
AGENDA: An Attribute Grammar Driven Environment
for the Design Automation of Digital Systems

George Economakos, George Papakonstantinou and Panayotis Tsanakas
National Technical University of Athens

Dept. of Electrical and Computer Engineering
Zographou, GR-15773 Athens, Greece

george@dsclab.ece.ntua.gr

Abstract
Attribute grammars have been used extensively in every
phase of traditional compiler construction. Recently, it
has been shown that they can also be effectively adopted
to handle scheduling algorithms in high-level synthesis.
Their main advantages are modularity and declarative
notation in the development of design automation
environments. In this paper, past results are further
elaborated and more scheduling techniques are
presented and implemented in a flexible environment for
the design automation of digital systems. This novel
approach can be proven valuable for fast evaluation of
new algorithms and techniques in the field.

1. Introduction

Attribute Grammars (AGs) were devised by Knuth [10]
as a tool for the formal specification of programming
languages. In the general case, an AG can be seen as a
mapping from the language described by a Context Free
Grammar (CFG) into a user defined domain. AGs have
been extensively used in compiler construction [1].

High-Level Synthesis (HLS) of special purpose
architectures [7], [12] presents many similarities with
compiler construction. However, contrary to the lower
levels of abstraction, HLS lacks a theoretical framework.
Attempting to overcome this inefficiency and propose a
unifying formal framework, an AG based approach was
proposed in [4]. Earlier, a lot of other language based
approaches for different aspects of the design automation
process had been reported [8], [9], [13].

In [4], AG formalisms for two widely used
scheduling algorithms, As Early As Possible (ASAP) and
As Late As Possible (ALAP) were given. Implementa-
tions were presented in [5] and [6]. In this paper, the
whole idea is further elaborated and realized into the

AGENDA (Attribute Grammar driven ENvironment for
the Design Automation of digital systems) environment.
The implementation tool has changed from the
restricting YACC compiler-compiler, to the powerful
custom designed SDP [14] tool, which can handle any
non-circular AG. Three scheduling algorithms, ASAP,
ALAP and Resource Constrained ASAP (RC-ASAP),
have been implemented. Finally, examples have been
designed, from behavioral descriptions to synthesizable
VHDL code.

2. AGENDA Overview

Design entry in an HLS system is an algorithmic
description written in a Hardware Description Language
(HDL). In AGENDA, the HDL used plays a dual role. On
one hand, it is used to express design functionality. On
the other, its syntax is used as the underlying CFG that is
decorated by a synthesis AG. It must support a high level
of abstraction with a strict and well-defined syntax. Such
a language, used to describe hardware specifications is
HardwareC [11], a subset of which is used in AGENDA.

The first step in HLS is the transformation of the
input specification into a Control/Data Flow Graph
(CDFG) type internal representation. In AGENDA, a
modified representation of the one presented in [15] has
been adopted. All operator nodes of the CDFG are
described by the set X, all inputs by set I and all outputs
by O. The CDFG is constructed by attaching to all
expression parsing syntactic rules of the AGENDA HDL,
a standard set of semantic rules that insert operators,
inputs and outputs into X, I and O respectively.

After the CDFG construction, HLS performs
scheduling of all operations into control steps. Three
basic scheduling algorithms (heuristics) have been
implemented so far in the AGENDA environment,
ASAP, ALAP and RC-ASAP. Scheduling is performed

by attaching to all expression parsing syntactic rules,
appropriate semantic rules for each heuristic. Data
dependencies in the CDFG are translated into attribute
dependencies, forcing semantic rules corresponding to
operations that must be scheduled first, according to the
scheduling heuristic, to be evaluated first.

AGENDA’s last step is the automatic generation of
synthesizable VHDL code that maps the scheduled
CDFG into a Finite State Machine with Datapath
(FSMD) architecture. Following the guidelines of [2] a
systematic procedure for this mapping can be devised.
For every operator of the graph, a VHDL concurrent
process statement is produced with the corresponding
operation enclosed in an IF construct. Synchronization
is performed by an FSM, which generates an output state
signal. The operations in each process are executed only
when this signal is equal to the state they are scheduled.

