Towards a New Standard for System-Level Design

Stan Y. Liao
Advanced Technology Group
Synopsys, Inc.

Abstract—Huge new design challenges for system-on-chip
(SoC) are the result of decreasing time-to-market coupled
with rapidly increasing gate counts and embedded soft-
ware representing 50-90 percent of the functionality. The
exchange of system-level intellectual property (IP) mod-
els for creating executable specifications has become a
key strategic element for efficient system-to-silicon design
flows. Because C and C++ are the dominant languages
used by chip architects, systems engineers and software en-
gineers today, we believe that a C-based approach to hard-
ware modeling is necessary. This will enable co-design,
providing a more natural solution to partitioning function-
ality between hardware and software. In this paper we
present the design of SystemC, a C++ class library that
provides the necessary features for modeling design hier-
archy, concurrency, and reactivity in hardware. We will
also describe experiences of using SystemC 1) for the co-
verification of 8051 processor with a bus-functional model
and 2) for the modeling and simulation of an MPEG-2
video decoder.

I. INTRODUCTION

The high level of integration provided by advances in pro-
cessing technology has brought new challenges in the de-
sign of digital systems. Higher integration has given rise
to a trend to integrate entire complex systems, consist-
ing of a heterogeneous mixture of hardware and software
components, onto system-on-chip (SoC) designs [4] [5] [6]
[14]). This trend challenges EDA tool developers to pro-
vide tools that can support the design and verification of
such hardware-software systems. In a traditional design
methodology, hardware and software designs take place in
isolation, such that the final integration takes place after the
hardware is fabricated. Design errors that cannot be cor-
rected in software often lead to costly re-fabrication and
can adversely affect time-to-market. Therefore, we must
seek new design methodologies in which hardware and
software components are integrated and verified earlier in
the design cycle.

One of the most pressing problems in hardware—
software co-design and co-verification is the use of multiple
languages (e.g., HDLs for hardware and C/C++ for soft-
ware) and heterogeneous programming environments. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES 2000 San Diego CAUSA

Copyright ACM 2000 1-58113-268-9/00/5...85.00

such environments the communication between hardware
and software are typically accomplished by programming-
language interfaces (PLIs) or some form of interprocess
communication (remote procedure calls (RPCs), sockets,
etc.) [8] [12]. Minimizing this communication overhead is
clearly desirable. Another problem with the design flows in
use today is that system architects usually start with C/C++
models, and then hands these models to the ASIC design-
ers for translation into synthesizable HDLs—an error-prone
task.

The goal of SystemC is hence twofold. First, for de-
sign verification, SystemC facilitates the co-verification of
hardware-software systems by supplying a single language
framework-—based on standard C++—with which the de-
signer describes both hardware and software components.
This speeds up co-simulation by eliminating the use of
complex PLIs or RPCs: the designer can easily exchange
data between components. SystemC also provides the nec-
essary hardware constructs so that simulation can be car-
ried out at various, possibly mixed, levels of abstraction.
Second, for implementation, SystemC allows the user to
successively refine his model—without translating to an
HDL. Once sufficient implementation details are available,
the design can then be handed to a synthesis tool for circuit
generation.

In this paper, we present the design of the SystemC
Class Library [1], a brief overview of its syntax and us-
age, and some experiences of using it for modeling real-
istic systems of medium-to-high complexity. We will de-
scribe the main features of SystemC—concurrency, reac-
tivity, data-types, and hierarchy—for modeling hardware
in Section II. In In Section III we will discuss behavioral
and RTL synthesis directly from SystemC code. Finally,
Section IV presents two examples, an MPEG-2 video de-
coder and an 8051 processor, that serve to illustrate its
practical usage.

II. DESIGN OF SYSTEMC
A. Requirements for Modeling Hardware
A hardware system is typically modeled as reactive system:
a system in continuous interaction with its environment.
That is, we think of and express hardware as a set of non-
terminating processes that react continuously to events in
their environment [2]. The notion of reactivity is realized
in Verilog and VHDL as signals and events (changes in
signal values), and the ability to detect and respond to
events. Most existing HDLs incorporate reactivity in us-
ing an event-driven model, and it is generally recognized
that such a model is sufficient to describe most hardware



systems at various levels of abstraction: from algorithms
to gate-level circuits [7].

