Behavioral Synthesis with SystemC*

George Economakos, Petros Oikonomakos, Ioannis Panagopoulos,
loannis Poulakis and George Papakonstantinou
National Technical University of Athens
Department of Electrical and Computer Engineering
Zographou Campus, GR-15773 Athens, Greece

E-mail: george@cslab.ece.ntua.gr

Abstract

Having to cope with the continuously increasing com-
plexity of modern digital systems, hardware designers
are considering more and more seriously language based
methodologies for parts of their designs. Last year, the in-
troduction of a new language for hardware descriptions, the
SystemC C++ class library, initiated a closer relationship
between software and hardware descriptions and develop-
ment.tools. This paper presents a synthesis environment and
the corresponding synthesis methodology, based on tradi-
tional compiler generation techniques, which incorporate
SystemC, VHDL and Verilog to transform existing algo-
rithmic software models into hardware system implemen-
tations. Following this approach, reusability of software
components is introduced in the hardware world and time-
to-market is decreased, as shown by experimental results.

1. Introduction

‘@ver the last twenty years, advances in circuit fabrication
technology have increased device densities and as a conse-
quence, they have increased design complexity. To man-
age.continuously emerging tasks, designers have moved to-
wards higher levels of abstraction and language based de-
sign:descriptions. However, each design must be described,
eventually, at the lowest level (e.g. layout masks), in order
to be fabricated, through various synthesis processes. This
hasmotivated the Electronic Design Automation (EDA) in-
dustry to produce software tools, which accept language
based design specifications (most of the times, schematics
can also be used if the user is more familiar) and perform

*This work was partially funded by the Greek Ministry of Develop-
ment, General Secretariat for Research and Technology, project PENED
99EA521

1530-1591/01 $10.00 © 2001 IEEE

21

synthesis.

The most widely used Hardware Description Languages
(HDLs) today are VHDL (2] and Verilog [1]. Since their
adoption as IEEE standards, they have been enthusiastically
adopted by they EDA industry also. Today, having over-
come initial maturity problems, they are used in many de-
sign houses all over the world. Last year, a new competitor
came into the market, the SystemC C++ class library [14].
Even though commercial synthesis environments based on
SystemC are not available yet, this language promises a
higher level of design abstraction. Since it is a C++ class
library, it can operate on software, and thus algorithmic,
system models and use software development tools (C++
compilation environments) for simulation.

Algorithmic or behavioral hardware modeling introduce
a higher level of design abstraction for the EDA industry.
High-level or behavioral synthesis [3, 9, 17], is defined as
the transformation of behavioral circuit descriptions into
register-transfer level (RTL) structural descriptions that im-
plement the given behavior while satisfying user defined
constraints.

When language based design entry is used, high-level
synthesis presents many similarities with traditional com-
piler construction (at least during the initial transformation
stages). Therefore, tools and techniques applied to the lat-
ter, may also be applied to the former if advantageous.
The reason that such application may be favorable is that,
even though high-level synthesis has been introduced over
twenty years ago, some problems have to be solved be-
fore it is widely accepted by both industry and academia.
Among them, high-level synthesis lacks a theoretical frame-
work (like Boolean algebra for logic design) that would fur-
ther accelerate research. Examples of hardware design en-
vironments based on compilation techniques can be found
in[5, 6,7, 10, 12].

This paper presents a high-level hardware compiler that
takes SystemC behavioral input specifications and gener-

ates VHDL, Verilog and SystemC RTL output specifica-
tions, after performing high-level synthesis. Utilizing this
environment, a whole new hardware design methodology is
presented, which can start by writing new or reusing already
tested software models. The basic building block for the
new environment is a robust and flexible compiler construc-
tion system called Eli [16], which offers declarative, and
thus more abstract, ways to describe the problems of high-
level synthesis and their solutions. Declarative notations
along with modularity form an abstraction layer, a meta-
level between hardware transformations and their imple-
mentation. The performance of the overall environment in
both execution speed and quality of results is very promis-
ing, as shown with experimental results.

