Checking Temporal Properties in SystemC Specifications*

Axel Braun, Joachim Gerlach, Wolfgaﬂg Rosenstiel
{abraun, gerlach, rosenstiel } @informatik.uni-tuebingen.de

University of Tiibingen
Sand 13, 72076 Tiibingen, Germany

1 Motivation

Today’s system designs consist of multiple architectur-
al components, software as well as hardware. The ability to
specify and verify these systems at a high level of abstrac-
tion is a key competence to cope with the increasing design
complexity. C/C++-based approaches on system specifica-
tion and design are becoming more and more important.
They provide a common platform for system designers,
hardware and software engineers, and allow a high-perfor-
mant simulation of system’s behavior during the whole de-
sign process. The leading approach for C++-based system
specification is SystemC [1], which is on the step of be-
coming a de facto standard in industrial system-level de-
sign. Generally, within SystemC the testbench of a design
will also be specified in SystemC, which results in a tight
coupling of the design and the corresponding test environ-
ment. On the other hand, only rudimentary testbench sup-
port is given in SystemC and sophisticated features of
today’s testbench environments are missing. The checking
of temporal properties is one of the core requirements in
the area of functional verification and is not supported by
the standard SystemC language. This paper addresses that
important problem. It shows strategies for checking tempo-
ral properties in a SystemC design in terms of an easy-to-
understand application, a traffic light controller.

The paper is organized as follows: Section 2 shows
strategies for providing mechanisms for temporal property
checking to SystemC. In section 3 the benchmark design, a
traffic light controller, which is used to illustrate and eval-
uate the property checking strategies, is introduced. Sec-
tion 4 shows the application of the strategies to the
benchmark design, and section 5 summarizes the experi-
mental results.

2 Strategies for Temporal Property Checking

There are different strategies to provide extended test-
bench features to SystemC: They can be implemented di-

rectly within the SystemC language, which results in an
add-on library to be linked to a SystemC design (in the
same way as the SystemC library itself). By this, extended
testbench features can be directly used in a SystemC test-
bench. Following this strategy, an add-on library for tem-
poral property checking is developed for SystemC (see
figure 1). This library includes functions for the checking
of temporal properties specified in a temporal logic calcu-
lus. With these functions, the traces of a simulation can be
checked against a specification of a temporal property giv-
en in a Finite Linear Temporal Logic (FLTL) [3]. FLTL is
a linear time temporal logic that interprets formulas over fi-
nite traces and supports quantitative timed operators. This
strategy is efficient and keeps the communication effort
low, because it is handled completely inside SystemC.

SystemC'

Figure 1: Add-on Library Strategy

Another strategy to provide extended testbench features
to SystemC is to interface SystemC with an existing exter-
nal testbench environment (in our approach, TestBuilder
[2]). In this approach, the SystemC design and testbench
environment are connected by an (automatically generat-
ed) interface module. The interface module exchanges data
between the SystemC simulation and the testbench envi-
ronment. Following this strategy, advanced temporal
checking features of the testbench environment can be ap-
plied to the SystemC design (see figure 2).

*This work has been partially by DFG (Deutsche Forschungsgemeinschaft) in the Priority Programs Embedded Systems and Rapid Prototyping

under Ro1030/4-2 and 5-2.

0-7803-7655-2/02/$17.0002002 IEEE

23

my_mmlule |

SystemC
DT

module_type *my_moduls;
xy_module = new module _type (“MOD%);
my_module->e1k(ciN) ;

sc_stare(i);

tor (int 1=0; i<no_of_cyclem; i++) (g
communicate with_testbanch(); &

Figure 2: Interfacing Strategy

3 SystemC Traffic Light Controller

The strategies outlined in section 2 for providing tempo-
ral property checking features to SystemC are demonstrat-
ed in terms of an easy-to-understand example given by a
traffic light controller for a pedestrian crossing. Two pairs
of traffic lights are controlled: The cars’ traffic lights for
the road and the pedestrians’ traffic lights for road crossing.
Each pair of traffic lights is controlled by a separate Sys-
temC thread. Pedestrians can request green light for cross-
ing the road by pushing the request button. Figure 3
visualizes the scenario.