A.1 Reactivity

Support for reactivity requires the following:

Concurrency, or Parallelism. Hardware is inherently
parallel. Concurrency in operations can be modeled us-
ing support for program threads and co-routines in the
form of libraries. SystemC encapsulates concurrency in
abstract C++ classes, thereby presenting to the user an eas-
ily usable interface. One can then build non-terminating
hardware processes by employing the subtyping facilities
of C++. SystemC provides three kinds of processes with
performance—expressiveness trade-offs:

1. An SC_METHOD process executes its body from the
beginning to the end every time it is invoked. A list of
signals to which the process is sensitive needs to be
declared, and the process is triggered whenever any
of these signals changes value. sC_METHOD does not
allow implicit execution state, but it offers the best
simulation performance. It is suitable for describing
combinational circuits and RTL explicit finite state
machines (Section III).

2. An SC_THREAD process can be suspended at any
point and resumed at that point the next time it is
entered. Like sC_METHOD, it can have any arbitrary
sensitivity list. It is useful for writing testbenches.
The performance is usually somewhat slower than
SC_METHOD due to context-switching overhead.

3. An SC_CTHREAD process is triggered by a transi-
tion (on either a positive edge or a negative edge,
but not both) of a clock signal. Like SC_THREAD, it
can be suspended and resumed at any point, and has
the same context-switching overhead. However, un-
like the other two kinds of processes, it is completely
synchronized to a clock edge. Typicaily, this kind of
process is used for writing and synthesizing descrip-
tions at the behavioral level.

Ports, Signals, and Events. In a software-programming
environment, communication between processes can be
done through global variables or direct access to one an-
other’s internal state—as is often done at the functional
level and above. However, for hardware implementation it
is required that a module be self-contained and commu-
nications occur strictly through its ports. Furthermore, to
ensure determinism in communication, signals (instead of
plain variables) are the media over which data transmission
occurs. (Other media, such as FIFOs, are also possible.)

Waiting and Watching. Hardware processes interact (in
terms of control) primarily through signals and events.
Thus they need the ability to wait or watch for a par-
ticular condition or event. Waiting refers to a blocking
action that can be associated with a condition on a sig-
nal. Watching refers to a non-blocking action that runs in
parallel with a specified behavior (as in “do p watching

s”). This construct is used typically to handle preemptions
[3); the semantics is such that regardless of the state of
execution of p, whenever s occurs, p is terminated. In Sys-
temC, events on a signal can be detected by use of the
event method; for example, a.event () returns true if
there was an event on the signal or port a. This value can
then be used to control the execution of other statements.
In addition, SystemC’s SC_CTHREAD provides mechanisms
for waiting on a condition (wait_until) and for watching
for a condition while executing a region of code (W_BEGIN
... W_END). For details of their implementation, see [7].

A.2 Data Types

A software programming language usually provides a small
set of data types in terms of bit-widths, e.g., 8, 16, and
32. But a hardware designer must not be bound by this
limitation—three sizes do not fit all in hardware.

SystemC provides another set of data types that gives
the user the flexibility of specifying integers of any size.
For example, sc_int<12> declares a 12-bit signed integer
type and sc_uint<25> a 25-bit unsigned integer type. The
precision of operations on these types are limited to the size
of a double-word (typically 64 bits). Arbitrary-precision
versions are also available: sc_bigint and sc_biguint.
Fixed-point arithmetic packages such as FRIDGE [13] can
be easily incorporated into SystemC.

In addition, SystemC provides 4-valued logic scalar and
vector types, and the corresponding calculus. These data
types are useful for modeling busses, for instance.

A.3 Structure and Hierarchy

Finally, to model hardware we must be able to ex-
press structures. In SystemC, the library abstract class
sc_module provides the basic building block for express-
ing structures and design hierarchy. Processes cannot exist
other than inside a module. A user-defined class derived
from sc_module is characterized by:

1. Ports. Ports may be input, output, or bidirectional
(inout). The template types sc_in, sc_out, and
sc_inout are used to construct ports of different data
types, €.8., sc_in<int> is a port whose data type is
an int. There are other specialized ports, e.g., clocks.

2. Internal signals. These signals may be used to con-
nect submodules or may be used by processes in the
current module to communicate among themselves.

3. Submodules. A module may contain submodules.

4. Internal member variables. These variables may be
used for saving any kind of data. One use of internal
member variables is to keep the state of an RTL finite
state machine.

5. Member functions, or methods. Some member func-
tions are declared to be one of the three kinds of
processes; others are used only as subroutines.

6. A constructor. The constructor contains declarations
of member functions as processes and sensitivity lists.



It also contains the instantiation of submodules, and
initialization of internal signals and internal member
variables, if necessary.

