XML Rule Based Source Code Generator for UML CASE Tool

Dong Hyuk Park, Soo Dong Kim
Department of computer Science
Soongsil University
Sangdo-dong, Dongjak-Ku, Seoul, Korea
E-mail: dhpark@selab.soongsil.ac.kr, sdkim@computing.soongsil.ac.kr

Abstract

Generating program source code based on design
model by using CASE tool is one of the important areas in
forward engineering. The generation of code from design
model is valuable in making developers maintain
consistency between a model and its implementation and
abating the routine work of writing skeleton source codes.
But, implementing code generation in CASE tool is not
simple due to various metadata format, language, and
policies of adopting modeler’s option. And because of the
continuous introduction of development environment like
EJB and COM, the extensibility of CASE tool becomes
principal comparison point. We believe that it be a
feasible solution to generating source code in various
language based on generation rule.

In this paper, we propose XML based code generation
rule and code generator. The proposed rule provides
higher level constructs to the developer for describing the
way of code generation. And by making the code
generator independent of repository format, the increase
of the applicability of the code generator is shown.

1. Introduction

Using CASE tool, generating program source code
based on design model is one of the important area in
forward engineering. The generation of code from design
models is valuable in making developers maintain
consistency between a model and its implementation and
abating the routine work of writing skeleton source codes.
But, implementing code generation in CASE tool is not
simple due to various metadata format, language, and
policies of adopting modeler’s option. And because of the
continuous introduction of development environment like
EJB and COM, we expect that the extensibility of CASE
tool becomes principal comparison point.

However, the study about the extensible source code
generator is not taken enough. The existing solutions did
not show the satisfactory output.

0-7695-1083-3/01 $17.00 © 2001 IEEE

53

We believe that there are two branches in techniques
that imbue code generator with the extensibility. The one
is by descriptor prescribing code generation rule and the
other is by replacing code generation module based on
component architecture.

Because component architecture based technique is
dependent on a specific OS platform, the range of the
application is limited. Therefore, we choose rule based
technique.

The rest of this paper is structured as follows. In section
2, we describe the related work. In section 3, we describe
the definition of code generation rule and the design of
code generator for UML CASE tool. In this paper, we
propose XML based code generation rule and code
generator

2. Related Works

Code generator is a major component of CASE tool in
supporting forward engineering. It reads repository data
and outputs source code in various kinds of programming
languages. In this section, we introspects several code
generator included in some commercial CASE tools.

Reports and code generation can be performed in
MetaEdit+[17] with the Report Browser. This is a tool for
accessing information in the repository and checking it,
producing various reports, generating program code. In
this tool, the mapping rule between model information in
the repository and source code to be printed are described
in text-based script language.

In Rational Rose[18] , the thing corresponding to code
generator does not explicitly exist. Instead, using
COM[19] component model, code generation
components are contained in the tool as a plug-in. And
this tool is able to add the support of new language in
code generation dynamically because of being based on
COM component model.

3. Design of Code Generator for UML

CASE tool

panerate - code o« class
\ [Languag

CASETadt

Read mindel data of « progidary
format

shosw "select Transction 1vpe”
alog

Figure 1. Variability focused use-case model for
code generation.

Figure 1 shows variability focused use-case model for
code generation. In the figure, three use-case variabilities
are depicted on use-case model. By designating variability
on use-case model, developer can be focusing on the
variability in developing application. Repository format
variability means that the varniability in repository format
exists between the two derived use-case of read model
data use-case. User’s participation variability means that
there is the variability in the method for user to participate
in process of code generation. Language variability means
that CASE tool user requires the code generation of a
various kind of language.

In designing the code generator, we should determine
how to reflect the variabilities on implementation using
what techniques. Our approach is to design adaptor
classes for realizing repository format variability and to
contrive a mapping rule descriptor for realizing user
option and language variabilities.

Repository format variability appears due to intending
to accept model data of various kinds of repository
formats. To make our framework accept model data of
various repository formats, we design Model Data
Extractor, which is APIs designed for extracting model
data from repository. To read model data from a
repository format, one should designs adaptor classes for
the specific repository format that implement the
interfaces in Model Data Extractor.

