <= 0; --10
end if; --11

end process P;
end A;

Figure 29: Example showing benefit of using GEME with GRAPHGEN

Assume that we want to execute GRAPHGEN to determine the execution paths in the
process. GRAPHGEN will try and optimise the paths during their construction. For example,
if there is a locally static expression, GRAPHGEN will replace it by its value, thereby
reducing the size of the data-path (represented by the DFG). To verify if an expression is
locally static, GRAPHGEN executes one of the functions elbGetScalarValue or
elbGetCompositeValue. In our example, this leads to nothing and the execution paths are as
follows:

4

1

2

3

7

4

5

6

1

1

2

3

10

4

7

1

4

Figure 30: Paths extracted when GEME is not present

GraphGen: Implementor's Guide

50 © LEDA S.A. 1996

Now assume that GEME is included in the user-application and has already been executed. We
note that the if expression on line 3 of the code is globally static (G=1 where G is a generic
parameter). If we execute G R A P H G E N again, it will still execute the functions
elbGetScalarValue and elbGetCompositeValue but this time, their functionality will
include retrieving values of globally static expressions from the GEME Schema Extension. In
our example, the value of the if expression is known when the graphs are being constructed
and therfore GRAPHGEN can eliminate the branch that is not taken in the above example.
This leaves us with the following set of paths for G ≠ 1.

1

1

2

10

Figure 31: Paths extracted with GEME present

This difference in functionality is completely transparent to GRAPHGEN (and to any user
application). The same functions are called whether GEME is included ot not.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 51

4.2 .1 Function elbGetScalarValue

Parameters

Name Mode Type
Expression in vifNode
Value out vifInteger32*

<return> vifBoolean

Description

If the expression represented by Expression is scalar, this function tries to evaluate it. If it can
be evaluated, its value is assigned to *Value and True is returned. If it cannot be evaluated,
*Value=0 and False is returned.

GraphGen: Implementor's Guide

52 © LEDA S.A. 1996

4.2 .2 Function elbGetCompositeValue

Parameters

Name Mode Type
Expression in vifNode
Value out Elaborated_Data*
ValLength out vifInteger32*

<return> vifBoolean

Description

If the expression represented by Expression is composite, this function tries to evaluate it. If
it can be evaluated, its value is pointed to by the data structure *Value and True is returned.
The parameter ValLength points to the size of Value in 32 bit blocks.

If the expression cannot be evaluated, *Value=NULL, *ValLength=0 and False is returned.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 53

4.2 .3 Function absExprHasValue

Parameters

Name Mode Type
Expr in vifNode

<return> vifBoolean

Description

Function returns True if the expression Expr has a value, otherwise it returns False.

If GEME is included, the value returned is True if the expression is globally static. If not, True
is returned only if the expression is locally static.

GraphGen: Implementor's Guide

54 © LEDA S.A. 1996

4.2 .4 Function absExprAreEqual

Parameters

Name Mode Type
N1 in vifNode
N2 in vifNode

<return> vifBoolean

Description

Returns True if the values of expressions N1 and N2 can be evaluated and are equal.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 55

4.2 .5 Function absExprIsZero

Parameters

Name Mode Type
Expression in vifNode

<return> vifBoolean

Description

Returns True if the value of expression Expression is 0.

GraphGen: Implementor's Guide

56 © LEDA S.A. 1996

4.2 .6 Function elbGetValue

Name Mode Type
Expression in vifNode

<return> vifBoolean

Description

Try to evaluate any expression, scalar or composite. The type of the expression is evaluated
and, depending on the result, elbGetScalarValue() or elbGetCompositeValue() is called. The
result is then put in the appropriate global variable (e l b S c a l a r V a l u e or
elbCompositeValue) and three global flags are set as follows:

1.Expression can be evaluated and result is a 32 bit scalar value:
elbIsScalar32=True and result is in elbScalarValue

2. Expression can be evaluated and result is a 64 bit scalar value:
elbIsScalar64=True and result is in elbCompositeValue

2. Expression can be evaluated and result is a composite value:
elbIsComposite=True and result is in elbCompositeValue

The function returns True if the expression was evaluated, false otherwise.

The global variables are declared as externs in lvsexpr.h. To use this function, they must be
declared in the application.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 57

5. SCHEMA DEFINITION

This section defines the types, nodes and attributes of the intermediate format that are used to
represent graphs. The highest node in the hierarchy is always the control_flow_graph node.
This is attached to the xtn_graph attribute of different concurrent statements.

GraphGen: Implementor's Guide

58 © LEDA S.A. 1996

5 .1 Primitive types

type gphOperator is (
gphAbs,
gphAnd,
gphConcatenate,
gphDecrement,
gphDivide,
gphEqual,
gphExponent,
gphGreater_Than,
gphGreater_Than_Or_Equal,
gphIncrement,
gphLess_Than,
gphLess_Than_Or_Equal,
gphMinus,
gphMod,
gphMultiply,
gphNand,
gphNor,
gphNot,
gphNot_Equal,
gphOr,
gphPlus,
gphRem,
gphRol,
gphRor,
gphSla,
gphSll,
gphSra,
gphSrl,
gphXnor,
gphXor

);

GraphGen: Implementor's Guide

© LEDA S.A. 1996 59

5.2 Classes

5.2.1 GRAPH

A class covering all nodes constituting the GRAPHGEN domain.