Figure 3: Traffic Light Controller

24

The pedestrian request is simulated by a SystemC
thread. By default the cars’ traffic lights are green. If a pe-
destrian request (ped_req) is notified, the cars’ traffic
lights thread remains green for 5 time steps and then turns
to yellow for another 5 time steps and then to red after-
wards. After a safety time period of 5 time steps, it notifies
the pedestrians’ traffic lights thread via signal
(t1_ped_green) to switch from red to green. After a
green phase (20 time steps), the pedestrians’ traffic lights
turns back to red, and the pedestrians’ traffic lights thread
notifies the cars’ traffic light thread to switch back to green
via signal t1_ped_red. Therefore, the cars’ traffic light
thread remains red for a safety phase (5 time steps) and
then turns back to red-yellow and finally to green. The cut-
out of a waveform trace of such a cycle is given in Figure
4, depicting all relevant timing information. This traffic
light controller application is quite simple but gives a good
example for the following reasons: The SystemC code is
short and easy-to-understand but contains some ,,non-triv-
ial* features that are important from a testbench point of
view, and the application allows to specify evident tempo-
ral properties to be checked against the SystemC design.

00000 1 FTONHN XN LUTAIRE

03000000)

i

ped_req. L

) 230 2100

Ok

caceolod 31:0) l \

pedicolorf31:0] J

1_ped_green i ; : ﬂ
N i i i

1_ped_red 1 '

15060000,

2000006 EROUDOUO0 JOGOHI0

Figure 4: Waveform Trace of a Traffic Light Controller Cycle

4 Checking Temporal Properties

Both stategies for providing temporal property checking
features to SystemC outlined in section 2, the add-on li-
brary approach as well as the interfacing approach, were
implemented. This sections demonstrates the application of
these strategies to the benchmark design of section 3. A
temporal property check is done using the following set of
properties to be proven against the traffic light controller
design.

* Property-1: ,pedestrians’ traffic lights become green
within 15 time steps from pedestrian request'

_* Property-2: ,, 20 time steps after the pedestrian green re-

lease signal, the red acknowledge signal must occur™

* Property-3: ,the acknowledgement signal that pedestri-
an traffic lights are switched back to red, must occur
exactly after 37 time steps after a pedestrian request ar-
rives*

* Property-4: , pedestrian green phase request occurs 10
time steps after a pedestrian request '

Regarding figure 3, it can be seen that for the traffic light
controller, the properties -1, -2, and -3 hold. Property-4
does not hold, because this condition will never be satisfied
by the model: The request for a green phase at the pedestri-
an’s traffic light will not arrive before 15 time steps after
the pedestrian request. This temporal property will be used
to show the behavior of both approaches of an assertion
that is not valid. The preparing steps to set up a temporal
check differ significantly for the strategies of section 2. In
the following, the preparing steps are shown in detail for
both strategies in terms of property3 and -4. The results of
the application of both strategies to the properties -1 to -4
are compared and discussed in section 5.

4.1 Add-on Library Approach

For the add-on library approach, the temporal properties
have to be expressed in terms of FLTL formulas. Those
formulas can be checked using extended SystemC func-
tions provided by the temporal checking add-on library.
This requires some effort in coding the temporal properties
to FLTL, but minimum changes to the original SystemC
testbench. Figure 5 shows parts of the SystemC design, ex-
tended by calls for functions of the temporal checking li-
brary (printed in bold letters). In our example, the temporal
check is located in the top level module of the SystemC de-
sign. Nevertheless, the assertions can be placed every-
where in the design code. After the initialization function
of the temporal checking facility (sc_init_check)
specifying the positive clock edge to be the linear time ba-
sis for the check, and the internal cache size for the FLTL
formulas, assertions can be placed in the code. The
sc_check statement takes a FLTL formula to be checked
during the simulation run.

In figure 5, the reactivity of the ped_red signal (ac-
knowledgement signal that the pedestrian traffic light is red
again) to the ped_ req signal (pedestrian request for green
phase) is checked. It must be ensured that the acknowl-
edgement occurs exactly 37 time steps after the request.
The example additionally shows the method for accessing
signals: The pedestrian request signal, that is defined with-
in the top-level module, can be accessed directly, whereas
the ped_req acknowledgement signal, that is defined in
the traffic light controller sub-module t1, can be reached
straightforward using the ‘-> operator.

