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ABSTRACT

Modeling of complex hardware/sofiware systems is
becoming more difficult due to the complexity of interactions
that occur between hardware and sofiware and the need to
model each component at multiple levels of detail. System
modeling languages such as SystemC are assisting in this area
by allowing real application level software to be interfaced
with hardware models that maintain great fidelity to the actual
hardware realization.

This paper describes a project to develop a model of a large
complex hardware/soflware system that is the heart of a
parallel processer interconnection architecture being
developed at The University of Alabama in Huntsville. The
model developed allows the investigators to vary the
parameters of system workload, policy for message passing
protocols, and hardware features such as size of elasticity
buffers and DMA controller burst size in & single
homogeneous model. Initial results are encouraging and the
hope is that as SystemC synthesis tools become available, the
hardware components of the model can be translated
automatically into hardware designs for FPGA and other rapid
prototyping platforms without redesign or coding,

L. INTRODUCTION

The operation and performance of complex multi-processor
systems is currently being investigated at the University of
Alabama in Huntsville. The development of new message
passing protocols is of particular interest. SystemC has been
chosen as the preferred simulation too! due to its versatility,
high modeling fidelity, and ability to express system
functionality at various levels of abstraction. This paper
presents key aspects of the modeling environment, a general
overview of the multi-processor system currently being
investigated, and brief review of the simulation’s user
interface. Source listings for a simple FIFQ implementation
have been included in the narrative to illustrate the use of
SystemC.

2. THE SYSTEMC MODELING ENVIRONMENT

SystemC provides a set of C++ class libraries and a
simulation kernel to extend the capabilities of C/C4++ as a
modeling tool. It supports hardware abstraction at the system,
behavioral and register transfer levels and provides a unified
modeling environment for systems containing both hardware
and software components.

Structural designs arc implemented in SystemC using
modules, ports, processes and signals. A variety of data types
are supported to include single bits, bit vectors and fixed-point
integers. Four value logic signals are also supported to aliow
the implementation of tri-state buses.

Modules lie at the heart of SystemC. They act as containers
for collections of ports, signals, internal data structures and
processes that together form a systemn component. The use of
modules allows a complex system to be divided into a number
of simpler elements early in the design process. Modules also
allow the verification of individual system components that
greatly simplifies the task of model validation. A module’s
interface to other modules is public while its internal structure
is hidden from the remainder of the system. Modules may
easily be substituted with other modules as long as their
interfaces and basic functionality are consistent. As a result,
modules may be revisited and revised as necessary during the
course of a design’s evolution. Modules are declared using
the SystemC keyword SC_MODULE.

Ports define how a module communicates. They provide the
data path between a medule’s environment and its internal
processes. SystemC supports three types of ports: in, out and
inout. Input ports are declared using the SystemC port mode
SC_IN; output ports are declared with SC_OUT, while inout
ports are declared with SC_INOUT. The data type of each
port can be defined as a standard C++ data type, a SystemC
type or a user-defined type. This rich set of data types allows
an engineer to concentrate on basic system functionality in the
early stages of a design. Later, once the system’s operational
aspects have been verified, port data types can be revised to
improve hardware fidelity. An example of this is the
conversion of a memory address port from an unsigned
integer representation to a bit vector to model a finite bus
width.

SystemC signals are closely related to ports. They provide
the data paths necessary to connect devices. Signals join
modules at a system’s top level. In hierarchical designs,
signals are used inside a module to interconnect lower level
modules. Unlike ports, signals don’t have a mode attribute
since the ports being connected determine the direction of data
flow. Signals are declared using the SystemC keyword
SC_SIGNAL.

Processes are internal functions that establish a module’s
behavior and functionality. They respond to changes in
module inputs by updating the state of internal data structures,
by altering values present at the module’s output ports, or
both. SystemC provides three types of processes: methods
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declared with the SystemC keyword SC_METHOD; threads
declared with the keyword SC_THREAD; and clocked
threads declared with SC_CTHREAD.

Methods are the simplest form of SystemC process. Their
execution is triggered by signal events associated with a
method sensitivity list. When a signal associated with a
method’s sensitivity list changes state, the method is invoked.
Once triggered, a method will run until a return is encountered
or the end of the method routine is reached. Control is then
returned to the simulation kernel.

Thread processes are similar to methods in that they are
triggered by evenis associated with a process sensitivity list.
However, their execution may be suspended through the use
of wait() functions. Once a thread process is suspended it will
wait until an event it is sensitive to occurs. At that time,
execution of the thread resumes where it left off and it
continues to run until the next wait() is encountered or the
module’s end is reached. Thread processes are useful in
modeling controllers where device state information must be
maintained between events.