2. Hardware Compilation Environment

The design environment used to build hardware models
out of algorithmic specifications is based, as stated above,
on the Eli compiler construction system. Eli makes ex-
tensive use of the Arnribute Grammar (AG) computational
model, originally proposed in [8]. AGs consist of a set of
syntactic rules and a set of domain specific values called at-
tributes. Each syntactic rule is associated with a number of
attributes and equations, called semantic rules, which define
each attribute in terms of other attributes of the syntactic
rule (or even of remote syntactic rules in the case of Eli).
Large computations based on a syntactically defined input
set can be performed with AGs. Their advantage is that the
programmer defines the relations between attributes, which
most of the time represent characteristic values of the in-
put set, and not the computation steps needed to calculate
them (loops, conditions, etc). Attribute dependencies de-
termine the order of attribute computations. Attributes can
hold complex data types, even text templates (which is ex-
tensively used the current work to produce output in differ-
ent languages).

2.1. Hardware Transformations Using AGs

When language based design is applied, behavioral cir-
cuit transformations can be performed during a compilation
phase, using AGs. This happens because, compilation is
based on the parse tree of a behavioral description, which is
in fact a superset of its dataflow graph, on which behavioral
transformations are applied. In this context, scheduling for
example is performed, by decorating the nonterminal sym-
bols of the parse subtree corresponding to primitive opera-
tions, with an attribute that is evaluated as the control step at
which the operation will be performed. By altering the se-
mantics, the evaluation rules are altered and thus, different
heuristics are implemented.

22

For simple scheduling heuristics, like ASAP and ALAP,
evaluation rules are very easy to implement since decision
about the time when each operation will be performed, de-
pends on the immediate inputs and outputs of the operation.
By generating local dependencies between input and output
attributes, whole operator chains are scheduled. Using an
automated compiler writing system based on AGs, this for-
malism works as an executable specification also and thus,
a hardware compiler performing ASAP or ALAP schedul-
ing to every input behavioral description is automatically
generated.

However, the ASAP and ALAP scheduling examples are
rather restricted and of no practical use. Modern scheduling
and allocation heuristics require complicated computations.
To support them, an automated compiler construction sys-
tem must be rich in expressive power and provide computa-
tional constructs that, along with simple attribute evaluation
rules, can describe any kind of datafiow graph computation.
Such constructs are provided by the Eli compiler construc-
tion system.

In brief, four basic advanced constructs of Eli can be ap-
plied to define advanced high-level synthesis transforma-
tions. The first is support for iterative attribute evaluations,
which leads to generalized loop computations through at-
tribute dependencies (all attributes that depend on an iter-
ative attribute are also iteratively evaluated). The second
construct is remote attribute dependency operators, which
lead to a multi-pas$ and global attribute evaluation aigo-
rithm, transparent to the user (the user writes dependencies
and the system determines the correct visit sequence which
will satisfy them). The third construct is the chain depen-
dency operator, which evaluates and propagates the value
of an attribute at all nodes of the parse tree, during a left-
to-right depth-first traversal. The chain dependency may be
used to force multiple passes through all nodes of the parse
tree. The final advanced construct is the dependency opera-
tor, used to describe dependent computations in time. That
is, the computation at the left of the operator, usually an at-
tribute evaluation, will be executed after evaluating a list of
other attributes, found at the right, regardless of their values
(more details about Eli can be found in [16]).

These constructs can be put to use for the design of ex-
ecutable and formal descriptions of advanced transforma-
tions, like resource constrained list scheduling [3]. For each
operator type, ready operators are inserted in a different
priority list, using the operator’s modality (ALAP-ASAP
value) as its priority. Iterating through the available control
steps, operators are scheduled as long as resources are avail-
able. This algorithm can be expressed using Eli advanced
specification constructs, in order to be performed during a
compilation phase. This specification, in pseudocode, is
given below.