25

int sc_main{int ac, char *av([])
{
//Signals
sc_signal<bool> ped_req;
//Clock
.sc_clock clk("clock",1,0.5);

// Initialize temporal checker tool
sc_init_check(clk.pos(),100000);
//Modules
tl_ctrl *tl;
tl_tb *tl_t;
tl = new tl_ctrl("tl_ctrl");
(*tl) (ped_req, c1k);
tl_t = new tl_tb("tl_tb");
(*tl_t) (ped_req,clk);
sc_cﬁack(e (prop(ped_req) >
X (37, prop(tl->tl _ped red))));

sc_start(20000);

// stop temporal checking
sc_quit_check();
return 0;

Figure 5: Temporal Checker Code

To invoke the temporal checking feature not only for
valid situations, we also applied property-4, which does not
hold. The feedback of the temporal checker tool is given in
Figure 6: The ped_green signal does not occur 10 time
steps after the arrival of the pedestrian request signal, so a
failure message is generated. The traffic light model re-
ports its current state by displaying the status for red, yel-
low and green [re] [ye] [gr] for the road or simply red
and green [re) [gr] for pedestrians.

2262

Pedestrian request
2268 Traffic light (car): [llyell 1]
2273 Traffic light (car): {rell 1l)
2279 Traffic light (ped): [1lgr}
sc_check:tl_main.cc:49:0:G ((prop({0})>
X (prop(tl_ctrl.{2})))):false:2.3e-06 sc_sec
SimErr >
2315 Traffic light (ped): {rell 1
2321 Traffic light (car): [re}(yell]
Traffic light (car): 1lgrl

2326 L1t

Figure 6: Temporal Checker Error Feedback

4.2 Interfacing Approach

For the interfacing approach, the temporal properties
have to be specified within a TestBuilder test environment
using the mechanisms provided by TestBuilder. The test
environment has to be interfaced to the SystemC design.
This is supported by an automated interface generator,
which builds a corresponding shell around the SystemC de-
sign that allows TestBuilder to access to internal signals of
the SystemC design, for example. This approach allows to
use advanced test features of TestBuilder, but requires
some interfacing effort. In a first step the sc_main function

is automatically generated by parsing the SystemC descrip-
tion of the traffic light example. The second step is to spec-
ify the temporal properties to be checked. In opposite of the
add-on library approach described above, this specification
has to be done in a separate module for the TestBuilder
C++ environment. This code is compiled and linked to-
gether with the automatically generated interface module
and the original SystemC design. Figure 7 depicts the code
for the temporal properties written in TestBuilder style.
The checks are formulated similarly to the temporal check-
er tool after the initialization. The temporal property is stat-
ed by specifying the appropriate parameters of a property
object tbvPropertyT. The actual property is specified
using the setType () function and the setFulfill ()
method (last line in figure 7).

void tbvMain()
{
basicTvmT *tvmP;
// begin test
tbvOut << "C++: Starting test 'tl_test' at t="
<< tbvGetInt64Time ()
<< " * << tbvGetSimTimeUnitP() << endl;

tvmP = (basicTvmT?*) tbvTvmT: :getTvmByInstanceNameP("tl

tbvPropertyT checkd{"red ackn within 38 steps from ped.
check4.setType (tbvPropertyT: : EVENTUALLY) ;
check4.setEnableTrigger (edge) ;

checkd .setEnable (tvmP->ped_req(});:

check4 .setWindowEnd(cycle * 38);
checkd.setDisableTrigger (edge) ;

checkd .setDisable(tbvExpressionT (FALSE)) ;
checkd.setFulfillTrigger (edge) ;

checkd4 .setFulfill (tvmP->ped_red());

" // let the setup functions finish
tbvWait (1) ;
// enable constraint checking

checkd . setActive (TRUE) ;

Figure 7: TestBuilder Code

Additionally, the conditions where and when this (tem-
poral) property has to be checked are specified. This is
done by fixing conditions for observation windows. Within
these observation windows the temporal property is
checked during simulation run. The observation window
starts exactly when a pedestrian request signal (ped_req)
occurs and ends 38 time steps after this event, and the tem-
poral property is checked within this period. Compared to
the add-on library approach, the specification of the obser-
vation window corresponds to an appropriate placing of a
temporal checking library function in the SystemC code.