Clocked thread processes are a specialization of the thread
process. Their sensitivity list is limited to one edge of a single
clock input that matches the way a clocked hardware device
typically functions. This sensitivity restriction provides a
more realistic device model that is easier to synthesize.
Execution of a clocked thread may be suspended in a manner
analogous to the thread process using wait() and wait_until()
functions.

The parallel processor system being studied in this paper
employs FIFOs as elasticity buffers in its communications
chamnels. A SystemC module declaration for standard FIFO
is shown below:

#/ FIFO.h

#include <stdlib.h>
#include <malloc.h>
#include "systemc.h”
#include "parameters.h”

struct fifo : sc_module {

/I O Interface Definitions
public:

sc_in<sc_bit> clear;
s¢_in<sc_uint<DATA _SIZE> > data_in;
sc_in<sc_bit> data_write;
sc_out<sc_uint<DATA_SIZE> > datz_out;
sc_in<sc_bit> data_read;
sc_out<sc_bit> fifo_cmpty;
sc_out<sc_bit> fifo_half_full;
sc_out<sc_bit> fifo_full;

// Locel Data

private:
bool empty_fifo;
bool half_full_fifo,
bool full_fifo,
nt read_index;
it write_index;
s¢_uint<DATA_SIZE> *fifo_data;

public:
void fifo_clear();
void fifo_write();

void fifo_read();

/I Modute Constructor
SC_CTOR( fifo ) {

SC_METHOD( fifo_clear );
sensitive_pos << clear;
SC_METHOD( fifo_writc );
sensitive_pos << data_write;
SC_METHOD( fifo_read );
sensitive_pos << data_read;

empty_fifo = true;
half_full_fifo = false;
full_fifo = false;
read_index =0;
write_index = 0;

fifo_data = (s¢_uint<DATA_SIZE> *)
malloc( FIFO_DEPTH * sizeof{ sc_uint<DATA_SIZE>));
}

I/ Module Destructor

~fifo() {
free(fifo_data),
}

b

The include files provide access to standard C++ functions,
SystemC classes, and static simulation parameters. The
SC_MODULE declaration is followed by a list of module
inputs and outputs. Ports data in and data_out have fixed
precision unsigned integer types whose widths are set by the
simulation parameter DATA SIZE. Local private storage is
defined for the module to hold FIFO state informaticn and
data pointers. The module constructor, declared with
SystemnC keyword SC_CTOR, allocates FIFO memory and
establishes the module’s processes, sensitivity lists, and initial
FIFO state. Finally, a module destructor is provided to free
allocated memory when the object associated with a module
instantiation is destroyed.

The FIFO module has now been declared, but to be useful,
an instance it must be created (instantiated). Modules like this
one may be instantiated exclusively from SystemC’s top-level
routine SC_MAIN to realize a flat design. Hierarchical
designs result when modules are instantiated from within
other modules as lower level components. Below is a partial
listing-of a receiver declaration that creates an instance of the
FIFO module. Please note how signals are bound to the FIFO
following its instantiation.

/! Imternal Signal Definitions

sc_signal<sc_uint<DATA_SIZE>>  shifi_data;
sc_signal<sc_bit> shifi_data_rcady;
sc_signal<sc_uint<DATA_SIZE>> fifo_dats,
sc_signal<sc_bit> fifo_empty;
sc_signal<sc_bit> fifo_half_full;
sc_signal<sc_bit> fife_full;
sc_signal<sc_bit> fife_read;

#/ Other signal declarations omitted

# Component Objects
rev_shift *shift,
fifo *rev_fifo,
rev_overrun *over_cnt
rcv_cotrl *cntrl;
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rov_buf *buffer;
rcv_dma *dma;
public:

unsigned long read_ovenuns();
unsigned long read_errors();

// Module Constructor
SC_CTOR( rcv_channel );

H Custom Censtructor Used 1o Accept Channel and Processor ID's
rcv_channel( sc_module_name, int channel_number, int proc_number )
{

/{ Instantiate component objects.
shift = new rev_shift ("shift"};
rev_fifo = new fifo (“fifo");
over_cnt = new rcv_overrun ("over_cnt");
cntrl = new rev_cntrl ("entrl”, channel_number, proc_number);
buffer = new rev_buf ("buffer");
dma = new rev_dma (“dma", channel_number);

/! Bind FIFO object to shift object and RCV controller object.
rov_fifo->clear(reset);
rev_fifo->data_in(shift_data);
rev_fifo->data_write(shift_data_ready);
rev_fifo->fifo_empty(fifo_empty);
rov_fifo->fifo_half_full(fifo_half_full);
rov_fifo->fifo_fidl(fifo_fuil);
rev_fifo->data_read(fifo_read);
rev_fifo->data_out{fifo_data);

/1 Rest of module not shown

SystemC is an efficient development environment that is
maturing quickly. The intent of this brief review was present
the lanpuage’s key constructs and provide some indication of
its power. Additional information and software may be
obtained at the SystemC web site: http://www.systemc.org.