B. SystemC Syntax and Usage

Since its inception SystemC has evolved substantially. At
the present stage, one of the most notable changes from
previous versions is the greatly simplified syntax. Ports are
explicitly declared as in-ports, out-ports, or inout-ports, and
the user need not explicitly (and tediously) bind ports to
signals. Also, multiple processes can be declared succinctly
inside a module.

Consider the following example:

#include "systemc.h" -
struct my_module : sc_module {
sc_in clk clk;
sc_in<bools> rst;

sc_in<int> a;

sc_in<int> b;

sc_out<int> c;

sc_out<ints> d;

void multiply ()
{
c=a*b;
}
void latched_add()
{
d=a+b;
wait () ;
}
SC_CTOR (my_module)
{
SC_METHOD (multiply) ;
sensitive << a << b;
SC_CTHREAD (latched_add, clk.pos());
watching (rst.delayed() == true);
}
}i

int sc_main(int ac, char* av{])
{
sc_clock clk;
sc_signal<bool> rst;
sc_signal<int> a, b, ¢, d;

my_module mm("mm") ;
mm(clk, rst, a, b, ¢, d);
stimulus st("st");
st(clk, rst, a, b, ¢, d);

sc_start (100) ;
return 0;

}

This fragment defines a struct (synonymous with class)
derived from the library base class sc_module, allowing
it to inherit features from the latter. Then follow the port
declarations—this module has six ports: an input clock

port, a reset port of type bool, two input ports of type
int, and two output ports of also type int. Two mem-
ber functions, multiply and latched_add, are defined.
By themselves they are just ordinary functions; an ex-
plicit statement declaring them to be SystemC processes
is required. Hence, we need to define a constructor, us-
ing the sC_TOR macro (which generates code to manage
hierarchical names properly). Inside this constructor, we
declare multiply to be an SC_METHOD process, sensitive
to changes to either of the inputs a or b; and latched_add
to be an SC_CTHREAD process, clocked on the positive edge
of clk. The watching statement prescribes that this pro-
cess start over when the value of rst is true. Note that
there is a wait () statement in the process latched_add.
This statement is analogous to @posedge in Verilog. In
general there may be more than one wait () statement
in an SC_CTHREAD process. Note also that two processes
are defined inside this module. A module can also contain
other modules. In that case, we simply declare a member
variable whose type is the submodule type, and inside the
constructor instantiate it and bind its ports.

In the top-level sc_main function, we define the clock
clk and the signals rst and a through 4. We also in-
stantiate two modules, mm and st (definition of class not
shown). The statement mm(clk, rst, a, b, c, d) uses
the positional form of port-signal binding—thus each sig-
nal is bound to the corresponding port in the order the port
is declared in the module. A runtime type-check ensures
that each port is bound to a signal of the correct type. Fi-
nally, sc_start (100) instructs the simulator to run for
100 time units.

III. SYNTHESIS—BEHAVIORAL AND RTL
Providing synthesis capability from SystemC can signifi-
cantly improve designer productivity because the step of
translation into HDL is eliminated. An executable specifi-
cation is generally not ready for synthesis. Refinement is
the process of adding just enough implementation details
and constraints to make it an implementable specification,
i.e., a specification that is synthesizable and can achieve
good quality of results. The amount of implementation de-
tail added depends on the degree of control over synthesis
that the designer desires. Typically, the more control the
designers want, the closer to register-transfer level (data-
path + finite-state machine) of detail they have to specify.
If a higher level of abstraction, such as behavioral level
is desired, then the designer loses some control over the
architecture because the synthesis tool selects it (though
the designer has some control over directing the tool to-
wards the right architecture, e.g., by specifying constraints
on resources and timing).

Refinement consists of three steps. The first step is
called data refinement, whereby C/C++ built-in types are
replaced by data types of the right precision determined
by the designer. One example of such refinement is the
refinement of floating-point types to fixed-point types.



The second step is control refinement. The most im-
portant aspect of control refinement is specifying the in-
put/output behavior of each block in the design, i.e., when
inputs are sampled and when outputs are produced. During
control refinement, a designer may decide what level of
abstraction she desires to synthesize from. For a behavioral
level of abstraction, defining the I/O behavior and setting
the design constraints is all that is required. To refine a
design to RTL, the designer has to create the finite-state
machine and the datapath herself.