3.1. Design Model Extractor

To date, various repository formats for CASE tool are
available. Although the introduction of XML alleviates
the incompatibility, because standard scheme is not
prevalent and proprietary formats are still predominant, it
is difficult to make our code generator understand such
various formats. And even if those formats can be
transformed into XMI, it is inefficient to include such a
translation in code generation process.

In this section, we define an API for extracting
necessary design model data from various repository
formats. The non-functional requirement imposed on such
an API includes the followings.

54

First, the API should be intuitive to API user. In this
paper, we propose only API for extracting design model.
Because the developer of data model extractor should
implement logic for extracting design model data from a
specific repository format, each operation and class of
API should be not ambiguous to make easy to implement
extracting logic. Second, the API should be independent
of repository formats. By making API independent of
repository format, we broaden the scope of application of
our framework.

J Attiode
s 1+ name() : stina
1+ tvpe() : st
I+ detaun() : Siong
‘ 1+ visitility() String
{+ sterectype() : String

<<nstantate>>

7 <antertace>>

<dnirface>> i I ClassExractor
edscabacoy —
+
+classExvacwor(id | Object) : +glaa":3yne() }
+ associatorExtractor(id : Object) ' Lrattibutes() |
_— ; i+operations() k
it |+superCiass() |
<<inkerface>> i
! it Extractor Operation
.
+name() 1
+ sterectype() 'nama() String. o
«reluvn() smng |
+visibility(} : Stri |
+arguments() : Avwmem[]|
OCToolExyactorFactory —_——
_ b
Argunent i
"+ name()
+type() .
+ defautt(}

Figure 2. API for extracting class information

Figure 2 shows the API for extracting class information.
The extractor consists of three parts, ExtractorFactory,
ClassExtractor, and AssociationExtractor.
ExtractorFactory is responsible for constructing the other
extractor objects in the overall implementation. The user
of our code generator must implements logic of
constructing other extractor objects by creating a subclass
of ExtractorFactory class like CDIFExtractorFactory
class in Figure 2. In the figure, CDIFExtractorFactory
class has logic of reading a repository file of CDIF
repository format, extracting information related to
requested model

ClassExtractor extracts information of a class in class
diagram, which is denoted by user of CASE tool, and
provides the information to CodeGenerator.
ClassExtractor object is constructed by ExtractorFactory,
which does such a construction in call of
classExtractor(id). Id is an identifier object for designating
a certain design model item. This object should be generic
type. For example, in case of C++, this type may be void&
or void* type and in java, may be Object type. By
defining type of identifier as generic type, our framework
can be repository format independent.

3.2. Mapping Design Model to Source Code
The next step of code generation is to apply a mapping
rule to the extracted model data. By applying different

rules to the model data, user can generate source codes in
various kinds of programming language. In this section,
we introduce mapping rule descriptor and corresponding
rule interpreter. Mapping rule descriptor is a document
that describes how to translate model data to source code.
Rule interpreter reads a mapping rule descriptor and then
constructs code generator object and triggers code
generation.

3.2.1. Mapping rule descriptor

Mapping rule descriptor is a XML document that
describes how to translate model data to source code. This
document consists of one header and several generations.
Header part contains self-descriptive contents like as
document name, used language, author and so forth. Each
generation part describes rule for generating one file.
Therefore, the number of generation part equals to the
number of generated files.

Generation part contains relationship between model
data and source code and consists of one organization and
several structural elements. Structural element includes
rules for generating source code like class, operation, and
attributes. Structural element consists of class generation,
operation generation, and attribute generation according
to responsibility in generation process. Organization
element defines the structure of code to be generated
using other structural elements.

Each structural element represents code generation rule
using primitive elements. Such primitive elements provide
a kind of language for code generation to structural
elements. Primitive elements include “Insertion”,
“Switch”, and “Selection”.

