
Interaction in Language Based System Level Design Using an Advanced
Compiler Generator Environment�

Ioannis Poulakis, George Economakos and Panayiotis Tsanakas
National Technical University of Athens

Department of Electrical and Computer Engineering
Zographou Campus, GR-15773 Athens, Greece

poulakis@cslab.ece.ntua.gr

Abstract

Computer-aided synthesis of digital circuits from behav-
ioral level specifications offers an effective way to deal with
the increasing complexity of digital hardware design. A
high-level synthesis tool transforms an abstract algorith-
mic description into a detailed register transfer level imple-
mentation. Even though considerable research has taken
place, regarding high-level synthesis, practical implemen-
tations are just emerging. This happens due to the fact that
designers demand interaction at both the specification and
implementation level. This paper describes an efficient im-
plementation of an original idea, for the design of a gram-
mar based interactive design environment, which allows de-
signers supplement high-level synthesis optimizations and
set constraints among the operators in the textual algorith-
mic description to meet their implementation preferences.
The suggested methodology raises the feasibility for high
level design space exploration by enabling synthesis results
to be directly modifiable by the user.

1. Introduction

High-level synthesis(HLS) [7, 12, 13, 17], has been
proven very effective in fast prototyping of VLSI circuits.
HLS accepts a behavioral specification of a digital system,
along with a set of constraints, and finds a structure that
implements the given behavior while satisfying constraints.
The behavior is usually described as an algorithm, similar
to a conventional programming language description. The
output structure is a register transfer level implementation,
which includes a data-path and a control unit. The data-
path consists of all required functional units and their inter-

�This work was partially funded by the Ministry of Develop-
ment, General Secretariat for Research and Technology, project PENED
99E�521

connections. Control activates components of the data-path
to realize the required behavior. The objective of synthe-
sis is to find a structure that meets given constraints while
optimizing cost functions, like the required hardware re-
sources or the power consumed. This structural specifica-
tion is technology independent and can be utilized in dif-
ferent circumstances and consequently, design reusability
is supported.

Recently, HLS has become a hot research topic; nev-
ertheless, designers still prefer semi-automated (with auto-
matic optimizations starting at lower abstraction levels) or
even manual methodologies. This happens because a fully
automated design offers little interaction, so it is hard to
verify that all constraints are indeed respected. A more fea-
sible approach is what we callInteractive High-Level Syn-
thesis(IHLS), where users can control the design process,
observe the effects of design decisions and manually over-
ride synthesis algorithms at will. Recent literature presents
increasing interest in interactive methodologies and synthe-
sis systems [1, 18, 9, 5].

On the other hand, design complexity requires abstract
notations to describe hardware, likeHardware Descrip-
tion Languages(HDLs) [2, 15]. HDLs are nowadays
widespread among applications for the specification, veri-
fication and synthesis of digital hardware. Consequently,
traditional programming language methods and tools have
been applied for hardware design [6, 14, 10], their main
advantages being design productivity, technology indepen-
dence and greater potential for design reusability.

This paper proposes an interactive synthesis methodol-
ogy, usingAttribute Grammars(AGs) [11] as a formal uni-
fied framework over which HLS is performed, following
and extending the work presented in [3, 4] and [5]. The
basic idea is that the parse tree of a behavioral, high-level,
language based hardware specification, is used to describe
both behavioral and structural details of the design process.
Attributes are used to transform behavior into structure, im-



plementing widely used HLS heuristics. Furthermore, at-
tributes are also used to support user interaction, by allow-
ing the user to pass constraints and modifications to the au-
tomated HLS transformations, along with the algorithmic
behavioral description (attributed-behavioral specifications
[1]). The corresponding implementation is based on an ef-
ficient and advanced AG based compiler generator environ-
ment [8, 16]. Though HDL structural output descriptions,
the proposed design environment connects HLS with lower
level synthesis tools and so, complete implementation de-
tails can be obtained and evaluated repeatedly , until all
constrains are met. Overall, our approach is a novel idea
for IHLS, based on the declarative and modular notations
of the AG computational model.

2. Related Research

The proposed methodology combines research in two re-
cent hot design automation topics, language based design
and design interaction.