At each operator node:

compute ASAP
compute ALAP
compute modality
At root of the parse tree:
Cstep=1
ITERATE UNTIL all operators are scheduled
With a chain:
for each ready operator put its modality
into a root list attribute (one for each
operator type)
At each operator node:
if ready and modality has a position in
list such that resources are available,
then schedule it at root.Cstep and make
scheduled=true
At root of the parse tree:
Cstep=Cstep+1
END ITERATE

As a second representative example, consider the prob-
lem of optimum register allocation and the left-edge algo-
rithm [3] used to solve it. For each variable of the behavioral
description, the 2-tuple (StartTime, EndTime) repre-
sents its lifetime interval. Variables not yet mapped to reg-
isters are inserted in a list in ascending order with their start
times as the primary key, and in descending order with their
end times as the secondary key. Iterating through available
registers, compatible variables are detected and mapped to
the same register. As in the case of list scheduling, this al-
gorithm can also be expressed to work during a compilation
phase, using advanced specification constructs. This spec-
ification in pseudocode, implemented using Eli syntax in a
straightforward manner, is given below.

At each variable node:
compute start
compute end
At root of the parse tree:
reg=1
ITERATE UNTIL all operators are scheduled
At root of the parse tree:
last=0
With a chain:
put each not mapped variable into a root
list attribute
At each variable node:
if not mapped, has start>root.last
and all previous opera-
tors in list can not
be mapped, map it to register root.regq,
make root.last=end, delete it from list
and make mapped=true
At root of the parse tree:
reg=reg+l
END ITERATE

In this way, the basic operations of high-level synthesis
are performed in a compiler generator environment. How-

23

ever, further functionality is required. Resource constraints
are maintained using a symbol table type of construct, like
in [6]. Timing constraints and interface specifications are
given following a special syntax, and play the role of ini-
tial values for scheduling attributes [11]. User interaction
is through Tcl/Tk scripts, which present a graphical view of
the synthesized dataflow graph of the algorithmic descrip-
tion along with its textual specification.

2.2. Language Interfaces

With the methodology presented in the previous subsec-
tion, the parse tree of an input behavioral specification is
transformed into a structural RTL description. However its
effectiveness depends on the input and output language in-
terfaces, which integrate the proposed system with other
components in the design automation process. The pre-
sented system includes one input language interface, for
SystemC, and three output language interfaces, for VHDL,
Verilog and SystemC.

The input language interface corresponds to the syntax
of the input behavioral specification and is given in a sepa-
rate file, as a set of productions in Eli. SystemC has been
chosen as the input language because it is based on a tradi-
tional programming language and may look more familiar
for writing behavioral models.

The output language interfaces produce synthesizable
VHDL and Verilog architectural descriptions, as produced
after high-level synthesis, which can be used at lower levels
of the synthesis process. Furthermore the same architectural
details and the same architectural description style is used to
generate architectural SystemC descriptions also. With this
output, pre-synthesis and post-synthesis simulation results
can be obtained from the same test pattern generator and in
the future, if SystemC synthesizers become available, RTL
synthesis will also be performed.

To generate architectural descriptions, each output lan-
guage interface generate language constructs that corre-
spond to registers and functional units. Registers are de-
scribed in VHDL with a process that includes the if
clk='1’ and clk’event construct and in Verilog
with the always block always @ (posedge clk). A
similar construct in SystemC is to declare a member func-
tion as being sensitive_pos (clk). Functional units
are straightforward to describe. They correspond to opera-
tors in expressions, provided the correct data types and op-
erator functions are available (sometimes, they can be found
in special purpose library units).

‘Under the Eli environment, output for all languages is
produced using the Pattern-based Text Generator (PTG)
tool. A PTG specification is a set of named patterns de-
scribing the structure and textual components of the out-
put description. Each pattern corresponds to a function,

which yields an internal representation of a pattern applica-
tion. These functions are called at appropriate nodes of the
parse tree. Their arguments are either attributes calculated
during high-level synthesis, or specific, syntax based infor-
mation about the particular tree node (like the functionality
of an operator - addition, subtraction, multiplication, divi-
sion, etc.). The result of these function calls is a pointer
attribute, which points to ready-to-be-output text patterns.
All ready patterns are actually output at a later phase by
the system, after all transformations have been performed.
So, the whole synthesis process can be split into three parts:
high-level synthesis transformations through attribute eval-
uations, pattern preparation with PTG and finally system
initiated pattern output. The concept of text patterns at-
tached to tree nodes makes output coding very flexible, be-
cause it supports modular and reusable coding techniques.
As an example, consider VHDL coding of a functional
unit that is required to work at a specific control step. The
following code fragment is required.
if (present_state=statel) then
al<=a2+a3;
endif;