3. MODELING A PARAI;LEL PROCESSOR SYSTEM
WITH BROADCAST INTERCONNECTIONS

As part of an ongoing research project at University of
Alabama in Huntsville, SystemC has been used to simulate the
operation of a complex multi-processor device. The device
being studied consists of an array of processing nodes
interconnected by a fiber-optic network. A brief description
of the system and each component mode! will now be
presented.

3.1, System Architecture

The multi-processor system consists of several proccssmg
nodes, and the nodes are interconnected through a series of
fiber-optic links that pass serial data. Figure 1 shows a
functional diagram of a typical noede. Each node is composed
of a processing element, a dual-port global memory module, a
global bus arbiter, one serial transmit module and N serial
receive modules (where N represents the number of
processors in the system). For the purpose of simulation,
inter-processor data is transmitted in simple packets whose
format is given by Table 1. The output of each transmitter
fans out to all network nodes, and the packet’s target address
is used to direct packets to their intended destination.

To / From Fiber-optic Data inks
¢t ) 4 4
Trarsmit Recaive Recsiva ae e Recaive
Module Maodule 1 Module 2 Module N
r Global Bus
Global Global Bus
Mamory Arbit
Bufar o7
Node
Procassor

Figure 1. System Node Module.

Three packet types are modeled in this simulation. The first
type is a point-to-point data packet directed from a single
source node to a single target node. This will be referred to as
a single-cast packet transmission. Loop-back transmissions
are permitted (source and target addresses are identical). The
second packet type is transmitted from a source node {o ail
network nodes concurrently. This is referred to as a multi-cast
packet transmission. The last packet is an acknowledge
packet sent in response to a received packet.

Table 1. Simulated Packet Definition.

Packet Location Packet Entry
1 Start of Packet Code
2 Packet ID
3 Packet Type

-4 Source Address
5 Target Address
6 Data Section Word Count
7 First Packet Data Word
8 1l.....
9 End of Packet Code

3.2. Network Data Links
To model communications delays between system

processors, each network data link is modeled as a digital
delay element with a variable number of delay stages. The
data links are synchronized to the master simulation clock;
therefore, the modeled delays are multiples of the simulation
clock period, The number of delay stages present in each link
is defined in the simulation parameters file.
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3.3. Network Nodes

As stated earlier, each system node consists of a processing
element, a dual-port global memory module, a global bus
arbitration unit, one serial transmitter and N serjal receiver
modules (where N represents the number of processors
present in the system). A description of each node hardware
element will now be presented.

3.4. Node Processor

Node processors are the source and destination of all data
transfers, and they initiate all simulation activity. Three
clocked threads are used to implement the processor: a packet
Teceive process; a process to generate new outgoing packets
and an outgoing packet transmission process.

The processor is modeled as a free running message
generator that produces a new transmission packet at a rate
determined by the simulation parameters file. When a new
outgoing packet is created, a random number between 0 and 1
is generated, and thresholds are applied to determine if the
transmitted packet is a single-cast or multi-cast packet. Ifitis
to be a single-cast packet, a second random number is
generated to select the packet’s target address.

3.5. Global Memory Buffer

The global memory buffer serves as a holding tank for
incoming and outgoing communications packets. It is
implemented as a dual-port random access memory with a
processor bus interface and the global bus interface. All
aspects of the buffer (size, data width, etc.) are controlled
through the simulation parameters file. The buffer’s global
bus interface employs tri-state signals for its data path since
several devices share the bus. The tri-state signal type is not
used for the processor data bus since it isn’t necessary and
requires more simuylation time to model.

3.6. Global Bus Arbiter

Each communications channel uses the global bus to
exchange information with the global memory buffer. The
global bus arbiter employs hardware handshakes to coordinate
activity on the global bus. Each potential bus master must
request the bus and wait for a bus grant before it may access
the bus. The arbiter polls bus requests in a round robin
fashion starting with the transmit channel. When a bus
request is found, the arbiter issues a bus grant to the associated
channel and then waits. When the channel has finished, it
drops the bus request, and the arbiter resumes its polling
operation with the next channel in sequence. The node
processor uses a burst count control word to limit how long a
channel may be the global bus master. This helps to prevent
communications bottlenecks due to bus hogging.