Table 1 provides the definitions of primitive elements
and syntax. [nsertion element is used to simply insert
value of text attribute. In primitive elements, there are
several attributes that are equally used. Such attributes are
text, place, and variable. First, text denotes text string
printed on source code. Second, place indicates where text
string in fext attribute should be output. Third, variable is
utilized in conditional element to represent a variable
operand in comparison. And to refer to model data in
descriptor, text string prefixed with ‘$’ in attribute value,
which means model data in repository, is used.

Table 1. Primitive Elements

. Primitive | - Description ‘Syntax .
CwElémenti- i) 1 s o
Insertion Insert string <Insertion
showed in text place="string”,
attribute text=string />
Switch Conditional <Switch
Insertion place="string”
variable="string”>
<Case if="string”
L text=""string”/>

55

<Default
text=""string”/>
</Switch>
Selection Allow user to <Selection
select one of place="string’>
several <Option
alternatives text=""string”’/>
<Option
text=""string”’/>
</Selection>
CustomInput | Allow user to <CustomInput
insert arbitrary [place="string” />
text string

Organization describes how to structure source code, so
the structure and meaning of this part is heavily dependent
on the syntax of programming language. And it differs
from other three structural elements in used primitive
elements. To make clear, we call it node element. Table 2
describes the definition of node elements used in
organization part. In the Table 2, Place represents a place
on which primitive generator produces a particle of source
code. Place element have name attribute, which is
identifier used when code generator finds primitive
generator having the identifier.

Table 2. Node elements

Node Element. |- Description Syntax ..
Place Place where | <Place
a particle of | name=""string”/>
code is
generated.
OnExist Only if a | <OnExist
specified name=""string”>
place is
processed, </OnExist>
considered
Opener/Closer | Opener /| <Opener/>, <Closer/>
Closer
Repeat Repeat <Repeat
generation on="modeData”
firstOccurence="
“ delimiter=""
lastOccurence="
o
</Repeat>
Class, Used to
Operation, structure
Attribute, source code
Argument and can
embrace
other Node
elements J

Figure 3 illustrates an example of organization part.
Organization part is encapsulated with <Organization>

tag. One can control in what order to produce source code.

In case of the organization shown in Figure 3, attribute
code and operation code are produced within class’s
opener and closer. And Repeat element encircles attribute
element to represent that attribute can be repeatedly
appeared.
<Organization >
<Class >
<Place name="Visibility"/ >
<Place name="type-keyword"/ >
<Place name="classname” / >
< Place name="linefeed” / >
<Place name="superclass” / >
< OnExist name="superclass” >
<Insert text="Slinefeed"/ >
</OnExist >
<Repeat on="Sinterface” firstOccurence="implements’
defimiter =", fastOccurence="$linefeed” >
<Place name="interface” / >

</Repeat >
<Opener! >
<Repeat on="Attribute” lastOccurence="$linefeed” >
<Attribute >
<Place name = "visibility'/ >
<Place name = “static"/ >
<Place name = “final"/ >
<Place name = “type"/ >
<Place name = "attName” / >
<insert text=";" />
</Attribute >
</Repeat>

Figure 3. Organization rule example

Figure 4 illustrates class generation in java. Class
generation part is encircled with <class> tag and can
include all primitive elements in the tag. In the figure,
insertion element describes setting visibility of class to
“public”. And to generate different keyword according to
the stereotype of class, switch element is used. Other
insertion elements are used to generate java code
corresponding to classname, superclass, and interface.

<Rule name="java", language="java" >
< Generation filename ="$classname” > -
<Class >
< Insertion place="visibility” text="pubtic"/ >
< Switch place ="type-keyword" variable="$stereotype” >
< Case if ="interface”
text="interface"/>
< Defauit text="class"/ >
</Switch>
< Insertion place="classname"” text="$classhame” / >
< Insertion place="superclass”
text="extends $baseclass” />
</tnsertion >
< Insertion place="interface” text="Sinterface” />
<Opener symbol="{" >
<Closer symbol="}"/>
</Class >
</[Generation >
</Rule >