5.2.2 CFG_BB_ITEM

A class containing the nodes that can be represented in a basic block partition of a CFG.

- bb_transition
- cfg_basic_block

5.2.3 CFG_CONDITION_EVALUATION

A class containing the nodes that can represent the result of a condition evaluation. If the
condition is to be evaluated in the DFG, then the result of the evaluation will be placed on a
dfg_cfg_interface edge. If it is to be evaluated in the CFG (a binary equality operation, for
example) then the corresponding dfg will be empty and the condition is represented as a VIF
expression of the class NAME_EXP. If there is no condition (loop…end loop;) the condition
evaluation is empty.

- dfg_cfg_interface
- NAME_EXP

5.2.4 CFG_ITEM

A class containing all the nodes that can be represented in a CFG.

- cfg_boolean_branch
- cfg_general_operation
- cfg_guarded_successor
- cfg_loop
- cfg_multiple_branch
- cfg_procedure_call
- cfg_wait

5.2.5 CFG_PARTITION

A class representing the different possible partitions of a CFG.

- control_flow_graph
- cfg_basic_block
- cfg_path

GraphGen: Implementor's Guide

60 © LEDA S.A. 1996

5.2.6 CFG_PATH_ITEM

A class containing all nodes that can be represented in an execution path transition of a CFG.

- cfg_path
- cfg_path_condition_test

5.2.7 CFG_VIF_OPERATION

A class containing all VIF nodes that can be referenced through the cfg_vif_model attribute of
CFG_ITEM nodes.

- CONSTRAINT
- STATEMENT
- TOP_LEVEL_AGG
- cond_alternative
- for_iteration

5.2.8 DFG_ADDRESS_DECODE

A class containing all DFG nodes that are used to evaluate the address of a non-scalar object
type to be accessed including formal parameters.

- dfg_allocated_address
- dfg_index_address
- dfg_parameter
- dfg_record_address
- dfg_segment
- dfg_slice_address

5.2.9 DFG_CONNECTION

A class containing all DFG nodes representing a flow of data between two DFG nodes or a
connection between the CFG and the DFG. If the result of a DFG operation is to be fed back to
the CFG (a condition evaluation for example), then a dfg_cfg_interface edge is used.

- dfg_cfg_interface
- dfg_data_edge
- dfg_merge_read
- dfg_merge_write
- dfg_select

5.2.10 DFG_HARDWARE_RESOURCE

A class containing all nodes that can represent a hardware block in the synthesized result.

- gph_functional_unit

GraphGen: Implementor's Guide

© LEDA S.A. 1996 61

5.2.11 DFG_OPERAND

A class containing all DFG nodes that can represent a memory device. Because of VHDL's
strong typing, addressing particular memories can be quite complex.

- dfg_array_read
- dfg_array_write
- dfg_constant
- dfg_operand_read
- dfg_operand_write

5.2.12 DFG_OPERATOR

A class containing all DFG nodes representing a functional operation.

- dfg_abstract_operation
- dfg_abstract_timer
- dfg_function_call
- dfg_simple_operator_call

5.2.13 DFG_VERTEX

A class containing all vertex nodes of a DFG.

- Nested Class: DFG_ADDRESS_DECODE
- dfg_allocated_address
- dfg_index_address
- dfg_parameter
- dfg_record_address
- dfg_segment
- dfg_slice_address

- Nested Class: DFG_CONNECTION
- dfg_cfg_interface
- dfg_data_edge
- dfg_merge_read
- dfg_merge_write
- dfg_select

- Nested Class: DFG_OPERAND
- dfg_array_read
- dfg_array_write
- dfg_constant
- dfg_operand_read
- dfg_operand_write

- Nested Class: DFG_OPERATOR
- dfg_abstract_operation
- dfg_abstract_timer
- dfg_function_call
- dfg_simple_operator_call

GraphGen: Implementor's Guide

62 © LEDA S.A. 1996

5.2.14 DFG_VIF_OPERATION

A class containing all VIF nodes that are referenced through the DFG.

- ASSOCIATIONS
- FUNC_DEF
- NAME_EXP
- attribute_spec
- component_decl
- conversion_function_on_assoc
- gathered_partial_associations
- subtype_indicator
- type_conversion_on_assoc
- wait_stm

5.2.15 DFG_VIF_DECLARATION

A class containing all VIF nodes that can be represented by an OPERAND node in a DFG.

- FUNC_DEF
- OBJECT_ITEM
- PROC_DEF

5.2.16 DFG_VIF_GRAPH_NODE

A class containing all VIF nodes that can possess a graph hierarchy.

- concurrent_assertion_stm
- concurrent_proc_call_stm
- conditional_signal_assign_stm
- func_body
- proc_body
- process_stm
- selected_signal_assign_stm

GraphGen: Implementor's Guide

© LEDA S.A. 1996 63

5.3 Nodes

5.3.1 bb_transition

A GRAPH node included in the CFG_BB_ITEM class. This node points to a basic block that
can be a successor of the current basic block according to the flow of control. It can also
indicate if the transition is clocked.
Contains the attributes:

cfg_bb_successor

A Required Alternate attribute that points to a cfg_basic_block node representing a basic block
that can be executed immediately after the current basic block according to the flow of control.

cfg_event

An Optional Alternate attribute that points to a cfg_wait node. The cfg_wait node points to a
wait_stm node in the VIF that contains the transition event.

