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ABSTRACT

The current trend of systems on silicon is leading to System
on Chips with embedded software and hardware components.
Design simplification is becoming necessary to respect the
target time-to-market of SoCs, and this goal can be obtained
by using predesigned IP-cores. However, their correct inte-
gration in a design implies more complezx verification prob-
lems. The SystemC language allows to create and integrate
accurate models of software algorithms, hardware architec-
tures and interfaces for SoCs. In this paper, characteristics
of the language are ezploited to define a design verification
framework for integration test of IP-cores. Intellectual prop-
erty of cores is guaranteed by adopting a client/server sim-
ulation architecture and by allowing functional test gener-
ation on faulty IP-core models without disclosing their in-
ternal structure. Moreover, the methodology can be epplied
to mized descriptions based on VHDL and SystemC, since
an abstraction layer has been defined allowing clients and/or
servers to be indifferently described in VHDL or SystemC.

1. INTRODUCTION

The current trend of systems on silicon is leading to a com-
plexity that can be reduced only by integrating already pro-
duced and optimized parts (IP-cores). The identification of
the more suited core for a design is one of the more time
consuming aspect of design management [1]. In fact, the ef-
fective evaluation of the correct integration (integration test)
of the core can be performed only by running some simula-
tion sessions. Moreover, integration test is a difficult task
since functional test patterns must be generated accordingly
to the design where the core is embedded. Two main prob-
lems can thus be identified:

e simulation of IP-cores at different abstraction lev-
els, without disclosing intellectual property, in order
to evaluate the most suited core for the selected appli-
cation;

e functional test patterns generation for the integra-
tion test of the selected core into the design,

For both reasons, some simulatable views of a core must
be available to the core user and they must model the core
at different abstraction levels (behavioral, RT, gate, switch).
The new hardware-software description language (SystemC)
is emerging and it is becoming a new standard in the EDA
field. The distribution of a SystemC description is safe
from the point of view of the protection of the intellectual
property if the used abstraction level hides implementation
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details. However, this condition cannot be always guaran-
teed if the evaluation of the core requires detailed simulation
sessions and since functional test generation requires faulty
models of the core.

Cryptographic techniques for delivering simulation models
have been proposed [2, 3], but they do not seem to com-
pletely solve the problem, since they are extremely simulator
dependent (in the case of VHDL) or computer architecture
dependent (in the case of compiled SystemC models). This
paper proposes to concentrate the source of simulations di-
rectly in the Web server of the core vendor, by proposing a
typical client-server architecture, where the core users per-
form distributed simulations by connecting their simulation
environment to the simulation environment of the core ven-
dor. This idea has been already analyzed in the literature [4,
5], by proposing the use of ad-hoc languages, such as Java, to
model the core functionality and allowing cooperative work-
ing. The main disadvantage of such approaches is the need
of a remodeling phase, by the core vendor, which does not
usually use Java-based tools to design cores. Even disregard-
ing the necessary extra work, there is a high possibility of
introducing discrepancies and differences between the Java
models and the design models. An alternative approach [6],
centered to VHDL descriptions only, was affected by the
intrinsic simulation degradation produced by interfacing a
event-driven VHDL simulator with a message-passing trans-
mission protocol. Moreover, the integration test problem
cannot be solved by using such an approach.