Figure 4. Class generation rule example

Figure 5 represents operation generation rule example.
In the figure, operation generation rule is split into
operation part and argument part. First, operation part
starts with selecting visibility of an operation, outputs

return type and operation name, and defines opener and
closer symbol. :

<Operation>
< Switch place="visibility” variable="$op_visibility” >
< Case if="public”
text="public"/>
<Case if ="protected”
text="protected"/ >
<Case if="private”
text="private”/ >
< Default text="public"/>
</Switch>
< Insertion place="return” text="$return"” / >
< Insertion place="op_name” text="%op_name"/>
< Opener symbol="{" />
<Closer symbol="}" />
</Operation >
<Argument >
< Insert place="type" text="$type" />
<Insert place ="variable” text="$variable”/ >
</Argument >

Figure 5. Operation generation rule example

3.2.2. Rule Interpreter

It is the principal responsibility of the rule interpreter
that constructs a virtual code generator based on mapping
rule descriptor. It reads mapping rule descriptor and
outputs virtual code generator, and then the produced
code generator is used repeatedly in code generating
several classes. By reusing constructed code generator and
reading descriptor only once, one is able to reduce the
time taken in generating source code.

Only
one time
Qrogni-e §
Source Code v
; Goeaerator ke
H uile
Mudet Dats | o—
Repetitive
Figure 6. Overall Process of generating source
code

Figure 7 illustrates the process of constructing code
generator. The procedure of constructing code generator
is split into two processes, constructing primitive
generators, and organizing the primitive generators. Using
mapping rule descriptor, rule interpreter constructs
primitive generators corresponding to primitive elements
and maintains the primitive generators using hashmap, in
which we use place attribute of primitive elements as key
and primitive generator as value. This map is used as a
catalog by organizer for code generation. And then rule
interpreter reads organization part of the descriptor and
constructs generation tree based on structural elements.

Figure 7. Process of constructing code
generator

f createPrimitiveGeneratorMap(StructuralElement sc) Calted per each

1 structural element
elements = se.getAllPrimitiveElement();

PrimitiveGeneratorMap pgm = new PrimitiveGeneratorMap(se)
while (elements.hasNext())
{

PrimitiveElement pe = ¢l next();
PrimitiveGenerator pg = createPrimitiveGenerator(pe);
\ pgm.add(pe); Add PrimitiveGenerator
’ to a map
return pgm;

B

createPrimitiveGenerator(PrimitiveElement pe)

€ .
PrimitiveGeneratorFactory pgf = getFactory{pe):
return pgf.create(pe);

Figure 8. Pseudo code of constructing primitive
generator map

The construction of Primitive generator map 1is
conducted in the following steps. Rulelnterpreter accepts
one structural element and introspects internals of it.
During the introspection, Rulelnterpreter accepts primitive
elements, constructs an appropriate primitive generator
object, and. save the object to the map object for the
structural element. Figure 8 shows the pseudo code
illustrating how for primitive generator map to be created.

Interpreter class is divided into two classes according to
the kind of the element to interpret. One is
Nodelnterpreter class © and the other is
GeneratorInterpreter class. Nodelnterpreter derivations
read Organization part and generate Node derivations.
And Generatorlinterpreter derivations accept Generation
part and output PrimitiveGenerator derivations. The
generated PrimitivedGenerator derivations are saved into
PrimitiveGeneratorMap object, which is used in
generating source code by Node derivations.

57

<<lacade>>
Ruleintemren:

+inerore!)
getGenerator()

an

[Cowmm oG] .
)——1

1
"
+narre() : Sing
|+ inlerprettelement : Element, context © S¥ing)

== e |

+gethode() | + gatGenerator()

<7 DR iy

o N T
[1 PlaceNodelniereter | | InsersonGenscatorinemrter | | SwitchGeneratorintarpreter |
== —— b E
A
[o o |

Figure 9. Class diagram of Ruleinterpreter
hierarchy

Each interpreter class is maintained in the

corresponding container class and retrieved and requested

to interpreter mapping rule descriptor by Rulelnterpreter
class. The rule interpretation proceeds through following
steps and repeats until there are no elements in rule
descriptor.

