OBJECT-ORIENTED HIGH LEVEL SYNTHESIS BASED ON SYSTEMC

Eike Grimpel, Frank Oppenheimer2

LOFFIS Research Institute,
Escherweg 2, 26121 Oldenburg - Germany
E-mail: Grimpe@offis.de
2University of Oldenburg,
Escherweg 2, 26121 Oldenburg - Germany
E-mail: Frank.Oppenheimer@Informatik.Uni-Oldenburg.de

ABSTRACT: The introduction of object-oriented
modelling techniques into the development of
hardware seems to open a promising way for mas-
tering the increasing complexity of today’s hard-
ware systems. Furthermore it provides the
possibility of transferring well known and
approved object-oriented modelling techniques
from the software development to the hardware
development. Since there is a major difference
between the nature of software and the nature of
hardware the direct adaptation of common object-
oriented programming languages to describing
hardware is not possible in general. SystemC is a
C++ class library and a methodology that intro-
duces some of the missing typical hardware fea-
tures in C/C++. This paper describes an extended
SystemC based methodology and synthesis tech-
niques allowing to use object-oriented concepts
like classes, polymorphism and inheritance for the
description of synthesisable hardware models.

1. INTORDUCTION

During the past years there have already been sev-
eral approaches to apply object-oriented modelling
techniques to hardware development. These
approaches can be divided into two major catego-
ries: the first category includes approaches which
try to augment existing object-oriented program-
ming languages such as Java [1][2] or C++
[3][4][5] by missing hardware features such as
concurrency, reactivity, and an appropriate timing
model. The approaches in the second category
augment existing hardware description languages
like VHDL [6][7] or Verilog [8] by object-oriented
features. But none of these approaches includes a
seamless, automated synthesis path from an
object-oriented high level system description down

0-7803-7057-0/01/$10.00 ©2001 IEEE.

529

to a gate level netlist representation, for a broad
domain of target applications.

This paper presents a new approach for object-
oriented hardware modelling and automatic syn-
thesis of object-oriented hardware models based
on an extension of SystemC, called SystemC-Plus.
The basic synthesis techniques have been origi-
nally developed and demonstrated for Objective
VHDL [6] - an object-oriented extension of VHDL
- and are now further developed and adapted to
SystemC-Plus.

2. OBJECT-ORIENTED HARDWARE
MODELLING

The four basic characteristics of object-orientation
to be provided for modelling hardware are:

¢ Data encapsulation:
Data (attributes) belonging semantically
together is combined and encapsulated with the
primitive operations (methods) processing the
data. Attributes together with the methods oper-
ating on them form a data type (class). Data
access is only possible by means of the appro-
priate methods, that build the interface of a data

type.

¢ Inheritance:

Inheritance means to create new data types by
deriving them from existing ones. Derived data
types inherit all the attributes and methods of
the types from which they are derived. It is
therefore not necessary to re-implement the
inherited attributes and methods in a derived
type, but they may be refined.

¢ Polymorphism:]
Polymorphism describes a mechanism that
allows objects (instances of classes) to change
their type dynamically, during runtime of a sys-

tem. In the majority of cases the possibility to
change the type is limited to a certain set of
types which are related, e.g. by inheritance, so
that some basic properties of an object can
always be guaranteed.

¢ Communication by method calls:
Communication within an object-oriented sys-
tem is realised by method calls. A data type is
accessed by calling the methods it provides for
this purpose, and objects communicate by call-
ing methods on each other.

Though these concepts originate from the software
domain, they seem to provide some promising
enhancements for the development of hardware,
too. By using object-oriented techniques to model
hardware designers could increase flexibility and
reusability of the modelled systems and their com-
ponents. Development times and costs could sig-
nificantly be reduced and the mastery of more
complex systems becomes possible. The question
still remaining is how to synthesize object-oriented
constructs.