The first aim of this paper is to analyze the impact of the
new design language SystemC on a Web-based simulation
methodology to perform high-level integration and valida-
tion test of IP cores. By adopting this language, the core
user has only to view the core interface (the class declaration
in the header file) and the responses of the simulator server
in relation to each vector submitted. No internal informa-
tion of the model is discovered, thus preserving the intel-
lectual property. The simulation methodology is based on
standard techniques and tools, that is, the SystemC library
and simulator, the Internet protocol and a socket-based [7]
interface. In this way, mixed VHDL-SystemC simulation
sessions can be organized by simply embedding in the de-
sign the correct socket interface, moreover, the core user
can select the abstract level of the analyzed core by ranging
from very abstract system-level (SystemC) descriptions to
very accurate gate-level representations (VHDL or Verilog)
by using the same simulation environment.
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The second aim of this paper derives from this simulation
framework and it concerns a distributed functional test gen-
erator able to solve the integration test problem. It al-
lows functional test generation for SystemC descriptions in-
cluding IP-cores. Both fault-free and faulty core descrip-
tions are remotely simulated in order to generate functional
test patterns useful to perform integration test of the core.
The faulty core produces faulty responses accordingly to a
generic functional error model selected by the core vendor.
No information related to the errors are disclosed, since a
simple error number is used to identify an error. In this
way, the proposed testing methodology allows to check the
correct integration of a core into a larger design, by pro-
ducing functional test patterns covering errors of both core
and the surrounding logic. In a related paper [8] only a
proof of concept has been given for the fault simulation of
IP-based designs. However, such an approach can be reason-
ably applicable only to simple combinational circuits, where
the number of signals, and hence the traffic on the network,
is low.

The rest of the paper is organized as follows. The method-
ology for distributing IP-cores is presented in Section 2.
Section 3 discusses all features and problems related to the
simulation of SystemC descriptions across the Internet. Sec-
tion 4 shows the implementation of a remote test generator
for the integration test of a core. An application example is
described in Section 5, while Section 6 is devoted to future
works and concluding remarks.

2. IP-CORE DISTRIBUTION

The proposed methodologies for IP-Core distribution can
be described by considering the point of view of the two
cooperating parts: the core vendor and the core user.

e The goal of the core vendor is to allow the core user
to simulate the cores without discovering their internal
descriptions. A method to allow this simulation is the
use of a client-server architecture [6].

e The core user usually analyzes at first the general
characteristics of the core reported in the Web site of
the core vendor. Results of this rough analysis must
then be improved by performing some simulation ses-
sions, eventually remotely, to explore the effective in-
tegration of the core in the design. This operation is
based on some information downloaded from the Web
site of the core vendor.

The main problem of the core vendor is to release core de-
scriptions without disclosing IP information. This paper
proposes the following three different methods to solve this
problem: two different solutions for performing remote sim-
ulation and one solution allowing local simulation.

e VHDL-C suite
This suite is oriented to VHDL designers. It is com-
posed of the core interface (a VHDL entity) and the
socket interface (a C-language architecture). This in-
terface does not include information concerning the
core functionality, but it implements the communica-
tion protocol only. The VHDL simulator adopted by
the designer must be able to link C objects to allow

the transmission of data packets with simulation val-
ues. Both SystemC and VHDL designers are the users
of this suite.

e SystemC suite

It is composed of a core interface (a SystemC compo-
nent declaration) and the socket interface (a SystemC
component definition). The SystemC component def-
inition is released as a C++ source file and the core
interface as a C++ header file. SystemC designers can
simply compile and link this suite to their design in or-
der to remotely simulate the core. Moreover, VHDL
designers can also use this suite to verify the integra-
tion of the core in their preliminary SystemC-based
prototype. When the design will be represented in
VHDL, the same suite or the VHDL-C suite will be
used to refine the simulation.

¢ SystemC suite for local simulation
It is oriented to the same users and can be used for
the same targets. It is composed of a core interface (a
SystemC component declaration) and its implementa-
tion (a SystemC component definition). The SystemC
component definition is released as a C++ object file,
compiled for the different supported computer archi-
tectures, and the core interface as a C++ header file.
This suite can be directly linked to a SystemC design
or interconnected by suing socket to a VHDL design.

All the suites have to be published in the Web pages of the
core vendor to allow the interested designers to download
the usable one. The last suite has been designed for a local
simulation session, while the other suites allow remote sim-
ulation. Remote simulation allows the core vendor to main-
tain and update only one version of the cores, while their
distribution requires a more complex upgrading methodol-
ogy. However, remote simulation decreases the simulation
performance required by the core user. Experimental re-
sults reported in Session 5 show the relative performance of
all approaches.