GraphGen: Implementor's Guide

64 © LEDA S.A. 1996

5.3.2 cfg_basic_block

A GRAPH node included in the CFG_PARTITION and CFG_BB_ITEM classes. It represents
a partition of the CFG in basic block format.
Contains the attributes:

cfg_item_s

A Required Alternate attribute that points to a list of nodes of the class CFG_ITEM that are
included in the basic_block.

dfg_model

An Optional Alternate attribute that points to a data_flow_graph node that is the point of entry to
the DFG representing the basic block.

cfg_bb_transition_s

An Optional Alternate attribute that points to a list of bb_transition nodes representing pointers
to the basic blocks that are conditionally executed immediately after the current basic block
according to the flow of control.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 65

5.3.3 cfg_boolean_branch

A GRAPH node included in the CFG_ITEM class. This node represents a conditional flow of
control as modelled by the VHDL statements: "if", "exit" and "next".
Contains the attributes:

cfg_vif_model

A Required Alternate attribute that points to a VIF node of the CFG_VIF_OPERATION class
representing the VIF model of this node. If the node represents an "if" statement, this attribute
points to one of the cond_alternative attributes of the "if" statement rather than to the "if"
statement itself. This is because an "if" statement generates a cfg_boolean_branch node for
every condition in its list of alternatives (except the last one). For example, if we had an
"if…elsif…elsif…else…end if" statement, three boolean_branch nodes will be generated.

dfg_model

An Optional Alternate attribute that points to a data_flow_graph node that is the point of entry to
the DFG representing the node.

cfg_true_successor

A Required Alternate attribute that points to a node of the CFG_ITEM class that is the successor
of the current node if the condition evaluates to "true"

cfg_false_successor

An Optional Alternate attribute that points to a node of the CFG_ITEM class that is the
successor of the current node if the condition evaluates to "false". If an "if true…" statement is
specified, this attribute will be null.

cfg_condition

A Required Alternate attribute that points to a node of the CFG_CONDITION_EVALUATION
class representing the result of the evaluation of the condition.

GraphGen: Implementor's Guide

66 © LEDA S.A. 1996

5.3.4 cfg_general_operation

A GRAPH node included in the CFG_ITEM class. It models the general operations in VHDL
(assignment, assertion, return,…).
Contains the attributes:

cfg_vif_model

A Required Alternate attribute that points to a VIF node of the CFG_VIF_OPERATION class
representing the VIF model of this node.

dfg_model

An Optional Alternate attribute that points to a data_flow_graph node that is the point of entry to
the DFG representing the node.

cfg_successor

A Required Alternate attribute that points to a node of the CFG_ITEM class that is the successor
of the current node.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 67

5.3.5 cfg_guarded_successor

A GRAPH node included in the CFG_ITEM class. This node contains a successor of a
cfg_multiple_branch node representing a "case" statement as well as the value of the condition
required for this successor to be taken.
Contains the attributes:

cfg_guarded_value

A Required Alternate attribute that points to a VIF node of the STATIC_VALUE class
representing the value of the condition necessary for the successor to be taken

cfg_true_successor

A Required Alternate attribute that points to a node of the CFG_ITEM class that is the successor
of the current node if the condition matches the guarded value.

cfg_break_successor

A Required Alternate attribute that points to a node of the CFG_ITEM class that represents the
first node in the flow of control outside the case alternative region. In "C", this would be the
first node executed after a break statement. Although this successor is not really part of the real
control flow, it is useful to be easily able to identify it for many applications (partitioning into
basic blocks for example).

GraphGen: Implementor's Guide

68 © LEDA S.A. 1996

5.3.6 cfg_loop

A GRAPH node included in the CFG_ITEM class. This node represents a conditional flow of
control as modelled by the VHDL statements: "loop", "while…loop". It is assumed that "for"
loops have either been unrolled or replaced by equivalent "while" loops.
Contains the attributes:

cfg_vif_model

A Required Alternate attribute that points to a VIF node of the CFG_VIF_OPERATION class
representing the VIF model of this node.

dfg_model

An Optional Alternate attribute that points to a data_flow_graph node that is the point of entry to
the DFG representing the node.

cfg_true_successor

A Required Alternate attribute that points to a node of the CFG_ITEM class that is the successor
of the current node if the condition evaluates to "True"

cfg_false_successor

An Optional Alternate attribute that points to a node of the CFG_ITEM class that is the
successor of the current node if the condition evaluates to "False". If an infinite loop is
specified, this attribute will be null.

cfg_condition

An Optional Alternate attribute that points to a node of the CFG_CONDITION_EVALUATION
class representing the result of the evaluation of the condition. If there is no condition in the
loop statement, this attribute will be null.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 69

5.3.7 cfg_multiple_branch

A GRAPH node included in the CFG_ITEM class. This node represents a conditional flow of
control as modelled by the VHDL "case" statement.
Contains the attributes:

cfg_vif_model

A Required Alternate attribute that points to a VIF node of the CFG_VIF_OPERATION class
representing the VIF model of this node.

dfg_model

An Optional Alternate attribute that points to a data_flow_graph node that is the point of entry to
the DFG representing the node.

cfg_guarded_successor_s

A Required Alternate attribute that points to a list of cfg_guarded_successor nodes that contain
the successor node and the value of the "case" condition required for this successor to be taken.

cfg_condition

A Required Alternate attribute that points to a node of the CFG_CONDITION_EVALUATION
class representing the result of the evaluation of the condition.