1. Obtains elements in rule descriptor.

2. Retrieve the appropriate node interpreter from

container class.

3. Request to the node interpreter for creating a node.

4.a Register the node to the.parent node. (in case of

Nodelnterpreter)

4.b Register the node to the PrimitiveGeneratorMap

(in case of GeneratorInterpreter)

Mondelfhatat ontuiticr

KeyMalue
Make Ready for Generaton
“\ g// ﬁ;ﬂ\"&mﬁ‘:ﬂ:l © node generator !
; y
Generale

|
I
|
|
¢ do/ Obtain model data k
- 2 ' dof wansiate model cata to souce Code
+ 9o/ outout he vansiated code: .

>

[Node generator rervains

[Not remains |
P Flow of object

5 o =
& Atribute hm&j [

Figure 10. The code generation pkocess of code
generator

Source of ubject

Generator object

Figure 10 shows the process of code generation using
generation tree and primitive generator map. The process
consists of three parts. First, node generator is obtained
from generation tree. And then node generator obtains
appropriate primitive generator from primitive generator
map. And then node generator collaborates with primitive
generator to generate code with model data container.

3.2.3. Class Diagram and Sequence Diagram for
code generator

Figure 11 illustrates class diagram of code generator.
Class diagram for code generator is divided into rule
interpreter, generation tree, and primitive generator.

Rulelnterpreter class has the major responsibilities as
the followings. The first is that it interprets mapping rule
descriptor that is documented in XML. The second is that
it instantiates primitive generator based on primitive
elements shown on structural element. The third is that it
constructs generation tree based on node elements
described in organization part.

Rulelnterpreter provides three APIs to support those
functionalities. Function interpret(filename : String) takes
a descriptor’s filename as parameter and reads the
specified descriptor, and then constructs and maintains
generation tree, PrimitiveGeneratorMap and
CodeGenerator object. Function
getPrimitiveGeneratorMap(context: String) takes a
context as parameter, in which context represents
structural elements that encircles primitive elements in
descriptor, and then returns PrimitiveGeneratorMap
object having the designated context. Function
getGenerator() just returns CodeGenerator object that is
created when interpret() is called.
— T —

] placs

|+ getGenerator{piace : S¥ing) : PrmeveGanerabr

! . <dacade>>
! Ausirtonyter
|

f—
i - |+ Inmrorettitename : s
S,
Y l <<1+‘ll.)) <<insthrgai>>
- I
i Node } ~place
f l‘ |- context
{ ™ | : Sociem
i i T + foady)
! A | +isReacy() *boctsan
T L 4
) :
[CopNde | m:'. :m Gristtide_|[Ropoafioce | !
i, oattaan |- onExist Sting||- place - Shing| i
[+ cmoaeinode_oge|~ X bodsan|” SR 1: i_—’—‘
: | i i
lq [CustorGaneras | [insertGonerster |
i I] = : E ’
i Qasshede | [Op H Avioutenage | [3]
— i s ; %
=

Figure 11. Class diagram of code generator

PrimitiveGenerator class is an abstraction of primitive
elements in descriptor. Therefore, the derived classes of
PrimitiveGenerator class contain concrete code
generation logic. The main functionality of
PrimitiveGenreator derived objects is to generate a
particle of code responding to the request of generation
tree. The derived classes of PrimitiveGenerator class
include InsertGenerator, SwitchGenerator,
SelectGenerator, and CustomlnsertGenerator, among
which SelectGenrator and CustomlinsertGenerator are
children of CustomGenerator. InsertGenerator class just
generates string shown in fext attribute, in which if $
prefixed string appears, generator obtains a string to be
outputted from ClassExtractor or reserved keyword map.

58

SwitchGenerator class has the functionality similar to
switch-case statement in programming language. This
class maintains a list of condition and text pair. In
response to the request of generation, it fetches variable
data from ClassExtractor and then chooses appropriate
text or default text by comparing variable and condition of
each pair and output the selected text.