3. IP-CORE REMOTE SIMULATION

The remote simulation is guaranteed by the client/server ar-
chitecture, which connects the local simulator to the remote
simulation server. All involved parts, from the client and
the server side, are reported in Figure 1.
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Figure 1: Client/server architecture for remote sim-
ulation.

This client/server architecture is based on two stubs: server
stub, the remote core socket interface, and core stub, the
local core socket interface. Three different combinations of
these stubs have been developed and analyzed.
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e Pure SistemC

SystemC descriptions can be adopted for both remote
and local simulations. In the case of a remote simu-
lation, there is a simulation server running on a core-
vendor computer connected to Internet. The simula-
tion server is based on a SystemC description of the
core. The core-user simulator establishes a connec-
tion to the simulation server, sending and receiving
messages containing port values. This solution is per-
fectly adapted for core users that design by using Sys-
temC and would like to analyze the integration of a
system-level described core. By choosing a local sim-
ulation method, the integration of the design and the
core can be performed by linking both SystemC de-
scriptions or by interconnecting them via socket. The
main drawback of this solution concerns the require-
ment for the core vendor to have SystemC models of
the cores. However, automatic translation of VHDL
into SystemC can be performed as mentioned in Sec-
tion 5.

e Pure VHDL

By adopting this solution, both server and client must
have a VHDL simulator able to link C objects in order
to implement the socket interface. By using remote
simulation, the upgrade of the simulated core descrip-
tion is obtained by simply upgrading the description
running on the VHDL simulation. server. VHDL al-
lows the simulation of the core at different abstraction
levels (behavioral, RT, gate), thus making possible to
study the core integration during different developing
phases. The main drawback of this approach concerns
the degradation of the simulation performance due to
the use of the C interface. Moreover, in the case a lo-
cal simulation is required, VHDL executable versions
of the core must be downloaded from the core-vendor
Web site. However, such versions are usually very
simulation tool dependent, thus making this approach
very difficult to be developed and ‘maintained.

¢ Mixed architecture

This solution is based on a combination of a VHDL
core stub and a SystemC server stub. To develop this
solution both stubs have to perform data conversion
between the VHDL and SystemC types (e.g., std-logic
versus sc.logic). This solution can be interesting for
VHDL designers that would like to analyze the integra-
tion of a core described at the system level into their
RT-level designs. The SystemC executable version of
the core can also be distributed and locally connected
via socket to the VHDL user simulator.

The synchronization of the client and server seems to be a
non relevant problem, since it is solved by the socket. On
the contrary, it is necessary to solve some hidden problems
originating from the differences between the semantic of the
VHDL simulator (event driven) or SystemC (cycle based)
and the semantic of the socket interface (message driven).
This analysis is omitted for lack of space.

4. REMOTE TEST GENERATION

The proposed simulation framework can be used to imple-
ment a distributed test generator as described in Figure 2.
The architecture is composed of the test generation program
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and some fault-free and faulty modules, which are compared
for generating functional test patterns.
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Figure 2: Remote test generator architecture.

The whole test generation procedure is locally performed
with the exception for the simulation of the fault-free and
faulty cores. In fact, the core is replaced by a core stub.
The main task of the stub is to manage the socket interface
to communicate with the core vendor server. Test patterns
are sent, by the core stub, to the core server. This module
applies the stimuli to the real core and send back the output
to the TPG. This working mode is the same used for normal
remote core simulation.

The faulty core stub has an extra port to select the injected
fault. The total number of faulty configurations available is
a parameter chosen by the core vendor. Moreover, to obtain
a better IP protection, error codes are not correlated, i.e.
two errors on bit 6 and 7 of the same core signal are coded
by z and y, such that y # =z + 1.

The absence of information about the internal structure of
the core does not allow the core user to apply deterministic
algorithms for error detection. Thus the current release of
the TPG is based on a random test pattern generator. This
simple approach is currently extending by using probabilistic
algorithms, such as genetic algorithms.
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Figure 3: TPG diagram.