GraphGen: Implementor's Guide

70 © LEDA S.A. 1996

5.3.8 cfg_path

A GRAPH node included in the CFG_PARTITION and CFG_PATH_ITEM classes. It
represents a partition of the CFG in execution path format.
Contains the attributes:

cfg_path_header

A Required Alternate attribute that points to node of the CFG_ITEM class that is the first node
of the current execution path.

dfg_model

An Optional Alternate attribute that points to a data_flow_graph node that is the point of entry to
the DFG representing the path.

cfg_path_successor

A Required Alternate attribute that points to a cfg_path node representing an execution path that
can be executed immediately after the current path according to the flow of control.

cfg_event

An Optional Alternate attribute that points to a wait_stm node in the VIF that contains the
transition event.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 71

5.3.9 cfg_path_condition_test

A GRAPH node included in the CFG_PATH_ITEM class. It represents one of the conditions
that needs to be evaluated and the expected boolean value of the evaluation in order for the
current transition to be taken. The transition will be taken if the logical "AND" of the evaluation
of all of the cfg_path_condition_test nodes is "true".
Contains the attributes:

cfg_path_condition

A Required Alternate attribute that points to a node of the CFG_CONDITION_EVALUATION
class representing the result of the evaluation of the condition.

cfg_path_cond_value

A Required Alternate attribute that points to a Boolean value that represents the expected result
of the condition evaluation in order for the current path transition to be executed.

GraphGen: Implementor's Guide

72 © LEDA S.A. 1996

5.3.10 cfg_procedure_call

A GRAPH node included in the CFG_ITEM class. This node represents an unconditional flow
of control that has the first node of a CFG representing the body of the procedure as successor.
A second successor points to the node to be executed immediately after the end of the
procedure.
Contains the attributes:

cfg_vif_model

A Required Alternate attribute that points to a VIF node of the CFG_VIF_OPERATION class
representing the VIF model of this node.

dfg_parameter_s

A Required Alternate attribute that points to a list of dfg_parameter representing the evaluation
of the subprogram parameters.

cfg_procedure_body

An Optional Alternate attribute that points to a control_flow_graph node representing the input
to a CFG modelling the body of the procedure called.

cfg_successor

A Required Alternate attribute that points to a node of the CFG_ITEM class that is the successor
of the current node.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 73

5.3.11 cfg_wait

A GRAPH node included in the CFG_ITEM class. It represents all possible variations of the
"wait" statement.
Contains the attributes:

cfg_vif_model

A Required Alternate attribute that points to a VIF node of the CFG_VIF_OPERATION class
representing the VIF model of this node.

dfg_model

An Optional Alternate attribute that points to a data_flow_graph node that is the point of entry to
the DFG representing the node.

cfg_true_successor

An Optional Alternate attribute that points to a node of the CFG_ITEM class that is the
successor of the current node if the condition evaluates to "true". If the condition is "false", the
successor is the current node. If a simple "wait;" statement is specified, this attribute is null.

cfg_condition

An Optional Alternate attribute that points to a node of the CFG_CONDITION_EVALUATION
class representing the result of the evaluation of the condition. If no condition is specified, this
attribute is null.

dfg_timeout

An Optional Alternate attribute that points to a data_flow_graph node representing the
evaluation of a timeout expression, if it exists in the original wait statement. If no time limit is
specified, this attribute is null.

GraphGen: Implementor's Guide

74 © LEDA S.A. 1996

5.3.12 control_flow_graph

A GRAPH node included in the CFG_PARTITION class. It is attached to every concurrent
statement of the VIF and contains the graph representation of that statement.
Contains the attributes:

cfg_item_s

A Required Primary attribute that points to a list of nodes of the class CFG_ITEM that
constitute the CFG.

cfg_first_item

A Required Alternate attribute that points to a node of the class CFG_ITEM that is the first node
of the CFG.

cfg_basic_block_s

An Optional Primary attribute that points to a list of cfg_basic_block nodes that represent the
partition of the CFG into basic blocks.

cfg_first_basic_block

An Optional Alternate attribute that points to a cfg_basic_block node that is the first basic block
of the CFG.

cfg_path_s

An Optional Primary attribute that points to a list of cfg_path nodes that represent the partition
of the CFG into execution paths.

cfg_first_path

An Optional Alternate attribute that points to a cfg_path node that is the first execution path of
the CFG.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 75

5.3.13 data_flow_graph

A GRAPH node attached to every CFG and containing a representation of the data flow
required to execute the corresponding CFG node.
Contains the attributes:

dfg_address_s

A Required Primary attribute containing a list of nodes of the class DFG_ADDRESS_DECODE
present in the DFG. These nodes normally have no hardware equivalent.

dfg_connection_s

A Required Primary attribute containing a list of nodes of the class DFG_CONNECTION
representing all of the edges of the DFG. Synthesis tools will map these operands onto
connections.

dfg_operand_s

A Optional Primary attribute containing a list nodes of the DFG_OPERAND class that represent
all of the operands of the DFG. Synthesis tools will map these operands onto memory devices.

dfg_operator_s

A Optional Primary attribute containing a list nodes of the DFG_OPERATOR class that
represent all of the operations to be executed in the DFG. Synthesis tools will map these
operands onto functional units.