3.7. Transmit Channel

The node transmit channel consists of a transmit shift
register, FIFO and DMA unit. Figure 2 shows a functional
diagram of the transmit channel assembly.

Data Dats Dats
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Sariat Address
on 4— TX TX L
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Figure 2. Transmit Module.

Transmit Shift Register. The transmit shift register convetts
parallel data held in the transmit FIFQ to a serial data stream
transmitted across a network data link. Data is transmitted
most significant bit first. The shift register is implemented as
a SystemC clocked thread process, which monitors the state of
the FIFO empty flag and reads FIFO data as it becomes
available.

Transmit FIFO. During a packet transmission, the transmit
DMA unit must request the global bus repeatedly if the packet
is too large to access in a single burst. When there is a lot of
contention for the global bus, bus pgrants may be delayed;
resulting in the potential for stalled transmissions. In an
attempt to keep the transmit shift register busy and increase
throughput efficiency, a FIFQ has been incorporated into each
transmit channel to act as an elastic buffer.

The FIFQ is implemented using three SystemC methods.
The first method provides for asynchronous clears of the FIFO
device, and it is sensitive to the positive-going edge of the
clear input. The second and third methods handte FIFO read
and write requests.

Transmit DMA Unit. The transmit DMA unit automates the
transfer of outgoing packet data from the global memory
buffer to the transmit FIFQ. After reset, the transmit DMA
unit begins polling its start input. When a new transmission
packet is ready, the node processor activates the start DMA bit
to initiate a ransfer. Qnce the transfer is underway, the DMA
unit will access the global bus in short bursts until all packet
words have been written to the FIFO. The node processor sets
the size of DMA burst transfers.

3.8. Receive Channels

Node receive channels consist of a receive shift register,
FIFQ, receive controller, local buffer and DMA unit. Figure 3
shows a functional diagram of a receive channel assembly.

Receive Shift Register. The receive shift register accepts
serial data obtained from one of the network fiber-optic data
links, converts it to a parallel data word, and writes it to the
receive FIFO, It accepts serial data most significant bit first
and continues to collect data until a full word has been
accumulated.
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Figure 3. The Node Receiver.

Unlike the transmit shift register, which is implemented as a
clocked thread process, the receive shift register is
implemented as a SystemC method. The method is sensitive
to the positive-going edge of receive data strobe

Receive FIFO. The receive FIFO performs a function very
similar to that of the transmit FIFQ. The amount of time
required to transfer incoming packet data to global memory is
directly related to the amount of global bus activity. The
receive FIFO provides an elastic buffer necessary to prevent
receiver overruns when the node’s global bus is congested.
Implementation of the receive FIFQ is identical to that of the
transmit FIFO.

Receive Controller. The receive controller module acts as an
intelligent mediator for receive channel operations. Currently
two receiver modes are supported: cut through and store and
forward. ’

In cut through mode, the receive controller talks to the DMA
controller directly and the local buffer is bypassed. The
receive controller starts a DMA transfer to global memory as
soon as a valid packet header has been received. The
receiver's packet ready flag will automartically be set at the
completion of the DMA transfer. The packet error flag will
also be set at this time if any packet errors have been detected
during the transfer.

In store and forward mode, the receive controller writes
packet data to local buffer memory. The controller examines
the incoming packet as it is received. Erroneous packets are
discarded, and the packet error flag is set. When a valid
packet is received, a DMA transfer from local buffer memory
to global memory is initiated. The receiver’s packet ready
flag is then set automatically at the completion of the DMA
transfer.

Local Receiver Buffer. The local receive buffer is a
modified dual-port memory device. The buffer has a mode
input that selects the current operating state. In store and
forward mode, the receive buffer operates as a standard
memory ¢lement and stores packet data. When cut thru mode
is selected, the local receive buffer operates transparently, and
the receive controller is connected directly to the receive
DMA unit.

Receive DMA Unit. The receive DMA unit automates the
transfer of incoming packet data to global memory. After
reset, the reccive DMA unit begins polling its start input.
Unlike the transmit DMA unit, the receive DMA”s start input
is manipulated by the receive controller module, not the
processor. When the receive controller is ready to pass
incoming packet data to giobal memory, it activates the start
DMA bit to initiate a transfer. The DMA unit will always get
data via the local receive buffer; however, full rate transfers
will occur only when the receiver is in store and forward
mode. Once the transfer is underway, the DMA unit will
access the global bus in short bursts until all packet words
have been written to global memory. The node processor sets
the size of DMA burst transfers.