Language based design is a consequence of the increased
design complexity of modern digital circuits. This has mo-
tivated researchers to move towards higher abstraction lev-
els and utilize language based processors [6]. As far as
synthesis is concerned, language based processors followed
the idea that by expressing the design in a higher level for-
malism, which is bound to a specific computational model,
one can use an executable version of the model to perform
synthesis. As the design specification passes through the
model, constructs (crucial for synthesis) are recognized and
special procedures are conducted [14]. An integrated en-
vironment for silicon compilation, was the syntax-directed
system developed by Keutzer et al [10], which was based
on the same ideas with our current work. However, their
effort was aimed at a lower level of abstraction. It faced the
problem of register-transfer level realization, that is, the op-
timal transformation of an FSMD architecture into netlists
of digital gates, and used more than one language proces-
sors. The main disadvantage of most traditional approaches
was that they used complicated design entry specifications
and that they presented new heuristics which were not com-
pared with previous ones and not tested in practical exam-
ples, with resource or power constraints.

Design interaction is a requirement for high-level design
environments. From the viewpoint of an experienced hu-
man designer, ”black-box” systems, where all tasks are per-
formed automatically, are unacceptable due to the inacces-
sible workings of the tools and algorithms involved. Work
on this area has been focused on unifying structures, which
can support a design through different abstraction levels and
views (behavioral, dataflow, structural, physical) [18, 9]. In
[1], a methodology for interactive specification of language
based designs, called theattributed-behavioralspecifica-

tion, has been presented. The work of [5] combined a unify-
ing structure, the parse tree of the behavioral input specifi-
cation, with the attributed-behavioral specification method.

This paper implements user interaction in the AGENDA
[3] AG driven HLS environment, under an efficient auto-
mated compiler generator environment [8, 16]. It follows
the work of [5] and the idea of the attributed-behavioral
specification, where a system is described as a couple of
an algorithmic specification and a set of conditions that
must hold for any implementation. Taking advantage of
the AGENDA methodology, where, attributes attached to
the parse tree of the algorithmic specification hold imple-
mentation details, it allows user interaction with those at-
tributes that correspond to the conditions of the attributed-
behavioral input specification. By iterating over this pro-
cess, all serial/parallel tradeoffs in behavioral modeling are
handled in a unified, formal environment.

3. Proposed Methodology

An attributed-behavior specification consists of a textual
algorithmic description accompanied by a set of conditions
(attributes) that must hold in any implementation of the de-
scription. Our methodology consists of defining and ma-
nipulating attributes that offer user interaction through HLS.
Consider scheduling, one of the basic problems of HLS. We
have defined five attributes, five operator relationships in the
temporal domain, called step, cstep, delay, group and dis-
tance. All attributes refer to an operator of the algorithmic
description and are denoted themselves like referential op-
erators. The hardware interpretations of these attributes are:

� step: Assigns the control step in which the referen-
tial operation will be executed. If it is impossible for
the operation to be executed on that clock cycle, then
a new value is estimated according to the scheduling
algorithm. For example, if we want operationoi to be
executed in thenth control step we add the token[n] in
front ofoi in the behavioral description (syntax:[n]oi).

� c step: Assigns the control step in which the refer-
ential operation will be executed. There is no further
check for the applicability of the desired control step.
The designer must be certain about the effect of this
attribute. For example, if we want operationoi to be
executed in thenth control step we add the token[&n]
in front of oi in the behavioral description (syntax:
[&n]oi).

� delay: Assigns the number of control steps that the
referential operation will be delayed. The control step
the operation will be executed is the one estimated by
the scheduling algorithm, increased by the value of de-
lay. For example, if we want operationoi to be delayed



by n control steps we add the token[^n] in front of oi
in the behavioral description (syntax:[^n]oi).

� group: With this attribute, operations in the algorith-
mic description can be partitioned in groups. We can
have more than one groups but each operator may be-
long only to one. All operators in a group will be ex-
ecuted at the same control step. There are two varia-
tions of the group attribute. The user can either group
the operators and define the control step on which they
will be executed with a additional cstep attribute, or
let the system choose the latest among the control steps
of all operators in the group, and schedule them then.
For example, if we want operationoi to be included
in groupxj we add the token[gxj ] beforeoi in the
behavioral description (syntax:[gxj ]oi).