The third step in refinement is to ensure that the ap-
propriate coding policies have been followed and that all
synthesizable models use constructs from the synthesiz-
able subset. The synthesizable subset for C/C++ consists
of the entire C language except the obvious constructs
that do not have well-defined hardware semantics, namely
dynamic memory allocation, arbitrary pointers, arbitrary
gotos, recursion, etc.

Since the C/C++ language can support various levels
of abstraction, there are few restrictions on what can be
specified for synthesis. The hardware semantics of C/C++
operators and expressions involving such operations are
similar to that of most HDLs. Semantics of control flow
statements such as if-then-else, switch-case, while, etc., are
also well defined. A structural datapath consisting of arith-
metic operators can be specified as easily as a finite-state
machine. A behavioral model (one without an architecture)
can specified more easily.

Currently we are working on synthesis tools for Sys-
temC, both for behavioral and for RTL. These tools are
much more than simple translators. They involve both
language-independent and -dependent analyses and op-
timizations. Not only are we implementing applicable
state-of-the-art compiler optimizations (see [9]), we have
also discovered synthesis-specific optimization opportuni-
ties and are implementing algorithms to solve them. These
tools have been successfully integrated into the existing
design flow.

IV. PRACTICAL EXPERIENCES WITH SYSTEMC
In this section we will describe some practical experi-
ences with SystemC in modeling some realistic systems
of medium-to-high complexity. These exercises confirm
the efficiency of SystemC, and provide us with insights
for laying the foundations of future design methodologies.

A. An MPEG-2 Video Decoder

The MPEG-2 video coding standard specifies the syntax of
the video bit-stream and the corresponding video decoding
process. One of the main applications of the MPEG-2 video
coding standard is the encoding of interlaced video at TV
and HDTV resolution.

The design flow in this exercise starts with a model
of the entire decoder, including the testbench, in the Syn-
opsys COSSAP environment. The synthesizable decoder
part is then split into a control-flow part, modeled with

the Synopsys Protocol Compiler (PC) tool, and a signal-
processing part, modeled in synthesizable C++ code based
on the SystemC Class Library.

At the COSSAP system level, the rather complex
MPEG-2 decoder algorithm is split into several building
blocks of lower algorithmic complexity. These blocks may
be written in any of the HDLs, or SystemC (as in the
present exercise), at a high-level of abstraction. Afterwards
they may be easily replaced with synthesizable SystemC
code or pre-compiled intellectual property (IP) blocks, and
simulated against previous models.

The control-flow dominated part of the MPEG-2 de-
coder consists of the bit-stream parser and is modeled for
synthesis using Protocol Compiler. PC allows for modeling
the video parser at an abstraction level very close to that
of the official MPEG-2 specification, and can generate bit-
and cycle-true SystemC code for simulation as well as for
synthesis.

Finally, the signal-processing part is modeled in Sys-
temC for synthesis with the Synopsys SystemC Compiler.
The following algorithms in this part are implemented:
inverse quantization (IQ), inverse discrete cosine trans-
form (IDCT), and motion compensation. At the algorith-
mic level, no details about timing, concurrency, reset be-
havior, and bit-true types were employed. To progress to-
wards synthesis, the designer refines the system by adding
more and more implementation details until a synthesizable
behavioral or RTL form is reached. SystemC’s hardware
constructs makes possible this refinement in the a single
language.

B. An 8051 Processor

We now present the co-simulation of an 8051 processor
with a bus-functional model [10]. A bus-functional model
(BFM) is a key component in any co-verification solution;
it is a useful abstraction for the verification and evalu-
ation of a processor-based design. The BFM provides a
programming interface that can be used by the software
directly. Since in the beginning stages of the design pro-
cess the software runs on the host processor (on which
development is done), this model is untimed because soft-
ware execution time is inaccurate. In later stages of the
design process, an instruction-set simulator (ISS) needs to
be used in conjunction with the BFM in order to execute
the instructions for the target processor. The ISS makes
use of the same programming interface to communicate
with the BFM. Since this ISS can be cycle-accurate, one
can perform cycle-accurate simulations at this stage.

In the SystemC environment, a BFM is a module that is
derived from SystemC library class sc_module. The ports
of this module correspond to the pins of the processor. The
BFM class has several methods that provide a program-
ming interface to the software or to the ISS. The methods
provided depend on the type of communication between
hardware and software. The functionality of the BFM it-
self is modeled as a set of finite-state machines (that can



execute in parallel). In the SystemC environment, the pro-
gramming interface to BFMs is more or less fixed, i.e. the
interface methods have the same prototype for all BFMs,
though some BFMs may support methods that are not sup-
ported in others. This allows the user to swap one proces-
sor model for another easily, without having to change
the C/C++ source code. This capability is important be-
cause it allows the user to explore different architectures
with different processors. The various pre-defined types for
handling addresses, data, registers, etc., can be specialized
inside each BFM, thereby allowing complete freedom for
each BFM to define these types appropriately. The BFM in-
terface consists of methods for accessing memory-mapped
I/0, interrupt-driven I/O, configuration ports, internal reg-
isters, timers, and serial ports. In addition, it has a set of
performance-estimation functions.