The test pattern generation process is designed as a finite
state machine (Figure 3) composed of the following states:
test sequence generation, error selection, test vector applica-
tion, evaluation, remote elaboration, and comparison. When
the evaluation state is reached for the core test, the local
computation stops, and the input and the code error are
sent, by the socket interface, to the remote server. The exe-
cution restarts as soon the outputs are received from the core
vendor server and it continues with the comparing phase.

S. APPLICATION EXAMPLE

The proposed methodology for the verification and integra-
tion test of IP cores is applied in this section to an exam-
ple. The Modeltechnology VHDL simulation environment
has been adopted for the VHDL descriptions, since it al-
lows the mixed simulation of VHDL and C modules, while
SystemC 1.1 has been used for modeling and simulating the
SystemC descriptions. All experiments have been performed
on a SUN Ultrab 333 MHz with 256 MByte Ram.

5.1 Core Selection

We consider the problem to implement a 3-tap digital filter
characterized by the following equation:

y=coz+crz” +epz?

The hardware realization of the filter uses, as embedded
core, a public domain load/store CPU available at the RT
and logic levels. The SystemC (VHDL) definition of the core
is provided on the Web site of the core vendor with the core
stub and the corresponding implementation . They allow
the remote simulation of the core.

5.2 Core Simulation

The SystemC (VHDL) simulation of the core is performed
to verify the effectiveness of the selected core. Its correct
integration in the design is checked by generating functional
test patterns as reported in the next paragraph.

We performed four types of simulation to measure the ap-
plicability of the proposed simulation methodology:

e Local simulation of the core embedded into the global
architecture. It corresponds to the simulation of a
core, which is directly provided in SystemC (VHDL)
source code.

e Local with socket simulation. Both client and server
are running on the same machine and they are inter-
faced via socket. This simulation measure the over-
head of the socket interface disregarding network prob-
lems.

¢ Intranet remote simulation. Both client and server
belong to the same Internet domain and they are con-
nected trough a 100Mbit Ethernet connection. This
simulation is related to the use and distribution of a
core in the same company, where a design group can
only use the results of another design group without
disclosing the intellectual property.

¢ Internet remote simulation. This is the more gen-
eral case, where a local client is connected to a remote
server located in any part of the Internet. We simulate
a traffic condition close to have a client in Europe and
a server in north America, or vice versa.

The previously described four types of simulation have been
applied to the three different combinations of server and
client listed in Section 3.

Table 1 shows the time (in seconds) necessary to run the
simulation of the core and the normalized simulation times
with respect to the times of the local simulation. Table 2
reports the simulation times normalized with respect to the
SystemC local simulation time.

By analyzing Table 1 it is possible to identify the impact of
the socket interface and the communication channel on Sys-
temC and VHDL simulators. The simulation performance
of the SystemC client/server architecture is affected in the
same manner by the two factors. In fact, there is a degra-
dation in simulation time of one order of magnitude due to
the introduction of the socket interface and another order
of magnitude due to the Internet communication channel.
In the case of the VHDL client/server architecture, perfor-
mance is decreased of two orders of magnitude by simply
adopting the socket interface. The use of communication
channels does not relevantly modify times. The mixed con-
figuration, VHDL client and SystemC server, shows simula-
tion times comparable with those of the VHDL simulation.
This result is expected, since a cooperative client/server ar-
chitecture works at the speed of the slower peer. Table 2
shows the performance improvement reachable by adopt-
ing SystemC (for client and server) instead of VHDL. The
SystemC local simulation is 44% faster than the equivalent
VHDL simulation. This is promising for the extensive use
of SystemC for simulating complex embedded systems. The
Intranet SystemC simulation is 8 times faster than the cor-
responding VHDL simulation, thus emphasizing the more
efficient link of SystemC with other libraries with respect to
VHDL.

5.3 Core Integration Test

As shown in Table 2, the pure SystemC architecture is the
faster solution and hence the best candidate for testing and
verifying the correct integration of a remote IP-core within
a larger design. To perform integration test, we applied the
functional test generator described in Section 4.