� distance: This is a special case of the group attribute.
It assigns minimum, maximum or exact distance, in
clock cycles, between execution times of the operators
in a group. In other words, operators within a group
will not be scheduled in the same control step but, in
a time slot whose width is given by the distance at-
tribute. In every case, operator dependencies are ex-
amined to avoid violations. For example, if we want
operationoi, which is part of groupxj , to be sched-
uled within a time slot of at mostn control steps width,
with respect to all other operators inxj , we add the to-
ken[dgxj < 3] beforeoi in the behavioral description
(syntax[dgxj(<;>;=)n]oi).

All attributes are used to describe the designer’s imple-
mentation preferences and thus, have a direct impact on the
operation of the current scheduling algorithm (CSA).

The implementation of the proposed methodology sup-
plements the AGENDA formal, AG based, hardware com-
pilation environment. AGENDA uses the parse tree of the
given behavioral description as a unifying structure that
holds both behavioral and structural system details. At-
tributes are used to transform behavior into structure, im-
plementing widely used HLS heuristics through attribute
evaluation rules. These attributes, which are values asso-
ciated with non-terminal symbols of the underlying gram-
mar, form an AG. Passing this AG over and AG evaluator
generator [8, 16], produces an AG based hardware compiler,
which implements the selected HLS heuristics. On the other
hand, the attributes of an attributed-behavioral specification
describe the conditions that must hold for any implementa-
tion. However, using AGs, such conditions can be attached
to non-terminal symbols of the grammar and thus, can be
expressed with attributes of the AG. Moreover, we can say
that these latter attributes play in fact the role of initializa-
tions for the other, HLS transformation attributes. For ex-
ample, consider the following operation parsing grammar
rule, with a step relationship.

operation! operand1 [n]operator operand2 (1)

Assuming ASAP scheduling (for simplicity), AGENDA
normally uses a synthesized attributes cs (whose value de-
pends on values of successor nodes in the parse tree), de-
noted asX:s cs, whereX is a non-terminal grammar sym-
bol, to pass scheduling information from inputs to outputs,
with the following evaluation rule, in any syntactic rule sim-
ilar to (1).

operation:s cs = MAX(operand1:s cs;

operand2:s cs) + 1

Considering the step condition, another synthesized at-
tribute, calledstep, is used and the following modifications
are made.

operation:CSA = MAX(operand1:s cs;

operand2:s cs) + 1

operation:step = n

operation:s cs = valid(operation:step)?

operation:step : operation:CSA

As it can be seen, there exist a straightforward cor-
respondence between the step conditional attribute of the
attributed-behavioral input specification and thestep at-
tribute of the underlying AG. In fact, constraint attributes
can be regarded as the initial values (under conditions) of
the scheduling attributes cs.

The same applies in the case of the delay relationship.
The following is an operation parsing rule with a delay at-
tribute.

operation! operand1 [^n]operator operand2 (2)

Scheduling is performed with the following evaluation
rule.

operation:delay = n

operation:s cs = operation:delay + operation:CSA

Similar is the case of thec step attribute.

operation! operand1 [&n]operator operand2 (3)



operation:step = n

operation:s cs = operation:step

In the case of group attribute, there exist two alternative
uses, as reported above. If group is combined with step or
c step, then scheduling is performed as follows:

operation! operand1 [&n1][gn2]operator operand2 (4)

operation:step = n1

operation:s group cs = operation:step

operation:group = n2

ins group(operation:s group cs;

operation:group;

operation:flag)

operation:s cs = get group cs(operation:group;

operation:i group cs)

If group is not combined with other conditions, then
scheduling is performed as follows:

operation! operand1 [gn]operator operand2 (5)

operation:step = operation:CSA

operation:s group cs = operation:step

operation:group = n

ins group(operation:s group cs;

operation:group;

operation:flag)

operation:s cs = get group cs(operation:group;

operation:i group cs)

The difference between (4) and (5), is that in (4), group is
combined with cstep and the value ofc step overrides the
value calculated by the CSA. In both (4) and (5), two special
functions are used,ins group() andget group cs().

� ins group() is used to relate the estimated control
step of the current operator with all other members
of the same group. Theoperation:flag attribute is
used to specify weather rule (4) or (5) is used. If
operation:flag is set, thenn is the value of the
group’s control step, otherwise the maximum control
step of all members of the group is used.

