Automated SystemC to VHDL Translation in Hardware/Software Codesign

Christian Coté
Industrial/Consumer Division
Teradyne Inc.

Boston, MA, USA
Email : Christian.Cote@teradyne.com

ABSTRACT

Recent advances in electronic circuit technology have
enabled the creation of "system-on-chip", which comprise
both hardware and software components. Codesign takes
advantage of this opportunity by considering both
components as a whole throughout the design process.
While an increasing number of tools are being offered,
most concentrate on the simulation of systems, with little
or no support for their implementation. This paper
describes a translation algorithm developed to act as a
bridge between simulation and implementation by
translating SystemC code to VHDL.

1. INTRODUCTION

In recent years, the hardware/software dichotomy has
been seen as a limiting factor in the effectiveness of a
design. The codesign approach to system design was
introduced to overcome this limitation. By considering
both hardware and software jointly throughout the design
cycle, it is possible to better simulate and validate the
whole system and save valuable time by limiting
duplication in the design process.

One of the key aspects of the codesign approach is the
ability to describe both hardware and software
components using a single system behavior description.
Since software has traditionally been used to model and
simulate system components, a number of existing
codesign tools employ a variant of C/C++ to serve this
purpose. Such an approach, however, leads to certain
problems, especially in system implementation. Hardware
components often have to be rewritten by a time
consuming and error-prone process.

This paper documents our attempts at automating the
software-to-hardware translation process in a codesign
context. First, we will motivate the need for such a
translation algorithm. We will then present our
architecture for a translation process between SystemC
and VHDL. The translation algorithm will then be
described, along with some experimental results.

2. BACKGROUND
The aim of codesign is to bridge the gap between

hardware and software by combining both aspects early
on in the design process. The idea of integrating multiple

0-7803-7596-3/02/$17.00 ©2002 IEEE

717

Zeljko Zilic
Dept. of Electrical and Computer Engineering
McGill University
Montréal, QC, Canada
Email: zeljko@macs.ece.mcgill.ca

aspects of the design process in a uniform framework is

not new. Concurrent engineering is an approach that,

among others, promotes increased exchange of

information between various design groups. Codesign

can be seen as a refinement of this concept. [7] The

central ideas of codesign can be summarized as follows:

® System-level description independent of hardware or
software concerns, ideally through a unique language.

® Partitioning between hardware and sofiware must be
performed as late as possible in the design process

e Communication between blocks must be abstracted
enough to be independent of the actual implementation

o Co-simulation of the system as a whole should be
possible throughout the design process

The issue of communication is of major importance in
codesign. Indeed, most systems are composed of a
number of functional units exchanging information
through internal communication mediums. To preserve
design flexibility and implementation independence, it is
common to use a layered approach to communication
synthesis [2].

Co-simulation is one of the great strengths of a
codesign approach. Typically, system-level simulation
must be performed using high-level models of the
components. This of course introduces a huge overhead
for creating and maintaining the models, and a certain
uncertainty on their accuracy. Given the right tools, it
should be possible to perform co-simulation at all steps
prior to implementation.

2.1. Hardware/Software Description Language

The use of a single uniform language in the codesign of a
system allows designers to produce a system-level
description and simulate it within a single framework.
Design exploration can also be facilitated by allowing
functional units to be quickly mapped to a hardware or
software structure for simulation purposes, which can
facilitate the choice of the optimal partition

A number of approaches can be taken to achieve these
objectives. First, it is possible to invent a completely new
language specifically for the purpose of codesign. Such a
language would be better suited for codesign tasks, and
be more efficient. However, it would also suffer from a
steeper learning curve and a lack of supported tools.

The second alternative consists in extending an
existing description language, either hardware or
software, by adding the required constructs for codesign.
While this provides a much more stable and familiar base

for the designer to work with, it also yields an imperfect
solution. For instance, extending a hardware description
language would make system-level simulation
impractical. Conversely, extending software languages to
represent hardware constructs would limit the value of
the simulation, especially with respect to timing.

The debate as to which approach, and which
language, is the most appropriate for the codesign of
systems is ongoing. [11], [14] However, a number of
tools have emerged recently, which use variants of
programming languages, and especially C/C++, as
codesign languages. Still, they are not fully established as
a standard, and special system design languages, while
not covered here, still retain their value.

2.2. SystemC

SystemC [12] is a set of C++ classes that are used to
model hardware behavior. Its syntax is a mix between
software (C++) and hardware (VHDL). The use of C++
classes means that hardware and software components
can be developed and simulated within a single uniform
framework. Since no proprietary extensions were made to
the language, the whole system can be compiled using
any generic C++ compiler. Further, it is an open standard
developed by a number of EDA vendors, and is supported
by an increasing number of codesign tools.

