Tutorial 3

System Modeling with
SystemC

Abhijit Ghosh, Synopsys Inc.,
Mountain View
Steve Tjiang, Tensilica Inc., Santa Clara
Ramesh Chandra, STMicroelectronics,
San Diego

Early and accurate modeling of an entire
system is a key technique in lowering the
time-to-market of complex embedded
SOC systems. Such systems may contain
many processors and ASICs, and
hundreds of thousands to millions of lines
of software. Getting such systems to
market fast and within specifications
require early architectural exploration,
software development, system integration,
and system performance determination,
before hardware prototypes are available.
By modeling the entire system with
SystemC designers can fulfill these
requirements.

SystemC allow designers to model their
design at multiple abstraction levels in the
same environment. They can model at a
relatively high abstraction level early in
the design process, and later refine all or
parts of the design to the style of
implementation suitable for that part.

This allows designers to maximize system
simulation speed, while retaining the
ability to model hardware components at a
detailed level.

Because SystemC is based on C++,
software subsystems can be specified
directly in SystemC. The communication
refinement features of SystemC allow
designers to migrate performance

0-7803-6677-8/01/810.00©2001 IEEE.

18

sensitive parts of the software into
hardware easily.

This tutorial will introduce the
fundamental constructs of the SystemC
libraries: the model of time, modules,
processes, ports, and synchronization and
communication primitives. We will
discuss the more advanced features of
SystemC such as channels, the separation
of communication from functionality,
hierarchical channels, events, static and
dynamic sensitivity. Finally, we will give
examples of how SystemC is used to
model SOCs and how SystemC creates the
framework for solving many system-level
design problems. We will conclude with
benefits of using SystemC to model
systems as well as a roadmap of SystemC,
as well as web sites and other publications
for those interesting in learning more
about SystemC.

System Modeling Features of
SystemC

SystemC is a C++ class library that can be
used to model hardware-software
systems at a high level of abstraction.
SystemC supports modeling pure
functionality of a system, the architecture
of the system, as well as hardware and
software implementation details, With
SystemC, you can create untimed
functional models, transactional
architecture models, and cycle-accurate
implementation models. The following
areas will be discussed

Model of Computation

Architectural exploration and early system
integration require the ability to model the
system at multiple abstraction levels.
SystemC provides a general model of
computation suitable for many levels of
abstraction from software to RTL level.



Like other HDLs, SystemC implements a
discrete time model of computation.
Processes are the basic units of concurrent
activity. Processes are grouped into
modules. Modules can contain other
modules, allowing the hierarchical
construction of the system model.
Processes communicate to each other via
interfaces, channels and ports, and can
synchronize with each other via events
objects.

SystemC uses an absolute, integer-valued
model of time, making it easier to
combine multiple IP blocks into one
simulation, by explicitly expressing the
time units of each SystemC block to a
common time base.

Communication Abstractions

Architectural exploration and early system
integration require the ability to connect
modules of different abstraction levels
into a system model. SystemC provides
communication abstractions to make this
combination possible.

SystemC provides constructs—interfaces,
ports, and channels—that allow you to
build and refine the communication within
your system model.

o Interfaces define a set of related
communication methods (in the
C++ sense). For example, an
interface may define a read, write
and control method to represent
communication with a memory
module. An interface defines an
abstract type, and does not
implement any functionality.

e Ports are declared as being
associated with a particular

19

interface. The port’s methods call
the methods of the interface. For
example, if you define a memory
port as using the aforementioned
memory interface, the read, write,
and control methods would be
available for implementing the
read, and write of the port.

e Channels implement one or more
interface. For example, a channel
that implements the
aforementioned memory interface
would provide implementations
for the read, write and control
methods. A single channel could
implement one or more interfaces.
When connecting two modules
together, the channel could offer
one interface to one module, while
offering a different interface to
another.

SystemC provides a set of predefined
primitive channels: signals, shared
variables, FIFOs, and message queues.

Communication Refinement

Architectural exploration involves
refinement and decomposition of modules,
and repartitioning of the model.
Refinement of functionality is best
accomplished in parallel with a refinement
of communication. SystemC supports the
latter refinement with hierarchical and
composite channels.

e A hierarchical channel is a module
that implements the channel. As
modules are hierarchical, the
channel can include other modules
and channels as components This
facility allows one to implement
sophisticated communication
protocols, or build the channel out
of modules with more detailed



implementation details while
providing interface at a higher-
level abstraction.

¢ A composite channel consists of
other channels as part of its
interface. In the aforementioned
memory interface, you could
refine the read method into
channels for address lines, and
data lines.

Synchronization and Dynamic
Sensitivity

Architectural exploration and system
integration require the modeling of
hardware at a behavioral model and
concurrent software. SystemC provide
event objects and dynamic sensitivity to
facilitate this modeling. Most HDLs offer
static sensitivity: processes respond to

* events on input signals and ports that are
predetermined when you elaborate the
design. In addition to static sensitivity,
SystemC offers dynamic sensitivity:
processes can wait explicitly wait on
events that are determined at run-time.

Integration with C++

Architectural exploration, system
integration and software development
require that it be easy to include software
into the system model. SystemC is a C++
library and users need only a C++
compiler to perform system modeling.
Application software can be written
directly in SystemC and added to the
system model.

You can write your test benches in C++.
You can write code that analyzes the
performance of your model directly in
C++. Such test benches and analysis code
are easily integrated into your system
model.

20