An answer to this question is given in [9],
based on Objective VHDL. The approach pre-
sented there demonstrates, how an object, i.e. its
attributes, methods and communication interface,
can be represented by a synthesisable model, that
additionally allows the use of polymorphism. The
practicability of this concept has been proven in
the REQUEST project [10] and by means of the
development of some prototypic tools working on
Objective VHDL. The concepts presented in that
approach are general enough to be also applied to
other object-oriented languages.

3. SYSTEMC

SystemC [11][12] is a C++ class library and a
methodology which allows to model systems,
including both hardware and software parts, based
on C/C++. For simulating these systems it pro-
vides an integrated simulation kernel which is
automatically linked to each executable SystemC
model. A SystemC hardware model, at least a syn-
thesisable one, looks very similar to an equivalent
VHDL or Verilog model. Classes can be found
representing entities, ports or signals and special
notations allow the modelling of processes like in
common HDLs. Furthermore SystemC provides
predefined data types for bit, std_logic, bit-vector
std_logic-vector and arbitrary sized integers,

530

which typically build the basis of the type system
of a hardware description language. The interface
of a module is modelled similar to a port list of an
VHDL entity and the communication structure
between different modules and processes is estab-
lished by using the signal and port types provided
by SystemC.

The appropriate timing behaviour of an exe-
cutable SystemC model is introduced by the Sys-
temC simulation kernel. This kernel activates
processes in accordance with their sensitivity list,
it executes statements within different processes
concurrently, it schedules assignments to signals
and propagates their changed values through the
whole system hierarchy. Finally the simulation
time is updated. Asynchronous activities can also
be modelled, but due to the cycle based execution
semantics of the SystemC simulation kernel value
changes caused by asynchronous processes
become visible not before the beginning of each
simulation cycle, which is usually initiated by a
rising or falling edge of a global clock.

Actual developments around SystemC indi-
cate, that the used model of time will be signifi-
cantly revised and refined in future versions as
described in the SystemC 2.0 specification [13].

SystemC including all source codes is availa-
ble under a very liberal Open Source License
Agreement based on OSI-Certified IBM Public
License and can for example be downloaded from
[11]. Under the leadership of important EDA com-
panies the Open SystemC Initiative was founded,
with the goal to promote the further development
and standardisation of SystemC. Because of its
free availability and the possibility to model hard-
ware in C/C++ there is increasing interest in Sys-
temC from the industrial as well as from the
academic area.

3.1 Synthesis

It seems obvious that SystemC was originally
developed for creating executable C/C++ system
specifications early in the design process and not
for synthesis. Therefore no official or standardised
synthesis subset exists up to now in contrast to
VHDL for example. But because of the similarity
between a VHDL/Verilog description and its
equivalent SystemC description on RT level a
manual transformation into one of these languages
is fairly simple, as long as a certain coding style
which lacks most object-oriented constructs from
C++, is adhered to. Nevertheless, several EDA
companies like Synopsys [14] and C Level Design

[15] have announced or do already offer synthesis
tools for SystemC. Although the concrete synthe-
sis subset of the different tools is not known to the
authors the sparely information available suggests,
that only SystemC models which make use of a
limited subset of C (e.g. excluding pointer, pointer-
arithmetic and object-oriented constructs from
C++), and which are already looking very similar
to an equivalent HDL description are synthesisable
with these tools.

4. ODETTE

In summer 2000 the ODETTE project (Object-ori-
ented co-DEsign and functional Test-TEchniques)
[16] was started under leadership of the research
and development institute OFFIS (Oldenburg, Ger-
many) in close co-operation with the industrial
partners Siemens I.C.N. (Milan, Italy), IBM
Research Lab (Haifa, Israel), Synopsys Leda (Gre-
noble, France) and the European Electronic Chips
& Systems design initiative ECSI. Goal of this
project within the framework of the European
commission’s [ST-program is the development of
an object-oriented design methodology for hard-
ware development based on SystemC and the
implementation of a synthesis tool for processing
object-oriented SystemC models.