In case of the check of property 4, the designer gets a
' PROPERTY_FAILURE' message from TestBuilder dur-
ing the simulation is running, similar to the temporal
checker tool. Figure 8 shows such a feedback. The specifi-
- cation of the observation window ensures that every occur-
rence of this failure is reported.

26

4495

Pedestrian request
4525 Traffic light (car): [liyell
4550 Traffic light (car): [rell]
4580 Traffic light (ped): [1lgr]

**% WARNING From TestBuilder, exceptionType= 'PROPERTY_

Property ‘red within 38 time steps from pedestrian requ
. TVM ‘top_sc.tl_test’ failed at time 4690.

x% End of message

SimErr
4760 Traffic light (ped): [rell 1
4790 Traffic light (car): [rellyell]
4815 Traffic light (car): 10 1lgr)
Figure 8: TestBuilder Error Feedback
5 Results

Add-on library approach and interfacing approach were
compared in terms of simulation speed, handling and us-
ability. Both approaches are functional verification meth-
ods based on simulation, in case of SystémC based on
simulation by an executable specification. Table 1 shows
the simulation performance of both approaches for the
properties specified in section 4.

Used temporal Temporal TestBuilder
property Checker
Without Check 0.132 0.132
Property-1 0.181 0.590
Property-2 0.169 0.666
Property-3 0.169 0.638
Property-4 0.144 0.788

Table 1: Execution Times for Temporal Checks

The interfacing approach introduces more communica-
tion and much more effort for synchronization than the
add-on approach, which integrates the temporal checking
features directly in SystemC. This results in a 1.26 times
(average) higher run time in case of the add-on library ap-
proach and a 5.08 times (average) higher run time in case
of the interfacing approach for the check of a temporal
property. The differences between the four temporal prop-
erties checked in our experiments are similar within both
strategies. The complexity of all of the four temporal prop-
erties is also quite similar.

Concerning the handling and ease-of-use, both ap-
proaches show advantages and disadvantages. The add-on
library approach allows a simpler specification of the tem-
poral properties compared to TestBuilder. All specifica-
tions of the add-on library approach are done within the
SystemC code of the design and they can be located exactly

at the position in the design code where they have to be
checked. Whereas TestBuilder is separated from the code
of the design and requires a separate specification. This
separation also requires the coding of additional conditions
where and when a temporal property is being checked. If a
large number of complex temporal properties have to be
checked, the mixture of temporal verification code and de-
sign code may lead to an entirely more complex code.

In opposition to that, the TestBuilder approach requires
a very careful specification of all conditions when a certain
temporal property is being checked. If one of those condi-
tions, e.g. the observation window, is incorrect, the related
property could be never checked, possibly without any no-
tice to the designer.

6 Conclusion

In this paper two basic strategies for providing temporal
checking features to SystemC were analyzed. Therefore, an
add-on library approach, which results in a temporal check-
er tool that allows the observation of temporal properties
within a SystemC design, was implemented. Secondly, an
interfacing approach between SystemC and an existing
testbench environment, TestBuilder, was implemented,
which makes the advanced temporal checking features of
TestBuilder available for the verification of a SystemC de-
sign. Both temporal property checking approaches were
compared in terms of an easy-to-understand benchmark de-
sign, given by a traffic light controller.

As our experiments show, the add-on library approach
is about four times faster concerning simulation speed than
a corresponding check using the interfacing approach.
Both strategies differ in terms of handling and application:
Using the temporal checker approach, the properties can
directly be placed at a particular position in the SystemC
design code, whereas the interface approach requires a sep-
arate and more complex specification of the design parts
where the property has to be checked.

7 References

[Open SystemC Initiative: “SystemC Version 2.0 beta-1",
User’s Guide, http://www.systemc.org, 2001.

[2] Cadence Design Systems, Inc.: "TestBuilder User
Guide “, Product Version 1.0, March 2001.

3] J.Ruf, D. W. Hoffmann, T. Kropf and W. Rosenstiel:
"Simulation-Guided Property Checking Based on Multi-
Valued AR-Automata”, In Proceedings of Design
Automation and Test in Europe (DATE) Munich, March
2001.

27

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