GraphGen: Implementor's Guide

76 © LEDA S.A. 1996

5.3.14 dfg_abstract_operation

A GRAPH node belonging to the DFG_OPERATOR and DFG_VERTEX classes. It is used to
model VHDL operations that may have no hardware equivalence (such as dynamic variable
allocation (new BIT_VECTOR("0001")), file access operations, …) but possibly modify one
or more operands.
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a node of the class DFG_VIF_OPERATION
corresponding to a VIF node for which a DFG could not be generated.

dfg_functional_unit_s

An Optional Alternate attribute that points to a set of gph_functional_unit nodes. This attribute
is filled by synthesis tools and contains a list of all functional units capable of executing this
operation.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 77

5.3.15 dfg_abstract_timer

A GRAPH node belonging to the DFG_OPERATOR and DFG_VERTEX classes.
Contains the attributes:

dfg_input_s

A Required Alternate attribute that points to a list of nodes of the class DFG_VERTEX. These
edges represent the data flow input to the operation.

dfg_functional_unit_s

An Optional Alternate attribute that points to a set of gph_functional_unit nodes. This attribute
is filled by synthesis tools and contains a list of all functional units capable of executing this
operation.

GraphGen: Implementor's Guide

78 © LEDA S.A. 1996

5.3.16 dfg_allocated_address

A GRAPH node belonging to the DFG_ADDRESS_DECODE and DFG_VERTEX classes. It
is used to model the evaluation of an allocated memory access.
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a node of the class DFG_VIF_OPERATION
corresponding to a VIF "allocated" node.

dfg_pointer

An Optional Alternate attribute that points to a DFG_VERTEX node representing the evaluation
of a prefixed name, if it exists.

dfg_declaration

A Required Alternate attribute that points to a node of the OBJECT_ITEM (VIF) class
corresponding to the declaration of the array.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 79

5.3.17 dfg_array_read

A GRAPH node belonging to the DFG_OPERAND and DFG_VERTEX classes. It is used to
model an array read operation.
Contains the attributes:

dfg_index

A Required Alternate attribute that points to a node of the class DFG_VERTEX representing
the evaluation of the address to be read.

dfg_declaration

A Required Alternate attribute that points to a node of the OBJECT_ITEM (VIF) class
corresponding to the declaration of the array.

GraphGen: Implementor's Guide

80 © LEDA S.A. 1996

5.3.18 dfg_array_write

A GRAPH node belonging to the DFG_OPERAND and DFG_VERTEX classes. It is used to
model an array write operation.
Contains the attributes:

dfg_input_s

A Required Alternate attribute that points to a list of nodes of the class DFG_VERTEX
representing the values written.

dfg_index

A Required Alternate attribute that points to a node of the class DFG_VERTEX representing
the address of the array to be written.

dfg_declaration

A Required Alternate attribute that points to a node of the OBJECT_ITEM (VIF) class
corresponding to the declaration of the array.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 81

5.3.19 dfg_cfg_interface

A GRAPH node belonging to the CFG_CONDITION_EVALUATION and the
DFG_CONNECTION classes. It represents the data values that are passed from the DFG to the
CFG, for example, the boolean result of a condition evaluation.
Contains the attributes:

dfg_dfg_side

An Optional Alternate attribute that points to a node of the DFG_VERTEX class corresponding
to the generation of the value.

dfg_cfg_side

A Required Alternate attribute that points to a node of the CFG_ITEM class corresponding to
the CFG node that requires the data represented by the edge.

GraphGen: Implementor's Guide

82 © LEDA S.A. 1996

5.3.20 dfg_constant

A GRAPH node belonging to the DFG_OPERAND and DFG_VERTEX classes. It is used to
model a constant value.
Contains the attributes:

dfg_constant_value

A Required Alternate attribute that points to a node of the STATIC_VALUE (VIF) class
corresponding to the value of the constant.

dfg_declaration

An Optional Alternate attribute that points to a node of the OBJECT_ITEM (VIF) class
corresponding to the declaration of the constant value. If a literal is used, this attribute is null.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 83

5.3.21 dfg_data_edge

A GRAPH node belonging to the DFG_CONNECTION class representing data transferred
between two DFG nodes. If there is a delay imposed on the transfer of this data (i.e. an "after"
clause is used) the dfg_delayed_exp attribute contains a sub-dfg corresponding to the evaluation
of this delay . If the data is qualified or type converted, a pointer to a VIF "qualified" or
"type_conversion" node is included.

Contains the attributes:

dfg_destination

A Required Alternate attribute that points to a node of the DFG_VERTEX class corresponding
to the use of the value.

dfg_delayed_exp

An Optional Alternate attribute that points to a node of the DFG_VERTEX class corresponding
to the evaluation of the delay.

dfg_conversion

An Optional Alternate attribute that points to a node of the VIF_CONVERSION class
corresponding to the VIF node indicating the type of conversion or qualification to be executed
on the data carried by the dfg_data_edge node.