CustomGenerator is an abstraction of primitive
elements that needs user’s participation. In this context,
user’s participation means that during code generation,
CASE tool requires the input of the user. SelectGenerator
provides several options, among which a user selects one
or several options. CustomlnsertGenerator just generates
string inputted by user.

Node
+ (i O \ mrap : F)
11..- 4 1%
A Hao'eNode !
GrouNode aha hExistNode | RepeaiNode
~place : Sting — a1 v
- exist : boolean |~ ONEXist : Stiing |~ piace : Sting
+addNode(node : Node)
_— I N
 QassNode | | QperationNode | [AtrikuteNode | { ArgurrentNode |
I S [:
1 t i3l I i

Figure 12. Inheritance Hierarchy of Node
Generators

Figure 12 illustrates inheritance hierarchy of node
elements. Node class and the derived classes of it are used
to construct generation tree. The principal role of Node
class and its derived classes is to delegate generation call
to appropriate primitive generator object, in which process
Node class uses PrimitiveGeneratorMap class to obtain
the primitive generator object. PlaceNode class represents
Place clement appeared in descriptor. In the figure,
GoupNode is able to aggregate other node objects, which
is not reflected on descriptor and used to constructing
generation tree by Rulelnterpreter. OnExistNode class
corresponds to the OnExist in descriptor. OnExistNode
object finds PlaceNode object previously executed using
place attribute and asks to the found PlaceNode object
whether PlaceNode object is executed or not. And then if
the PlaceNode object is executed, the Node objects
contained in OnExistNode are executed. RepeatNode are
used to generate a repeatedly appeared code. RepeatNode
object investigates the PlaceNode object denoted by the
place attribute and until the PlaceNode is not executed,
the Node objects nested in RepeatNode object are
executed. The classes derived from GroupNode class are
used to organize the structure of source code to be
generated and control the scope of the model data that the
embedded Node Generator object can access.

GroupNode

[+ addNode(node : Node)

L
S E— B E——
ClassNode | [OperationNode H AtvibuteNode | { ArgurrentNode |
L - - i] I__
/ ;
\ {
\ 7
\ L

i ModelDataContainer }

!+ nextAttribute() | boolean

I+ nextOperation() : boolean

i+ nextArgument() : boolean

i+ getData(key : Sting) : String
‘H'sAvadable(key : Sting) : String

Figure 13. Class Diagram of
ModelDataContainer

Figure 13 describes
ModelDataContainer class and GroupNode derived
classes. ModelDataContainer maintains model data
having § prefixed string as identifier and is utilized by all
generator classes. Of several operations of
ModelDataContainer, the operations starting with next
have responsibilities a little different from other data
extraction functions. Those functions, including
nextAttribute(), nextOperation(), and nextArgument(), are
used for accessing repeatedly appeared model data and

relationships ~ among

called by OperationNode, AttributeNode, and
ArgumentNode.
T s GraoNade | pl: PlgsNods |

i e
LCASE Tt e | {GoedSan

! ; i
[asExmaciontclusst) ;
: TCreating '
. i Generation Tree

| i

: limerpra(avaxmly |
i

aetGeneraton)

W : Generate Code

generie(Oupuitrem. Pﬂmmvegiadm‘d'm

generaiegee)

' gencré(OupuStream. PrinsitiveGeneratorMap) |

namef)’ .

. i '

.

Figure 14. Sequence Diagram depicting Code
Generation Process

Figure 14 shows message flows happened when CASE
tool requests to generate a java code for a class. First,
CASE tool obtains ClassExtractor object through

ExtractoryFactory object by passing identifier of the class.

And then it sends message “interpret(‘java.xml*)” to
Rulelnterpretor to generate code generator, including the
construction of generation tree and primitive generators.
In the “interpret” method, CodeGenerator object is
created, Node derived object is created and organized into

59

generation tree, and primitive generators is created. And
then CASE tool obtains CodeGenerator object from
Rulelnterpretor and sends message ‘“‘generate(ce)” with
ClassExtractor object as argument. The CodeGenertor,
that receives ‘“generate” message, sends message
“generate” to generation tree. The Node derived object
contained in the generation tree sends “generate()”
message to the primitive generator of the node object and
child Node object.