Fig. 1. ODETTE synthesis path.

531

The synthesis tool under development will not
directly generate a gate level net list from an
object-oriented hardware model written in Sys-
temC-Plus (see next section). Instead it focuses on
the synthesis of object-oriented constructs and
generates a synthesisable HDL description on RT
or behavioural level which can then be further
processed with existing logic synthesis tools.

Figure 1 illustrates the synthesis path handled
in ODETTE (dashed box). It starts with a Sys-
temC-Plus description, covers several transforma- _
tions into different intermediate formats (IFF,
Intermediate File Format) and ends up with the
generation of a synthesisable HDL description, for
example written in VHDL or Verilog, which is
behavioural equivalent to the SystemC-Plus input
description.

4.1 SystemC-Plus

SystemC-Plus was developed as part of the
ODETTE project as an extension to SystemC and
consists of an additional class library and a coding
style which specifies how to write synthesisable
object-oriented hardware models with SystemC-
Plus. In particular this coding style defines the syn-
thesisable subset of SystemC-Plus, which can be
processed by the ODETTE synthesis tool. The
additional class library is necessary for using syn-
thesisable polymorphic and so called global
objects (see below) in SystemC-Plus.

Though C++ provides polymorphism as a fea-
ture, the “native C++” polymorphism mechanism
only works by means of pointers, which, besides
some special exceptions, are in general not suitable
for being synthesized. In addition, the C++ poly-
morphism mechanism cannot be mapped onto the
synthesisable target model presented in [9], which
was explicitly developed regarding the implemen-
tation of polymorphic objects in hardware. For this
reason SystemC-Plus provides class templates and
modelling guidelines, which allow to create and
use polymorphic instances of any user defined
class in a synthesis conformable way. Moreover
these polymorphic objects show in a SystemC sim-
ulation the same cycle accurate behaviour as their
synthesized counterparts.

Therefore SystemC-Plus does not only allow
the use of “normal” (non-polymorphic) objects,
which are not even supported by most other Sys-
temC based synthesis tools, but also

¢ polymorphic local objects;
i.e. polymorphic objects declared within any
SystemC process,

e polymorphic ports and signals;
i.e. instances of the SystemC type sc_in,
sc_out, sc_inout and sc_signal, which enclose a
polymorphic class type,

and

e polymorphic global objects;
i.e. polymorphic objects declared as data mem-
ber of a SystemC module.

Polymorphic signals and ports are quite useful for
the abstract modelling of communication channels,
which shall be used for exchanging different but
(in terms of inheritance) related data.

SystemC, in its actual version, does not pro-
vide an appropriate mechanism for handling con-
current accesses by different processes to objects,
which are declared as direct data members of a
module, and does not seem to be originally
designed for such purposes. Method calls from dif-
ferent processes to one common object, which
occur in the same simulation cycle, and concurrent
read and write accesses are simply executed in a
non-deterministic order in the same cycle, but
instantly without observable time delay between
the different method executions and without caus-
ing observable conflicts. This behaviour obviously
does not reflect the behaviour of real hardware.
Only for some special SystemC signal and port
types a rudimentary mechanism for resolving con-
current write accesses is provided, that resembles
the so-called “resolved functions” known from
VHDL.

For this reason SystemC-Plus introduces the
concept of global objects. Global objects are data
members of a SystemC module, too, but possess
built-in scheduling and arbitration facilities in con-
trast to normal objects. Global objects are declared
by means of elements from the SystemC-Plus class
library. In particular a class template for instantiat-
ing global objects is provided which requires an
arbiter type and any user defined class type to be
passed as actual parameters. The passed arbiter
type determines which kind of arbiter will be auto-
matically instantiated together with the global
object. This arbiter guarantees, that the global
object is accessed mutual exclusive; only one cli-
ent process may access the object at a time,
requests of other clients are blocked meanwhile.