Such coding is generated using the following general text
pattern, called ifframe (\n and \t are the newline and
tab characters).

ifframe "\t\t\tif present_state=state"
$1 " then\n"
"\ENENENE" $2 <= $3 $4 $5
";\n\t\t\tendif;"

The ifframe pattern instructs Eli to generate the func-
tion PTG f frame, which takes five arguments ($1, $2,
$3, $4 and $5 in the above text) and when called, re-
turns a pointer to a piece of code with all arguments
placed as the pattern dictates. This function is called at all
nodes of the parse tree that have the form operation —
operand; operator operand; as following.

PTGif frame(operation.cs, operation.place,
operand, .place, operator.place,
operands.place)

where cs is the control step when operation is to be ex-
ecuted and place is a string attribute that holds the lexical
values of the corresponding tokens.

24

3. Design Methodology

The design environment presented in the previous sec-
tion support a new algorithmic level design methodology
that can transform software into hardware system models.

Under this methodology, a design starts by writing a new
or reusing a pre-existing software implementation of the
algorithm under implementation using the C++ language.
The software model is tested with the corresponding soft-
ware development environment. Next C++ is changed into
SystemC in a straightforward way and timing is introduced
to the design. With the same software development envi-
ronment this initial hardware model is tested against the
software model. Next, each member function of the behav-
ioral SystemC implementation is passed through the syn-
thesis environment presented above. From the VHDL and
Verilog outputs, synthesis goes on until the final implemen-
tation is reached. The SystemC output replaces parts of the
initial hardware model and through simulation, it can val-
idate the results of high-level synthesis with the same test
vector generator.

The effectiveness of the proposed methodology will be
shown with experimental results.

4. Experimental Results

The presented synthesis environment has been found
to provide notable advantages, especially for researchers.
This is due to the fact that the transformation specifications
needed are declarative and thus, very close to the actual de-
scription of the heuristic they implement. This makes them
flexible and easy to manipulate and cause minor modifica-
tions, which is crucial for new research ideas.

Another advantage is that all specifications are modu-
lar, so a problem can easily be partitioned into subproblems
with separate specifications. When common subproblems
are found, reusable specifications may be written. Relevant
to this is the fact that the Eli system includes a library of
specifications, for some common subproblems, which are
casily available.

However, a question that had to be answered was the
efficiency of the proposed methodology. For this reason
tests were conducted with a number of randomly gener-
ated benchmark circuits, a number of benchmark circuits
found in [4] and a complete example of a medical applica-
tion found in [15].

From the randomly generated benchmarks, the execution
speed of the environment was measured. Table 1 shows
execution times for experiments with different scheduling
heuristics, using a Pentium 166MHz Linux based worksta-
tion. It is shown that the new environment can handle both
small and large experiments in considerable time.

10 50 100
nodes nodes nodes
ASAP | 0.02sec | 0.09sec | 0.17 sec
ALAP | 0.02sec | 0.09 sec | 0.18 sec
LIST | 0.03sec | 0.10sec | 0.20 sec

Table 1. Execution times for randomly gener-
ated circuits

From the benchmarks taken from [4], the final results
were compared with results obtained from equivalent be-
havioral specifications, passed through the Synopsys Be-
havioral Compiler {13]. The results of the proposed envi-
ronment used resources that ranged from 16% less than the
corresponding result from Behavioral Compiler to 5% more
than the corresponding result from the Behavioral Com-
piler.