Although SystemC makes it very easy for the
designer to codesign and co-simulate a system, even after
the hardware/software partition has been determined, it
still does not allow the hardware components to be easily
implemented. In particular, it does not allow the
automatic generation of synthesizable HDL code.
However, since SystemC was designed as a full-fledged
HDL, it is worthwhile to consider translating a SystemC
description into a VHDL one.

2.3. Other Related Work

A number of solutions have been presented that attempt
to bridge the implementation gap in a codesign context.
Celoxica DK1 [3] and [13] seek to translate software
programs, written in C, to hardware. Other projects have
focused their efforts on developing object-oriented
hardware synthesis methodologies. [10], for instance,
uses the ‘e’ language for the verification and synthesis of
object-oriented hardware, while [8] uses SystemC.
Finally, SystemC compilers, such as Synopsys’
CoCentric [16] or [6], have been developed to allow the
use of SystemC as an HDL.

Most of these projects use compilation techniques to
generate hardware synthesis code. This offers the
advantage of producing more efficient hardware.
However, the relationship between constructs in the
source code and the compiled result is hard to establish,
which significantly reduces the usability of the output
code for debugging and optimization. The approach we
propose uses a transparent translation algorithm where
the relationship between input and output is easily
established. The designer can therefore go back and forth
between hardware and software with no adaptation.

718

3. SYSTEMC TO VHDL TRANSLATION

Compilers that allow the translation from software to
hardware already exist. However, they either impose
constraints on the input code, or produce unreadable
output. Our goal is to develop an algorithm that will
translate SystemC code into synthesizable VHDL, while
limiting the number of constraints forced on the
developer. This should be facilitated by the fact that a
number of SystemC constructs can be mapped directly to
VHDL.

The translation algorithm we propose to develop is
not intended at producing highly optimized code. Indeed,
this could only be achieved using more aggressive
compilation techniques, and behavioral synthesis
approaches in particular. The algorithm presented here is
therefore expected to be mostly useful for design
exploration, and for quick and dirty prototyping. Further,
producing readable code allows the designer to quickly
go back and optimize the code, or at least to be able to
identify where the bottlenecks are.

3.1. Design Constraints

The most important requirement for the design of our
translator should be to preserve the semantics of the
SystemC design. Indeed, with Celoxica’s DKI1, certain
optimization or modifications resulted in a change of the
meaning of a given construct, which could cause the
system to misbehave. Therefore, we need to ensure that
the translation maps closely with the original version,
even at the expense of inefficiencies.

If our translator is to have any useful application, we
must limit ourselves to producing VHDL code that is
synthesizable. Indeed, the VHDL language contains a
number of software-like constructs that are not supported
by all synthesis tools. For example, indefinite loops, wait
statements or pointers can be difficult to represent in
hardware. We will need to find alternate mappings for
these constructs that can easily be synthesized.

Finally, our translator should be able to produce
readable output code. Indeed, a designer should be able to
easily identify how each construct got translated, and to
work directly with the output code. This can be achieved
by preserving symbol names and comments, and by
naming automatically generated variables such that their
origin can be easily traced. While this is mostly an
implementation constraint, it does limit the amount of
modifications that can be made in the translation process.

3.2, Construct Mapping

Since a number of constructs cannot be directly mapped
from software to hardware, we must find a synthesizable
representation that is semantically equivalent. However,
it is not possible to achieve this goal for all the
problematic constructs. For example, pointers, functions
or global variables can be somewhat difficult to represent
in hardware, and are not supported by our translator.
Table 1 presents a list of the differing SystemC constructs
and their mapping in VHDL.

Table 1: Mapping of SystemC constructs to VHDL

System C Construct

VHDL Translation

Structure elements (classes,
methods, ports, signals, etc.)

Direct mapping (entity,
process, ports, signals, ...)

Data types

Direct mapping (except float)

Bit-wise, logical and

. : . Direct mappin
arithmetic expressions irect mapping

Conditional execution (if Direct mapping (If Then Else,
else, switch) Case)

Loops and waits Finite State Machine Model

Functions, pointers, global

variables. .. Not supported

3.3. Finite State Machine Model

Of particular interest in the above table is the method
for the translation of loops and wait statements, which are
perfect examples of widely used SystemC constructs that
have non-synthesizable VHDL equivalent. Indeed, both
are highly sequential in nature, and thus are closer to a
computer than to a hardware implementation. We must
therefore serialize their execution in hardware to achieve
our goal. One way to serialize execution in VHDL is to
use a finite state machine (FSM). FSMs effectively allow
the designer to break down complex operation in time.
This method can thus be used to represent sequential
execution constructs like loops and waits. The following
code fragments shows the mapping of a SystemC loop:

VHDL
case state_var is
when STATEL =>
expression_blockl;

if condition then
state_var <= STATE2;

SystemC

else
expression_blockl; end G <= STATE3;
""hﬂ]eé:°"g;§1f’") { when STATE2 =>
p_body; Toop_body;

if condition then
state_var <= STATE2;
else
state_var <= STATE3;
end if;
when STATE3 =>
%x?ression_b1ock2:

expression_block2;

end case;

As can be seen, both fragments are semantically
equivalent (assuming state_var is initialized to STATET).
The loop condition is used to control state transitions, and
each loop iteration is assumed to takes one VHDL clock
cycle to complete. It is possible to generalize this
template to represent multiple loops or nested loop
combination. Wait statements can be handled in a similar
fashion, except that state transitions have no condition.

This approach, while simple and efficient, does suffer
from certain limitations. First, it is only valid for
synchronous systems. While a clock signal is present in
most designs, it is not true in all cases. Thus, modules
that can be translated using this approach must be present
in a system where a clock signal is available.

Also, one can note that the timing is not preserved in
the translation. Indeed, where the SystemC version would
execute in a single clock cycle, the VHDL one would
require an additional number of clocks dependant on the

number of times the loop is executed. This can be
significant, especially if the module being translated must
communicate with another one in a timely fashion.

This problem can be addressed by adding wait
statements in the SystemC description, both before the
loop and at the end of the loop body. These modifications
would need to be made by the designer, and thus can be
seen as restriction on the formatting of the SystemC code.
Both alternatives are semantically equivalent, and should
not affect the translation.

Another important limitation of this approach lies in
the handling of complex nested structures that comprise
both conditional and iterative execution. While the
computer can translate such structuresto an FSM easily,
they quickly become intractable for a human reader.
More importantly, the ability of a synthesizer to correctly
map the given structure is degraded as the complexity
increases. Finally, the efficiency of such a system is
significantly decreased as the number of cycles required
to complete the execution increases.

A final limitation of this approach is that it is quite
inefficient for handling for loops that are counting over
signal indices. Such structures can be easily parallelized
by unrolling the loop, increasing efficiency. However, to
achieve this our translator would need to detect which
loops can be unrolled and which can’t. In general, it
would need to verify if any given signal is assigned to in
more than one loop iteration, and unroll it if not.

4. TRANSLATION ALGORITHM
4.1. Parsing

The first step in the translation process consists in reading
the SystemC description to memory in a hierarchical list.
This is necessary since translation decisions for any given
expression may depend on structures encountered later
on. A line-by-line translation would be impossible to
implement. If loops are detected, a flag is set to indicate
that the FSM model must be used.

4.2. FSM transform

This step is where SystemC expressions are
reorganized to form the FSM model. This is achieved in
multiple stages. In a first stage, the FSM tree is created
and states are assigned to different blocks based on their
sequential order. Next, state transitions are determined
and written in the proper state body. Special care must be
taken when determining transitions for nested loops or
waits to ensure that the semantics are preserved. For
example, a loop that is part of the body of a conditional
statement should have its condition evaluated before the
loop body is processed.

The next step consists in determining the value of the
output ports for each state. Output ports must be driven at
all time, and the division into states can have altered this
behavior. By storing a local value of the output signals in
a register, and by driving the output ports from it, we can
avoid potential problems. The register is updated only
where the original program assigned to the output port.

719

4.3. Processing

Before the actual translation can take place, complex
expressions must be broken down to make them easier to
synthesize. This is easily achieved by defining a number
of intermediate signals or variables needed to obtain a
value. Operations on multiple literals can also be
simplified by computing their values ahead of time.
Signals that are assigned more than once in a single clock
cycle must also be broken down to meet synthesis
requirements. Dependencies must be checked to make
sure that the right values are used to generate
intermediate signals.

5. EXPERIMENTAL RESULTS

We have used this algorithm to convert simple floating-
point adders and multipliers, implemented in SystemC, to
VHDL. They both take as input the sign, mantissa and
exponent of two IEEE standard floating-point numbers,
and output the result. The algorithms were implemented
sequentially, and no efforts were made to exploit
parallelism. The translation to VHDL produced a five
state FSM for the adder and a three stage FSM for the
multiplier. The VHDL code was compiled using Altera’s
Max+plus II tool. The results obtained are compared to
the DFPADD [4] and DFPMUL [5] commercial IP cores
from Digital Core Design. All versions were synthesized
for the Flex]10KE-1 FPGA from Altera.