� get group cs() is used to retrieve the final value for
the control step of the group.

Considering the above heuristics, it is obvious that con-
trol step evaluation in an operator parsing rule depends not
only on local attributes of inputsoperand1 andoperand2.
In (4), the control step of all the group members is set to
n1. In (5), as we have mentioned earlier, the control step
for each of the group members is the maximum of the con-
trol step values calculated by the CSA, for all group mem-
bers. To respect this relationship, before we decide the con-
trol step of the group (whenget group cs() is called), we
have to know the maximum control step value. To accom-
plish this we have introduced two more attributes, one syn-
thesized -s group - and one inherited -i group (whose
value depends on values of predecessor nodes in the parse
tree). As we can see in the parse tree example of figure
1, attributes group moves upwards in the parse tree from
each grouped operator towards the root, carrying informa-
tion about the control step value calculated using the CSA.
When alls group attributes reach the root, they are inserted
in i group, which carries all values downward, towards the
rest nodes of the same group. Wheni group reaches these
nodes, alls group attributes have been calculated and so,
the maximum control step can be calculated.

Finally, in the case of the distance attribute, scheduling
is performed as follows:

operation! operand1 [dgn rel dis]operator operand2 (6)

operation:step = operation:CSA

operation:s group cs = operation:step

operation:group = n

ins group(operation:s group cs;

operation:group;

operation:flag)

operation:s cs = (rel ==0

<
0)?

min distance(operation:dis;

step; operation:i group) :

(rel ==0

>
0)?

max distance(operation:dis;

step; operation:i group) :

(rel ==0=0)?

exact distance(operation:dis;

step; operation:i group)

In (6) i group and s group attributes are used the
same way as in (5). The functionsmin distance(),



g2 g1 g1

g1

g2 g1

i_group
s_group

Figure 1. s group and i group tree traversal

max distance() and exact distance() are used to esti-
mate the control step for the operation as follows:

� min distance():The operator is scheduled so that all
members of the group are within a time slot of at least
dist controls steps.

� max distance():The operator is scheduled so that all
members of the group are within a time slot of at most
dist controls steps.

� exact distance():The operator is scheduled so that all
members of the group are within a time slot of exactly
dist controls steps.

Rules like (1), (2), (3), (4), (5) and (6) are applied inde-
pendently or combined (ex.[&2][g1]) in a behavioral de-
scription. They affect the CSA selected by the HLS envi-
ronment. In fact, the overall resulting scheduling algorithm
is the following:

for each operation o i

if c step(o i,n)
ScheduledStep(o i) = n

else if step(o i,n)
if n is a valid control step

ScheduledStep(o i) = n
else

ScheduledStep(o i) = CSA(o i)
else if delay(o i,n)

ScheduledStep(o i) = n+CSA(o i)
else if group(o i,x j)

ScheduledStep(o i) =
MAX(ScheduledStep(o k), 8ok 2x j)

else if distance(o i,x j)
if relation==’<’

ScheduledStep(o i) = min distance() con-
sidering all o k 2x j

else if relation==’>’
ScheduledStep(o i) = max distance() con-

sidering all o k 2x j

else if relation==’=’
ScheduledStep(o i) = exact distance() con-

sidering all o k 2x j

else /* no attribute applicable */
ScheduledStep(o i) = CSA(o i)

Using the proposed methodology, designers can increase
their interaction with the synthesis process. They can iterate
through different implementations of the desired functional-
ity changing the supplied step, cstep, delay, group and dis-
tance attributes until a desired implementation is generated.
The overall advantage of the methodology is the declarative
and modular notations presented above, which are used for
both the specification and implementation of each schedul-
ing heuristic (provided an automated compiler generator en-



vironment). With the adoption of the attributed-behavioral
paradigm, user interaction is considerably increased.

4. Implementation Details

The implementation of the proposed methodology is a
flexible and interactive high-level hardware compiler that
produces synthesizable VHDL [2] or Verilog [15] output
descriptions. The resulting environment can support top
down, language based design of digital circuits by using any
modern, commercial HDL synthesizer.