4. OPERATIONAL ASPECTS OF THE SIMULATION

4.1. Entering Simulation Parameters

The simulation accepts compile-time and run-time
parametets as a means of constraining the system being
simulated. Compile-time parameters are hard coded into the
simulation and may be accessed via the simulation parameters
file. Altering definitions in the parameters file requires that
the simulation executable be rebuilt, so frequent changes of
this sort are not desirable. The following compile-time
parameters are found in parameters file: transmit clock period,
global bus clock period, processor clock period, processor
data bus width, receive local buffer size, global double buffer
size, DMA burst counter widths, Fiber-optic data link delay,
number of system processors, and the inter-processor packet
definitions.

Run-time parameters are entered via a simulation
initialization file. These variables change too often during a
parametric study for simulation rebuilds to be practical. For a
large number of simulation runs, a batch process may be
defined which penerates a series of initialization files
automatically and calls the simulation executable in a
repetitive fashion. The following run-time parameters are
found in the initialization file: inter-processor packet size, size
of receive and transmit FIFQO’s, DMA burst transfer size,
single-Cast packet transmission probability, multi-Cast packet
transmission probability, VCD trace file creation flags, and
the processor and communications channel IDs associated
with the trace file.

4.2. Simulation Outputs

The simulation generates a log file automatically at the
completion of a test run. The log file includes network
performance statistics which include: the number of system
processors, FIFQ depth, size of data packets, DMA burst size,
packet transmission probabilities, and the resulting number of
packet overruns. Additionally, the simulation outputs a VCD
trace file as shown in Figure 4.

Proceedings IEEE SoutheastCon 2002

20



24us [25us [6us (ZTus 126us

RCV_CLOCK
RX_SERIAL_DATA
RX_SHIFT_DATA{31.0]

20us  |30us  3fus  i32us 3us Us [35us 3GuUs  [3Tus  [3BUs  BIUs

RX_SHIFT_READY
RX_FIFO_EMPTY
RX,_FIFO_HALF_FULL

RX_FIFQ_FULL

RX_FIFO_DATA[31.0]

000000FF

0K
!IIIIHIIII]IIIIIII

RX_FIFO_RD

IIIIIIIII\IH!I!!HEIIHIIIIIHIIIIIIIHIIIJIJIIHl[

RCV_LOC_DATA(31:0]

O00000FF Y

RCY_LOC_WRITE

IIIIHIHIIIII

IliIIIIHIIIIHIIH|IHIIIIIHHIHIHIIHIIIIHI!II

RCV_START_DMA

RCY_BUS_REQ

RCV_BUS_GRANT

/'_
f_

Figure 4. VCD Trace File Showing Receive Channel Activity.

5. SYSTEMC APPLICATIONS DEVELOPMENT

This section briefly presents areas where the SystemC
design environment needs improvement. This is by no means
a condemnation of SystemC. Rather it is list of areas where
the open source distribution needs a little refinement. Several
of these improvements already exist in the form of propnctary
software builds.

Currently, the C++ development environment to which
SystemC is attached restricts the designer. Most provide
decent class browsers, but few support the type of hierarchical
navigator that hardware designers have come to expect from
languages like VHDL and Verilog. A text based navigator
that shows the interrelationships of SystemC modules would
be quite helpful. Even more heipful would be a graphical
navigator that shows the interconmections between modules
and allows the designer to graphically “dive” into lower level
modules to show their internal structures.

Trace files are particularly useful in simulation debugging
and documentation. SystemC currently does not include
waveform viewers. However, there are several excellent
shareware and freeware viewers availabie over the Internet. A
windowed interactive debugger that presents graphical
representations of the system (possibly in schematic form),
text based code modules and selected device waveforms
would be a welcome addition to SystemC.

There are currently proprietary translators that produce
VHDL modules from SystemC code, The VHDL in turn may
be used to program gate arrays or produce custom ASICs.
Eventually a native mode hardware compiler and device fitters
should be incorporated into SystemC.

CONCLUSIONS

The SystemC open source initiative was founded in 1999.
In that time, the language has evolved a great deal. It has the
support of industry and the engineering community at large; it
provides a unified modeling approach for system software and
hardware; and it allows the designer to represent system
architectures at various levels of abstraction and detail. With
minor revisions, SystemC will become a desirable alternative
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to VHDL and Verilog.
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