532

The temporal behaviour of the hardware to which a
global object is mapped and the synthesized com-
munication protocol (see following section) is now
correctly reflected in a SystemC simulation, too. In
which way concurrent accesses to a global object
are scheduled depends on the concrete type of the
arbiter that was passed as parameter. Actually the
SystemC-Plus class library provides arbiters
implementing three different scheduling strategies;
round robin, modified round robin and static prior-
ity.

It was recognised, that it is desirable to make
the permission to access a global object not only
dependent on whether other clients also want to
access the object at the same time, but to make it
additionally dependent on the internal state of the
global object itself. If, for instance, a “put” method
is called on a global buffer object, which is already
completely filled, the calling client should be
blocked until new space in the buffer is freed.
Likewise, a “get” method call should be blocked if
the buffer is empty. For this purpose SystemC-Plus
provides a guard mechanism for global objects.
Each public method of a user defined class, that
shall be instantiated as a global object, must be
declared as a so-called “guarded method”, follow-
ing a special notation that is described in the Sys-
temC-Plus coding style. This notation associates a
guard condition - a boolean expression - with each
guarded method. Since then, execution of the
guarded method will be only possible if the corre-
sponding guard condition is evaluated true at call-
ing time, otherwise all calls to the method are
blocked until the condition becomes true. This
mechanism provides an easy way to realise syn-
chronisation between different client processes,
which exchange data via a global object.

Therefore the global objects of SystemC-Plus
allow to model communication between different
processes, no matter whether located in the same
or different modules, on a much higher level of
abstraction, than the signal based communication
in pure SystemC, without losing the possibility of
automatic synthesis.

4.2 Synthesis concepts

The concepts for synthesising object-oriented con-
structs presented in this paper basically follow [9].
The main idea of this approach is the implementa-
tion of objects as finite state machines (FSMs),
which can be easily processed by existing synthe-
sis tools. Figure 2 shows a schematic diagram of
the circuit being synthesized from a global object

» STATE_OUT
L 1Q Qt
. 1 method 1 o
Q A A
©
m -
P g — :
3 L
o A
ST © a OUT_PARAMS
method mi
~] 1 ©
otk |
IN_PARAMS » READY
SELECT_METHOD
RESET » DONE
¢ V_ N A I

1 controller I

Fig.2. Synthesized target circuit.

(the arbiter is not shown). The data members
(attributes) of a class are encoded as bit vectors.
The concatenation -of all these attributes gives the
state vector of an object, which is represented as
one single bit vector (object state in the figure).
The methods of an object are implemented as com-
binational networks operating on the object’s state
vector. Multi-cycle operations are possible, too, by
means of a controller, which is also synthesized if
necessary. Invoking a method of a global object is
only possible through its standardised interface
(READY, DONE, IN_PARAMS, OUT_PARAMS,
SELECT_METHOD) ahd always follows the same
communication protocol. ’

In case of derived classes, the state vector of
an object is successively augmented by all
attributes, which are newly defined in the derived
class. Additionally, implementations for all meth-
ods, which are newly defined and refined have to
be added, too.

When regarding polymorphic objects, the
same method call can lead to the execution of dif-
ferent method implementations, dependent on the
actual class membership of the object at invocation
time. The class membership- of a polymorphic
object can be determined dynamically at system
runtime, by means of a'special tag, which is also
part of each object’s state vector. This tag holds the
enéoded information, - to which class a certain
object belongs to.

The following Figure 3 illustrates the-structure

being synthesized for a client/server relationship,
if more than one client is concurrently accessing a
server (a global object) as mentioned above. Con-
current accesses are scheduled by the arbiter
belonging to the guarded object. The arbiter is con-
nected to every client by an exclusive communica-
tion channel implementing an object’s method
interface.

Fig.3. Client/server communication.

4.3 Optimisation
The synthesis of object-oriented hardware models
without doing any optimisation tends to waste

. resources, especially in terms of circuit area and

speed. For this reason optimisation of object-ori-
ented structures is an essential task of the synthesis
path developed in the ODETTE project.