This new environment has been found to provide notable
advantages, especially for researchers. This is due to the
fact that the high-level transformation specifications needed
are declarative and thus, very close to the actual descrip-
tion of the heuristic they implement. This makes them flex-
ible and easy to manipulate and cause minor modifications,
which is crucial for new research ideas. Another advan-
tage is that all specifications are modular, so a problem can
easily be partitioned into subproblems with separate speci-
fications. When common subproblems are found, reusable
specifications may be written. The complete source code
in AG form required 51 files and 42K bytes in a Pentium
166MHz Linux based workstation.

5. Conclusion

An interactive HLS synthesis environment, following
the attributed-behavior specification paradigm has been pre-
sented in this paper. It takes advantage of the capabilities
supported by the AG computational model, that is, declara-
tive and modular design specifications, and allows users to
supplement scheduling heuristics with their implementation
preferences. Moreover, the use of step, cstep, delay, group
and distance attributes allows the designer to interfere with
the scheduling algorithm and produce an efficient design.
Both minor and major modifications to the scheduling algo-
rithm can be easily and interactively achieved, depending on
the skills of the human designer. This idea can be very help-
ful in design space exploration and with the implementation
flexibility offered by AGs, can support a new paradigm for
efficient system level design.

References

[1] L. F. Arnstein and D. Thomas. The attributed-behavior ab-
straction and synthesis tools. InDesign Automation Confer-
ence, pages 557–561. ACM/IEEE, 1994.

[2] J. Bhasker.A VHDL Primer. Prentice Hall, 1992.
[3] G. Economakos, G. Papakonstantinou, and P. Tsanakas. An

attribute grammar approach to high-level automated hard-
ware synthesis. Information and Software Technology,
37(9):493–502, 1995.

[4] G. Economakos, G. Papakonstantinou, and P. Tsanakas.
AGENDA: An attribute grammar driven environment for the
design automation of digital systems. InDesign Automation
and Test in Europe Conference and Exhibition, pages 933–
934. ACM/IEEE, 1998.

[5] G. Economakos, I. Poulakis, G. Papakonstantinou, and
P. Tsanakas. An attribute grammar based interactive high-
level synthesis tool. InInternational Workshop on Logic
and Architecture Synthesis, pages 181–186. IFIP, 1998.

[6] R. Farrow and A. G. Stanculescu. A VHDL compiler
based on attribute grammar methodology. InConference on
Programming Language Design and Implementation, pages
120–130. ACM SIGPLAN, 1989.

[7] D. Gajski, N. Dutt, A. Wu, and S. Lin.High-Level Synthesis.
Kluwer Academic Publishers, 1992.

[8] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and
W. M. Waite. Eli: A complete, flexible compiler construc-
tion system.Communications of the ACM, 35(2):121–131,
1992.

[9] H. P. Juan, D. D. Gajski, and V. Chaiyakul. Clock-driven
performance optimization in interactive behavioral synthe-
sis. InInternational Conference on Computer Aided Design,
pages 154–157. ACM/IEEE, 1996.

[10] K. Keutzer and W. Wolf. Anatomy of a hardware compiler.
In Conference on Programming Language Design and Im-
plementation, pages 95–104. ACM SIGPLAN, 1988.

[11] D. E. Knuth. Semantics of context-free languages.Mathe-
matical Systems Theory, 2(2):127–145, 1968.

[12] Y.-L. Lin. Recent development in high level synthesis.ACM
Transactions on Design Automation of Electronic Systems,
2(1):2–21, 1997.

[13] M. C. McFarland, A. C. Parker, and R. Camposano. The
high-level synthesis of digital systems.Proceedings of the
IEEE, 78(2):301–318, 1990.

[14] M. Naini. A dedicated dataflow architecture for hardware
compilation. In22nd Annual Hawaii International Confer-
ence on System Sciences, 1989.

[15] S. Palnitkar.Verilog HDL: A Guide to Digital Design and
Synthesis. Prentice Hall, 1996.

[16] W. M. Waite. An executable language definition.ACM SIG-
PLAN Notices, 28(2):21–40, 1993.

[17] R. A. Walker and S. Chaudhuri. High-level synthesis: Intro-
duction to the scheduling problem.IEEE Design & Test of
Computers, 12(2):60–69, 1995.

[18] C. H. Wu, T. S. Hadley, and D. D. Gajski. An efficient multi-
view design model for real-time interacive synthesis. InIn-
ternational Conference on Computer Aided Design, pages
328–331. ACM/IEEE, 1992.