A system consisting of the Synopsys DesignWare
DW8051 core [11] has been modeled using SystemC. It
has been tested with a set of software programs exer-
cising various features of the BFM. At this level (bus-
functional-accurate), the simulation performance is up to
three times faster than co-simulation with HDL-based com-
mercial tools. This results primarily from the simplification
of the communication between hardware and software.

Finally, a cycle-accurate ISS for a subset of the DW8051
architecture has also been developed and integrated with
the BFM. This ISS is implemented as a single process
that fetches, decodes, and executes the 8051 instructions.
Several techniques (reducing activity on memory bus and
gating clocks), have been used to optimize the ISS so
that, even with cycle-accuracy, the performance is just 10%
slower than host-based execution of software. This figure
would typically increase for more-complex architectures
(e.g., superscalar, pipelined architectures).

V. CONCLUSION

Increasingly complex systems and higher level of integra-
tion require us to reconsider our design methodology. In
this paper we have addressed and, presented a solution for,
a significant part of the puzzle, namely, that of a system-
level design language. Our approach is pragmatic; we take
an existing and widely-used language, C++, and provide
a simulation environment that is both fast and robust. Our
experiences with the MPEG-2 decoder and the 8051 pro-
cessor have been encouraging, and we have also made
tremendous progress on synthesis from SystemC at both
the behavioral and RTL levels. We believe SystemC is an
important step towards a new standard for system-level
design.

ACKNOWLEDGMENTS

The author would like to thank Luc Séméria and Abhijit
Ghosh for providing the results and insights from the 8051
experiments, and to Norman Weyrich, Ulrich Holtmann,
and Rocco Jonack for the MPEG-2 video decoder example.

(1]
{2]

{31

41

(5]

(6]

{7

{81

9]

(10}

(11]

(12]

[13]

[14]

REFERENCES
Open SystemC Initiative. See htip:/fwww.systemc.org.
G. Bemry. Real-time programming: General purpose or
special-purpose languages. In G. Ritter, editor, Information
Processing 89, pages 11-17. Elsevier Science Publishers
B.V. (North Holiand), 1989.
G. Bemry. Preemption in concumrent systems. In Proc.
FSTTCS’93, Lecture Notes in Computer Science, volume
761, pages 72~93. Springer-Verlag, 1993.
R. Ernst, J. Henkel, and T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. [EEE Design & Test of
Computers, pages 64-75, December 1993.
F. Balarin et al. Polis: A Design Environment for
Control-Dominated Embedded Systems. See hitp:/fwww-
cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html.
R. K. Gupta and G. De Micheli. A Co-Synthesis Ap-
proach to Embedded System Design Automation. Design
Automation for Embedded Systems, 1(1-2), January 1996.
S. Liao, S. Tjiang, and R. Gupta. An efficient implementa-
tion of reactivity for modeling hardware in the Scenic syn-
thesis and simulation environment. In Proceedings of the
Design Automation Conference, pages 70-75, June 1997.
Mentor Graphics Corp. Seamless Co-Verification. See
hutp:/fwww.mentorgrahics.com/seamless.
S. Muchnick. Advance Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, San Francisco, CA,
1997.
L. Séméria and A. Ghosh. Methodology for hard-
ware/software co-verification in C/C++. In Proceedings
of the Asia South-Pacific Design Automation Conference,
Yokohama, Japan, January 2000.
Synopsys, Inc. DesignWare DW8051 Macrocell Solution.
http:/fwww.synopsys.com/products/designware/8051_ds.html.
Synopsys, Inc. Eagle Tools. See http://www.synopsys.com/
eagle.
M. Willems, V. Bursgens, H. Keding, T. Groetker, and
H. Meyr. System-level fixed-point design on an interpola-
tive approach. In Proceedings of the Design Automation
Conference, pages 293-298, June 1997.
W. Wolf. Hardware-Software Co-design of Embedded Sys-
tems. IEEE Proceedings, 82(7):965-989, July 1994.