_The main approach for optimisation is to
avoid the hardware implementation of redundant
methods and attributes for each class instance. Due

to the fact, that classes are often being developed
to be used in a wide range of different systems
(reusability), a class may provide a broad set of
different methods, from which only a small subset
is actually used in a certain system or subsystem.
Therefore the implementation of all the remainder
methods would not make sense in that particular
system. Especially polymorphic objects in connec-
tion with a distinct and deep inheritance hierarchy
could cause an enormous resource overhead. The
ODETTE synthesis tool which is now under devel-
opment will perform various analysis to identify
redundant methods and attributes and will then
avoid their implementation in hardware.

5. CONCLUSION

In this paper we have presented an approach to
introduce object-oriented modelling techniques
into the development of hardware based on Sys-
temC. The demonstrated synthesis techniques have
already shown their practicability. The key aspects
and problems of object-oriented hardware model-
ling and synthesis were presented and possible
solutions were proposed. The development of a
synthesis tool for object-oriented SystemC models
has already started within the framework of the
ODETTE project. Results of this project will allow
to model hardware on a much higher level of
abstraction without losing the benefit of automatic
synthesis.

6. REFERENCES

[1] O. Levia, “Programming System Architec-
tures with Java”, IEEE Computer, August
1999.

[2] C. Passerone et al, “Modeling Reactive Sys-
tems in Java”, ACM Transactions on Design
Automation of Electronic Systems, vol. 3, no.
4, 1998, pp. 515-523.

[3] P. Schaumont, S. Vernalde, L. Rijnders, M.
Engels, 1. Bolsens, “A Programming Environ-
ment for the Design of Complex High-Speed
ASICs”, Proc. Design Automation Confer-
ence (DAC), 1998.

[4] K. Van Rompaey, D. Verkest, I. Bolsens, H.
De Man, “Co-Ware - A design environment
for heterogenous hardware/software sys-
tems”, Proc. Euro-DAC, 1996.

[5] CynApps, Inc., “Cynlib, CynApps Class
Library”, information sheet, 1999.

[6] S.Maginot, W. Nebel, W. Putzke-R6ming, M.
Radetzki, “Final Objective VHDL language
definition”, REQUEST Deliverable 2.1.A
(public), 1997; http://eis.informatik.uni-old-
enburg.de/research/objective_vhdl.shtml

[7]1 P.J. Ashenden and P. A. Wilsey, “Principles
for Language Extension to VHDL to Support
High Level Modeling”, Technical Report TR-
03/97, Department of Computer Science,
University of Adalaide, Australia; http://
www.cs.adalaide.edu.au/users/petera/
suave.html

[8] S.-T. Cheng, P. C. McGeer, M. Meyer, T. Tru-
man, A. Sangiovianni-Vincentelli, P. Scaglia,
“The V++ System Design Language”, Proc.
Design Automation and Test in Europe
(DATE, Designer Track), 1998.

[91 M. Radetzki, “Synthesis of Digital Circuits
from Object-Oriented Specifications”, Dis-
sertation at University of Oldenburg, 2000

[10] REQUEST; http://eis.informatik.uni-olden-
burg.de/research/request.shtml

[11] Open SystemC Initiative; http://www.Sys-
temC.org

[12] Synopsys, Inc., Frontier Design, Inc., CoW-
are, Inc., “SystemC Version 1.2Beta Users‘s
Guide”, 2001

[13] Synopsys, Inc., Frontier Design, Inc., CoW-
are, Inc., “Functional Specification for Sys-
temC 2.0, Final, Version 2.0-M”, 2001

[14] Synopsys, Inc.; http://www.synopsys.com

[15] C Level Design, Inc.; http:/www.clevelde-
sign.com

[16] ODETTE; http:/eis.informatik.uni-olden-
burg.de/research/odette.shtml