GraphGen: Implementor's Guide

84 © LEDA S.A. 1996

5.3.22 dfg_function_call

A GRAPH node belonging to the DFG_OPERATOR and DFG_VERTEX classes. It represents
any VHDL function call that does not correspond to a VHDL operator.
The inputs correspond to the function parameters. The output is the returned value.
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a VIF node representing the declaration of the
function called.

dfg_parameter_s

A Required Alternate attribute that points to a list of dfg_parameter representing the evaluation
of the subprogram parameters.

dfg_output_s

An Optional Alternate attribute that points to a list of nodes of the class DFG_VERTEX
representing the value returned by the function.

dfg_functional_unit_s

An Optional Alternate attribute that points to a set of gph_functional_unit nodes. If there is a
functional unit in the library having the same name and the same profile as the function, it is
added to this list automatically. Otherwise, this attribute will be filled by synthesis tools and
will contain a list of all functional units capable of executing the function.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 85

5.3.23 dfg_index_address

A GRAPH node belonging to the DFG_ADDRESS_DECODE and DFG_VERTEX classes and
representing a single element memory access. Multi-dimensional array addresses are made up
of series of this node, one for each dimension
Contains the attributes:

dfg_dimension

A Required Alternate attribute that points to a DFG_VERTEX node representing the result of
the expression corresponding to the index address for a single dimension.

dfg_pointer

An Optional Alternate attribute that points to a DFG_VERTEX node representing the evaluation
of a prefixed name, if it exists.

GraphGen: Implementor's Guide

86 © LEDA S.A. 1996

5.3.24 dfg_merge_read

A GRAPH node belonging to the DFG_CONNECTION class. This node is used to model the
concatenation of a set of values read from a number of different memory locations. From a
hardware point of view, it can be seen as the merging of a set of buses. If there is a delay
imposed on the transfer of this data (i.e. an "after" clause is used) the dfg_delayedfg_exp
attribute contains a sub-dfg corresponding to the evaluation of this delay . If the data is qualified
or type converted, a pointer to a VIF "qualified" or "type_conversion" node is included.
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a node of the class DFG_VIF_OPERATION
representing the TOP_LEVEL_AGG node modelled.

dfg_delayed_exp

An Optional Alternate attribute that points to a node of the DFG_VERTEX class corresponding
to the evaluation of the delay.

dfg_conversion

An Optional Alternate attribute that points to a node of the VIF_CONVERSION class
corresponding to the VIF node indicating the type of conversion or qualification to be executed
on the data carried by the dfg_data_edge node.

dfg_segment_s

A Required Alternate attribute that points to a list of dfg_segment nodes representing the
different values to be merged and their corresponding addresses in the merged output.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 87

5.3.25 dfg_merge_write

A GRAPH node belonging to the DFG_CONNECTION class. This node is used to model the
concatenation of a set of input values to be written to a number of different memory locations.
From a hardware point of view, it can be seen as the merging of a set of buses. If there is a
delay imposed on the transfer of this data (i.e. an "after" clause is used) the dfg_delayedfg_exp
attribute contains a sub-dfg corresponding to the evaluation of this delay . If the data is qualified
or type converted, a pointer to a VIF "qualified" or "type_conversion" node is included.
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a node of the class DFG_VIF_OPERATION
representing the TOP_LEVEL_AGG node modelled.

dfg_delayed_exp

An Optional Alternate attribute that points to a node of the DFG_VERTEX class corresponding
to the evaluation of the delay.

dfg_conversion

An Optional Alternate attribute that points to a node of the VIF_CONVERSION class
corresponding to the VIF node indicating the type of conversion or qualification to be executed
on the data carried by the dfg_data_edge node.

dfg_segment_s

A Required Alternate attribute that points to a list of dfg_segment nodes representing the
different values to be merged and their corresponding addresses in the merged output.

dfg_input_s

A Required Alternate attribute that points to a list of nodes of the class DFG_VERTEX
representing the memory locations to be modified.

GraphGen: Implementor's Guide

88 © LEDA S.A. 1996

5.3.26 dfg_operand_read

A GRAPH node belonging to the DFG_OPERAND and DFG_VERTEX classes. It is used to
model the reading of an operand.
Contains the attributes:

dfg_declaration

A Required Alternate attribute that points to a node of the OBJECT_ITEM (VIF) class
corresponding to the declaration of the array.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 89

5.3.27 dfg_operand_write

A GRAPH node belonging to the DFG_OPERAND and DFG_VERTEX classes. It is used to
model the assignment of an operand.
Contains the attributes:

dfg_input_s

A Required Alternate attribute that points to a list of nodes of the class DFG_VERTEX
representing the values written.

dfg_declaration

A Required Alternate attribute that points to a node of the OBJECT_ITEM (VIF) class
corresponding to the declaration of the array.

GraphGen: Implementor's Guide

90 © LEDA S.A. 1996

5.3.28 dfg_parameter

A GRAPH node belonging to the DFG_ADDRESS_DECODE and DFG_VERTEX classes. It
represents the mapping of the actual parameter used in a function call to the corresponding
formal parameter.
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a DFG_VIF_OPERATION node of the class
ASSOCIATIONS representing the VIF model of the parameter mapping.

dfg_actual

A Required Alternate attribute that points to a DFG_VERTEX representing the evaluation of the
actual part of the function parameter.

dfg_formal

A Required Alternate attribute that points to a DFG_VERTEX representing the evaluation of the
formal part of the function parameter.

dfg_mode

A Required Alternate attribute that points to an Interface_Element_Mode value representing the
direction of the parameter.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 91

5.3.29 dfg_record_address

A GRAPH node belonging to the DFG_ADDRESS_DECODE and DFG_VERTEX classes.
This node is used to model the evaluation of a memory address corresponding to an element of
a record.
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a node of the class DFG_VIF_OPERATION that
represents the corresponding VIF "indexed" node.

dfg_pointer

An Optional Alternate attribute that points to a DFG_VERTEX node representing the evaluation
of a prefixed name, if it exists.

dfg_field

A Required Alternate attribute that points to an element_decl node corresponding to the
declaration of the particular record field.