3. Experimental Results with AGENDA

VHDL entities generated with AGENDA have been
tested in Viewlogic’s synthesizer with target technology
the Xilinx XC4000 FPGAs. As a benchmark circuit, the
differential equation solver presented in [3], has been
used. Four implementations were taken, ASAP, ALAP,
RC-ASAP with up to 2 multipliers per control step and
RC-ASAP with exactly 1 adder and 1 multiplier in each
control step. The following table summarizes the results.

Resource usage
CS Cells Fmaps Hmaps Regs

ASAP 6 1059 10101 1 744
ALAP 6 1056 10099 0 744
RC-ASAP (2*) 6 1062 10104 1 744
RC-ASAP (1*,1+) 8 1074 10107 9 745

Table 1: Implementation summary

From the table, one can see that with fewer resources
per control step, longer schedules are produced (CS
column), as expected. However, resource usage is almost
the same in all cases. This is due to the fact that since
resource savings come from mutually exclusive
operations, this is not automatically detected by the above
mentioned synthesizer software. An allocation procedure
performed by AGENDA may produce better results.

4. Conclusions And Future Work

An AG-driven approach to the implementation of a
flexible digital design automation environment has been
presented in this paper. The results obtained show that
this combination is promising. Its main advantages are
the extensive use of existing tools and techniques (for

attribute evaluation) and the incorporation of the AG
formalism as a compact and modular very high-level
meta-language, describing HLS algorithms. Currently we
are working on the expansion of the formalism, mainly to
include other scheduling and allocation algorithms. Also,
we are concerned with enhancements to the AGENDA
environment that will allow us to handle larger designs.

References

[1] Aho A. V., Sethi R. and Ullman J. D., “Compilers:
Principles, Techniques and Tools”, Addison-Wesley (1986).
[2] Chang K. C., “Digital Design and Modeling with VHDL
and Synthesis”, IEEE Press (1997).
[3] Dutt N. and Ramachandran C., “Benchmarks for the 1992
High-Level Synthesis Workshop”, UCI Technical Report #92-
108 (October 1992).
[4] Economakos G., Papakonstantinou G. and Tsanakas P., “An
Attribute Grammar Approach to High-Level Automated
Hardware Synthesis”, Information and Software Technology,
Vol 37, No 9 (1995), pp 493-502.
[5] Economakos G., Papakonstantinou G, Pekmestzi K. and
Tsanakas P., “Hardware Compilation Using Attribute
Grammars”, IFIP WG 10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification
Methods, CHARME ’97.
[6] Economakos G., Papakonstantinou G. and Tsanakas P.,
“Global Scheduling in an Attribute Grammar Driven Silicon
Compilation Environment”, 1997 IEEE/VIUF International
Workshop on Behavioral Modeling and Simulation, BMAS ’97.
[7] Gajski D., Dutt N., Wu A. and Lin S., “High-Level
Synthesis”, Kluwer Academic Publishers (1992).
[8] Jones L. G. and Simon J., “Hierarchical VLSI Design
Systems Based on Attribute Grammars”, 13th ACM Symposium
on Principles of Programming Languages (1986), pp 58-69.
[9] Keutzer K. and Wolf W., “Anatomy of a Hardware
Compiler”, SIGPLAN Conference on Programming Language
Design and Implementation (June 1988), pp 95-104.
[10] Knuth D. E., “Semantics of Context-Free Languages”,
Math. Systems Theory, Vol 2, No 2 (1968), pp 127-145.
[11] Ku D. and De Micheli G., “HardwareC: A Language for
Hardware Design”, Stanford University Technical Report CSL-
TR-90-419 (1990), Version 2.0.
[12] Lin Y. L., “Recent Development in High Level Synthesis”,
ACM Transactions on Design Automation of Electronic
Systems, Vol 2, No 1 (January 1997), pp 2-21.
[13] Seawright A. and Brewer F., “Clairvoyant: A Synthesis
System for Production-Based Specification”, IEEE
Transactions on Very Large Scale Integration Systems, Vol 2,
No 2 (June 1994), pp 172-185.
[14] Sideri M., Efraimidis S. and Papakonstantinou G.,
“Semantically Driven Parsing of Context-Free Languages”,
The Computer Journal, Vol 32, No 1 (1989).
[15] Thomas D. E., Lagnese E. D., Walker R.A., Nestor J. A.,
Rajan J. V. and Blackburn R. L., “Algorithmic and Register-
Transfer Level Synthesis: The System Architect’s Workbench”,
Kluwer Academic Publishers (1990).