We assume that the core vendor distributes both fault-free
and faulty CPU core through the previously described re-
mote interface. This guarantees the distribution of the IP-
-core without disclosing its intellectual property. As shown
in Figure 2, we connected the system with a test pattern
generator that allows to run a simulation to verify the func-
tional correctness of the global design, thus producing test
patterns to check the correct integration of the core. As re-
ported in Table 3, the main factor that decreases the test
generation performance is not the test generation phase it-
self and the socket interface, but the remote simulation. The
slowdown obtained for the Internet solution is of two orders
of magnitude higher than the local solution. If remote simu-
lation is considered feasible, remote test generation becomes
feasible.

6. CONCLUDING REMARKS

A methodology for IP-Core analysis and simulation has been
presented . It allows the core vendor to make available
very detailed core models without disclosing IP information.
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Sim. Arch. Type | Sim. type Real Time | User Time | System Time [ Norm. Real | Norm. User [ Norm. System |
Local 6.52 5.82 0.55 1 1 1
Server: SystemC | Local+socket 102.41 3.60 3.41 15.70 0.62 6.20
Client: SystemC | Intranet 104.24 3.91 3.62 15.98 0.67 6.58
Internet 759.96 4.13 4.10 116.55 0.71 7.45
Local 9.37 6.78 1.14 1 1 1
Server: VHDL Local+-socket 852.08 5.32 3.80 90.94 0.78 3.33
Client: VHDL Intranet 857.35 3.41 2.24 91.50 0.50 1.96
Internet 901.80 3.65 2.67 96.24 0.54 2.34
Local - - - - - -
Server: SystemC | Local4socket 857.05 3.27 1.61 1 1 1
Client: VHDL Intranet 857.15 4.26 1.67 1.00 1.30 1.04
Internet 903.31 4.53 2.12 1.05 1.39 1.32

Table 1: Simulation times (Real, User and System) and normalized times with respect to the local simulation

time.

[ Simulation Server Type | Simulation type | Real Time | User Time | System Time

Local 1 1 1

Server: SystemC Local+-socket 15.70 0.62 6.20

Client: SystemC Intranet 15.98 0.67 6.58

Internet 116.55 0.71 7.45

Local 1.44 1.16 2.07

Server: VHDL Local+socket 130.67 0.91 6.91

Client: VHDL Intranet 131.49 0.59 4.07

Internet 138.31 0.63 4.85

Table 2: Normalized simulation times for SystemC versus VHDL comparison.

Sim. Arch. Type | Sim. type Real Time | User Time | System Time || Norm. Real | Norm. User | Norm. System |
Local 4.422s 3.340s 0.190s 1 1 1

Server: SystemC | Local+socket 20.452s 5.040s 4.370s 4.625 1.510 23

Client: SystemC | Intranet 21.513s 4.770s 2.810s 4.865 1.428 14.79
Internet 675.474s 4.970s 3.360s 152.753 1.488 17.68

Table 3: Test generation times (Real, User and System) for SystemC suite.

Moreover, it allows the core user to perform a validation
test to verify the correct integration of the selected IP core
into the core-based design under development. This is per-
formed by generating functional test patterns for both the
core and the surrounding logic. This main idea has been
exploited by using two different modeling languages: VHDL
and SystemC. Experimental results showed that, the use of
SystemC produces better results in terms of simulation time
and SystemC models can be more efficiently linked to inter-
face libraries. Performance degradation of the remote test
generator is dominated by the remote simulation process,
thus it seems to be feasible whenever remote simulation is
acceptable. Future work will be devoted in the definition
of a more efficient data transmission protocol in order to
decrease the impact of Internet on the simulation and test
generation time. However, waiting for an improvement of
Internet transmission capabilities, the proposed technique
can be directly used in the contest of the SystemC suite for
local simulation, by providing detailed descriptions of the
cores, even with faults, without disclosing IP information.
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