Table 2: Translated SystemC code vs. commercial IP cores

Performance | Logic Cells
Translated adder 39 MHz 572
DFPADD 42 MHz 1161
Translated multiplier 17 MHz* 1995
DFPMUL 33 MHz 2609

The performance obtained from a translated adder is
quite close to the commercial result. However, we should
note that because the translated code resulted in a five
state FSM, at least five clock cycles are required to
compute a sum. Also, some states represent loops bodies,
and are traversed more than once. The actual performance
can therefore be expected to be 10 to 20 times lower than
reported. In contrast, the commercial core comprises a
four stage pipeline, which ensures a higher throughput.

On the other hand, the performance of the translated
multiplier is roughly half that of the equivalent
commercial core. This performance hit is caused mainly
by the use of a single-cycle multiplier with a 60ns hold
time. In fact, the registered performance reported by the
timing tool is of 76 MHz, when not accounting for the
hold time for the multiplier. Since the translated VHDL
code is readable, it would be feasible to optimize it.

As for the area required for each implementation, we
can note that while the commercial cores are much more
feature-rich than our simple adder and multiplier, the
difference in area is still larger than expected. Although
we do not claim that the translated code is an optimal
solution, we can still assume that the translation does not
affect the size as much as it did the performance.

720

6. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to design a simple
translator that supports common SystemC constructs.
While most have direct VHDL equivalent, some, like
loops and wait statements, must be given special
handling. We have demonstrated that by converting the
module to a finite state machine structure, it is possible to
obtain an easily synthesizable, semantically equivalent
VHDL representation.

The architecture we have presented can support most
SystemC description. However, the results obtained are
far from optimal. Dependency checks, for instance, could
allow internal paralielisms to be exploited. Likewise,
complex expressions could be optimized by the common
factor extraction. Finally, methods to map unsupported
features, such as pointers, functions and global variables,
could be developed to further extend the program’s
functionality. Note that such changes would reduce the
readability of the output code, which is our project’s main
goal.

7. REFERENCES
(1
2]

P. J. Ashenden, The Designer’s guide to VHDL, 2nd
edition, Morgan Kaufmann Publishers, USA, 2001.

I. Bolsens, H. J. De Man, B. Lin, K. Van Rompaey, S.
Vercauteren, and D. Verkest, “Hardware/software co-
design of digital telecommunication systems”, Proc.
IEEE , Vol. 85 Iss. 3, pp. 391 — 418, 1997.

[3] Celoxica Limited, http://www.celoxica.com

[4] Digital Core Design DFPADD datasheet,
http://www.dcd.com.pl/dedpdf/dfpadd_ds.pdf

[5] Digital Core Design DFPMUL datasheet,

http://www.dcd.com.pl/dcdpdf/dfpmul_ds.pdf

G. Economakos, P. Oikonomakos, I. Panagopoulos, I.
Poulakis, and G. Papakonstantinou, “Behavioral synthesis
with SystemC”, Proc. DATE, pp. 21 - 25, 2001.

D. W. Franke, and M. K. Purvis, “Hardware/software
codesign: a perspective”, Proc. Int. Conference on
Software Engineering, pp. 344 — 352, 1991.

E. Grimpel, and F. Oppenheimer, “Object-oriented high
level synthesis based on SystemC” Proc. ICECS,
pp. 529 -535, 2001.

A. Jerraya, “Hardware-software codesign”, IEEE Design
& Test of Computers, Vol. 17 Iss. 1, pp. 92 - 99, 2000

T. Kuhn, T. Oppold, C. Schulz-Key, M. Winterholer, W.
Rosenstiel, M. Edwards, and Y. Kashai, “Object Oriented
Hardware Synthesis and Verification”, Proc. Int. Symp.
System Synthesis, pp. 189 — 194, 2001.

G. Moretti, “Get a handle on design languages”, EDN
Magazine, June 5th, 2000, pp. 60 — 72, 2000.

Open SystemC Initiative, www.systemc.org,

S. Sankaran, R. L. Haggard, “A convenient methodology
for efficient translation of C to VHDL”, Proc. Southeast
Symposium on System Theory, pp. 203 —207, 2001.

P. Schaumont, I. Verbauwhede, R. Chandra, K.
Konigsfeld, D. Gajski, G. Berry, D. Dumlugol, “The next
HDL: if C++ is the answer, what is the question?”, Proc.
Design Automation Conference, pp. 71 — 72, 2001.

H.-J. Schlebusch, , “SystemC based hardware synthesis
becomes reality”, Proc. Euromicro, p. 434 vol.1, 2000.
Synopsys Inc. CoCentric SystemC Compiler Datasheet,
http://www.synopsys.com/products/cocentric_systemC/
cocentric_systemC_ds.html

{6l

7

{8

91

[10

i
(12]

[13]

(141

[15]
[16]

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