Finally, the example found in [15] implements a feature
detection algorithm, which consists of five computational
components, a low-pass filter, a high-pass filter, a deriva-
tion, a squaring and a moving window integration. A soft-
ware model for each component is given in [15]. All five
components were written in SystemC and passed through
the proposed environment separately. At the same time
the software models were manually translated into VHDL,
without changing coding style. Since the specific software
models used common and simple constructs, it turned out
that the manually generated VHDL code was synthesizable
by commercial RTL synthesizers. So both the automati-
cally generated output of the proposed environment and the
manual design were passed through the Xilinx’s Foundation
Express [18] synthesizer and implementation environment,
using different synthesis constraints (bit width of operands,
target library, etc). The results of the proposed environment
used resources that ranged from 7% less than the corre-
sponding result from Foundation Express to 6% more than
the corresponding result from Foundation Express.

5. Conclusion

This paper has presented a new design environment for
high-level hardware synthesis, involving VHDL, Verilog
and the recently introduced SystemC. The corresponding
design methodology utilizes a traditional compiler genera-
tor, to implement behavioral transformations and automati-
cally translate existing software projects into hardware. Ex-
periments have shown that this approach offers advantages
in design space exploration, without compromising either
execution times or quality of results. Moreover, the pre-
sented environment makes extensive use of declarative pro-
gramming constructs and thus, it stands as a meta-level be-

25

tween hardware transformations and their implementation.
Such toolsets can be proven valuable in fast evaluation of
new research ideas and techniques in the field.

References

[1]1 J. Bhasker. A Verilog HDL Primer, Second Edition. Star
Galaxy Publishing, 1999.

J. Bhasker. A VHDL Primer, Third Edition. Prentice Hall,
1999.

G. De Micheli. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, 1994.

N. Dutt and C. Ramachandran. Benchmarks for the 1992
high-level synthesis workshop. Technical Report 92-108,
UCI, 1992.

G. Economakos, G. Papakonstantinou, and P. Tsanakas. An
attribute grammar approach to high-level automated hard-
ware synthesis. Information and Software Technology,
37(9):493-502, 1995.

G. Economakos, G. Papakonstantinou, and P. Tsanakas.
AGENDA: An attribute grammar driven environment for the
design automation of digital systems. In Design Automation
and Test in Europe Conference and Exhibition, pages 933~
934. ACM/IEEE, 1998.)

K. Keutzer and W. Wolf. Anatomy of a hardware compiler.
In Conference on Programming Language Design and fm-
plementation, pages 95-104. ACM SIGPLAN, 1988.

D. E. Knuth. Semantics of context-free languages. Mathe-
matical Systems Theory, 2(2):127-145, 1968.

Y.-L. Lin. Recent development in high level synthesis. ACM
Transactions on Design Automation of Electronic Systems,
2(1):2-21, 1997.

J. Oberg, A. Kumar, and A. Hemani. Grammar-based hard-
ware synthesis from port-size independent specifications.
IEEE Transactions on Very Large Scale Integration Systems,
8(2):184-194, 2000.

1. Poulakis, G. Economakos, and P. Tsanakas. Interaction in
language based system level design using an advanced com-
piler generator environment. In Workshop on VLSI, pages
97-102. IEEE/CS, 2000.

A. Seawright and F. Brewer. Clairvoyant: A synthesis
system for production-based specification. [EEE Transac-
tions on Very Large Scale Integration Systems, 2(2):172-
185, 1994.

Synopsys. Behavioral Compiler User Guide Version
1999.10, 1999.

Synopsys, CoWare, Frontier Design. SystemC Version 1.0
User’s Guide, 2000.

W. J. Tompkins. Biomedical Digital Signal Processing: C-
Language Examples and Laboratory Experiments for the
IBM PC. Prentice Hall, 1995,

W. M. Waite. An executable language definition. ACM SIG-
PLAN Notices, 28(2):21-40, 1993.

R. A. Walker and S. Chaudhuri. High-level synthesis: Intro-
duction to the scheduling problem. [EEE Design & Test of
Computers, 12(2).60-69, 1995.

[18] Xilinx. Foundation Series 2.1i User Guide, 1999.

{2
3]
(4]

(3]

(6]

{7

—

B

{10]

[11]

[12]

[13]
[14]

(15}

{16]

(17}