GraphGen: Implementor's Guide

92 © LEDA S.A. 1996

5.3.30 dfg_segment

A GRAPH node belonging to the DFG_OPERAND and DFG_VERTEX classes. It is used to
represent the value of part of a concatenated bus and the bus bounds containing this value.
Contains the attributes:

dfg_value

A Required Alternate attribute that points to a node of the class DFG_CONNECTION
representing the value to be merged.

dfg_bound

A Required Alternate attribute that points to a DFG_ADDRESS_DECODE node that gives the
left and right bounds of the current bus segment, or a simple index if only one element is
accessed.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 93

5.3.31 dfg_select

A GRAPH node belonging to the DFG_CONNECTION class. It is used to model "case" and
"if…elsif…else" statements in pure data flow.
Contains the attributes:

dfg_select_condition

A Required Alternate attribute that points to a list of nodes of the class DFG_VERTEX
representing the result of the condition evaluation.

dfg_input_s

A Required Alternate attribute that points to a list of nodes of the class DFG_VERTEX
representing the input values to the node.

dfg_functional_unit_s

An Optional Alternate attribute that points to a set of gph_functional_unit nodes. This attribute
is filled by synthesis tools and contains a list of all functional units capable of executing this
operation.

GraphGen: Implementor's Guide

94 © LEDA S.A. 1996

5.3.32 dfg_simple_operator_call

A GRAPH node belonging to the DFG_OPERATOR and DFG_VERTEX classes and
representing all monadic and dyadic synthesizable VHDL operations.
Contains the attributes:

dfg_vif_model

An Optional Alternate attribute that points to a node of the class DFG_VIF_OPERATION
corresponding to the VIF representation of the operation to be executed.

dfg_operation

An Optional Alternate attribute that points to a value of type ggOperator representing the type of
operator to be executed. In addition to VHDL's built-in operators, the graph generation
recognises operations of type increment and decrement.

dfg_input_left

A Required Alternate attribute that points to a node of the class DFG_VERTEX representing
the left hand side value for the operation. For monadic operations, this is the only input
required.

dfg_input_right

An Optional Alternate attribute that points to a node of the class DFG_VERTEX representing
the right hand side value for the operation.

dfg_functional_unit_s

An Optional Alternate attribute that points to a set of gph_functional_unit nodes. This attribute
is filled by synthesis tools and contains a list of all functional units capable of executing this
operation.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 95

5.3.33 dfg_slice_address

A GRAPH node belonging to the DFG_ADDRESS_DECODE and DFG_VERTEX classes.
This node is used to model the evaluation of a slice of memory addresses .
Contains the attributes:

dfg_vif_model

A Required Alternate attribute that points to a DFG_VIF_OPERATION node corresponding to
a VIF "slice" node representing the set of addresses to be accessed.

dfg_pointer

An Optional Alternate attribute that points to a DFG_VERTEX node representing the evaluation
of a prefixed name, if it exists.

dfg_static_bounds

A Required Alternate attribute that points to a VIF_BOOLEAN value that indicates whether or
not the bounds are static. If either of them is dynamic it will contain a dfg_data_edge that points
to a sub-DFG representing the evaluation of the bound. In this case, the attribute will be False.
If both bounds are static, they will point to dfg_constant nodes containing the bound values and
this attribute will be True.

dfg_left_bound

An Optional Alternate attribute that points to a node of the class DFG_VERTEX which
represents the evaluation of the left-most address in the range of addresses. If the address
cannot be statically evaluated, this attribute will be null.

dfg_right_bound

An Optional Alternate attribute that points to a node of the class DFG_VERTEX which
represents the evaluation of the right-most address in the range of addresses. If the address
cannot be statically evaluated, this attribute will be null.

GraphGen: Implementor's Guide

96 © LEDA S.A. 1996

5.3.34 gph_functional_unit

A GRAPH node belonging to the DFG_HARDWARE_RESOURCE class representing a
functional unit declared in the ABSYNT library.
Contains the attributes:

gph_fu_declaration

A Required Alternate attribute that points to a DFG_VIF_OPERATION node that in turn points
to the VIF representation of the FU declaration.

gph_fu_area

An Optional Alternate attribute that points to a DFG_VIF_OPERATION node that in turn points
to the FU_AREA attribute of the functional unit defining its area if the attribute was specified.

gph_fu_execution_time

An Optional Alternate attribute that points to a DFG_VIF_OPERATION node that in turn points
to the FU_EXECUTION_TIME attribute of the functional unit defining the execution time if the
attribute was specified.

gph_fu_power

An Optional Alternate attribute that points to a DFG_VIF_OPERATION node that in turn points
to the FU_POWER attribute of the functional unit defining the power requirements if the
attribute was specified.

gph_fu_fan_in

An Optional Alternate attribute that points to a DFG_VIF_OPERATION node that in turn points
to the FU_FAN_IN attribute of the functional unit defining the fan-in if the attribute was
specified.

gph_fu_fan_out

An Optional Alternate attribute that points to a DFG_VIF_OPERATION node that in turn points
to the FU_FAN_OUT attribute of the functional unit defining the fan-out if the attribute was
specified.

GraphGen: Implementor's Guide

© LEDA S.A. 1996 97

6 . APPENDIX A: LPIKEY

This appendix explains the utilisation of lpikey to obtain authorization to use any LVS product.

GraphGen: Implementor's Guide

98 © LEDA S.A. 1996

6 .1 Key Management using “lpikey”

The command lpikey sets the authorization keys for the LPI extensions such as APEX,
GraphGen, GEME or VELS. This command can be found in the directory ./Utils of any LPI
extension installation diskette. For more information about the different LPI extensions
proposed by LEDA, please send an E-mail to sales@leda.fr.

There are two ways to authorize the LPI extension(s) within a user’s application: by validating
the LPI kernel archive for the given LPI extension(s), or by validating the executable built by
the user with the LPI kernel archive. These two modes are described in the next two sections.

The authorization key mechanism used by lpikey is totally compatible with the authorization
key mechanism used by the LVS Compiler when executing the command “v key” (please refer
to the section 6.27 “key” of the manual “LEDA VHDL System - User’s Manual” and to the
section 2 “LVS Installation” of the manual “LEDA VHDL System - Implementor’s Guide Part
I”).

Warning: in order to be able to execute the command lpikey, the user must have write
permission on the file lvskernel.a (first mode) or the executable (second mode), as well as
write permission in the directory where this archive or executable is located.

6.1 .1 Validation of the LPI kernel archive (lvskernel.a)

Any user application must be linked with the LPI kernel archive file lvskernel.a. This archive
file is given in the directory ./lvskern of the installation diskette of LVS. To validate an
application including one or more LPI extension(s), it is sufficient and recommended to validate
lvskernel.a with the authorization key(s) provided by LEDA. Entering a given authorization
key in the archive file is done by executing the following command:

lpikey <key>

where <key> is the authorization key provided by LEDA for the given LPI extension(s). When
this command line is executed, the lpikey program looks for the file lvskernel.a in the
following directory path:

. ./lvskern $LVS_PATH/lvskern /usr/local/lvs/lvskern

and updates the first found with the corresponding key. Then, all executables built by the user
with the validated archive file will have the authorizations corresponding to the key(s) entered in
this archive file.

6.1 .2 Validation of the user’s executable

The user can also enter an authorization key directly into the executable of his or her
application. This is necessary when the user receives from LEDA an evaluation copy of an LPI
extension (usually provided as an executable to facilitate the user’s installation), or when the
user wants to execute his or her executable on a different host to the one for which the LPI
kernel archive has been validated. The following command must be executed to validate a given
executable:

GraphGen: Implementor's Guide

© LEDA S.A. 1996 99

lpikey -f <executable> <key>

where <executable> is the name of the user’s executable and <key> is the authorization key
provided by LEDA for the given LPI extension(s). If this command line is executed, then the
provided authorization key is entered into the executable itself of the user’s application.

If the LPI kernel archive does not contain any authorization key valid for a given LPI extension,
then the command lpikey must be executed for each executable linked with this LPI kernel
archive that requires the given LPI extension, and this must be done each time the executable is
built. To avoid this, it is recommended to validate the archive file itself, if possible.

If the LPI kernel archive already contains a certain number of authorization keys, then the
command lpikey above will add another authorization key to the executable, which also
inherits all the authorization keys from the archive file.

6.1 .3 Revalidating the same authorization key(s)

It may sometimes be necessary to revalidate the same authorization keys. This happens when
the user receives a new release of the LVS system, in which case the user needs to enter his or
her current authorization keys into the new version of the LPI kernel archive file lvskernel.a.
Another example is when the user does not enter any authorization key in the LPI kernel archive
but only in the user’s executable itself: the authorization key must be reentered in the executable
each time it is rebuilt (see previous paragraph 1.2).

To revalidate the same authorization keys, the user just needs to execute:

lpikey

to validate the new LPI kernel archive file lvskernel.a (located into the same directory path as
the one mentioned above) with the current authorization keys, and the command:

lpikey -f <executable>

to validate the executable whose name is provided.

The current authorization keys are stored by lpikey in a file named vLastKey which is
located in the same directory as the one containing the authorized archive file or executable. The
command lpikey must be executed at least once by the user with an explicit key in order to
create the file vLastKey. This file is then automatically updated at each execution of the
command.

6.1 .4 Checking the authorization key(s)

In order to check the current authorization keys, the user can execute the command:

lpikey list

to check the authorization keys of the LPI kernel archive file lvskernel.a (located in the same
directory path as the one mentioned above), and the command:

lpikey -f <executable> list

GraphGen: Implementor's Guide

100 © LEDA S.A. 1996

to check the authorization keys of the executable whose name is provided (the listed
authorization keys also includes those of the kernel archive that have been inherited).

This command has the same behavior as the command “v key list” of the LVS Compiler.

6.1 .5 Help

The command lpikey includes a help which can be displayed by executing:

lpikey -h

The following message is then displayed:

Command lpikey sets the authorization key(s) for LPI extensions:

 lpikey [-f <executable>] [<key> | list]

With option -f, lpikey executes on the program <executable>
Without option -f, lpikey executes on the archive lvskernel.a
found in path (. ./lvskern $LVS_PATH/lvskern /usr/local/lvs/lvskern)

If <key> is provided, then <key> is used as the authorization key
If list is provided, then lpikey lists all stored authorization keys
Otherwise, lpikey uses authorization key(s) of local file vLastKey

To get this help again, you can execute:

 lpikey -h | -help