4. Assessment and Conclusion
4.1. Assessment

The code generator proposed in this paper has the
following merits. It is able to add the functionality of code
generation for new language dynamically. That is, to
recompile and re-execute the application is not needed to
support code generation in a new language. And by
changing organization of rule descriptor, developer can
control the structure of generated source code. And by
generating several files using one descriptor, developer
can increase coherence between related generation rules.
We split the mapping rule descriptor into Organization
part and Generation part. Due to the seperation, the
complexity of each element in descriptor lessens.

However, the proposed solution is the lack of reusing
mechanism, like inheritance, of predefined mapping rule.
As a result, when describing rule descriptors for two
homogeneous languages, developer should duplicate a lot
of descriptor. And by distributing mapping rule to two
parts, organization and generation part, while flexibility of
mapping rule increases, complexity of rule becomes worse.

4.2. Conclusion

The generation of code from design models is valuable
in making developers maintain consistency between a
model and its implementation and abating the routine
work of writing skeleton source codes. But, implementing
code generation in CASE tool is not simple due to various
metadata format, language, and policies of adopting
modeler’s option. And because of the continuous
introduction of development environment like EJB and
COM, the extensibility of CASE tool becomes principal
comparison point.

In this paper, we propose the code generator and
mapping rule descriptor to define the relationship between
UML class and various kinds of programming source code.
By developing code generation part of CASE tool using
the proposed solution, the cost and time required is
reduced. And because of being able to rapidly react to
introduction of new language, the user of our solution can
increase the market share.

Further work will be concerned with the support to other
UML model, currently confined to class mode, and the
reuse of predefined mapping rule.

5. References

[1] T. Lewis et al., Object Oriented Application Frameworks,
Ed. Manning, USA, 1995.

[2] D. D’ Souza, A. Wills, Objects, Components and
Frameworks with UML - The Catalysis Approach, Addison-
Wesley Publishing Company, 1999.

[3} Ivar Jacobson et al, Software Reuse — Architecture,
Process and Organization for Business Success, Addison-
Wesley, 1999.

[4] KangK, et al, Feature-Oriented Domain Analysis (FODA).
Feasability Study. Technical Report, CMU/SEI-90-TR-21,
November. Software Engineering Institute, Pittsburgh, PA
15213, 1990.

{5] Itana M. S. Gimenes et al, An Object Oriented Framework
for Task Scheduling, In Proceedings of the 33th Technology of
Object-Oriented Languages and Systems (St. Malo, France),
2000

[6] Douglas Scmidt et al, Pattem-Oriented Software
Architecture Volume 2 Patterns for Concurrent and Networked
Objects, John wiley & Sons, 2000.

{71 David M. Weiss, Commonality Analysis : A Systematic
Process for Defining Families, Second International Workshop
on Development and Evolution of Software Architectures for
Product Families, February 1998

{81 James O. Coplien, Multi-Paradigm DESIGN for C++,
Addison Wesley, 1995

60

[91 Johnson, R.E. and Foote, B. Designing reusable classes, J.
Object-Oriented Programming 1,5 (June/July 1988), 22-35.

[10] Fayad, M.E., Schmidt, D.C., and Johnson, R.E, Object-
Oriented Application Freameworks: Problems and Perspectives.
Wiley, NY, 1997.

[11] Pree, W. Design Patterns for Object-Oriented Software
Development, Addison-Wesley, Reading, Mass. 1994.

[12] Philippe Kruchten, Architectural Blueprints - The 4 + 1
View Model of Software Architecture, IEEE Software
November 1995.

{13] Clemens Szyperski, Component Software, Addison
Wesley, 1998.
[14] Capt Gary Haines, David Carney, John Foreman,

Component-Based Software Development / COTS Integration,
CMU Software Technology Review, October 1997.

[15] Fayad M.E., Schmidt D.C., Object-Oriented Application
Framework, Communication of ACM, October , 1997.

[16] J. Rumbaugh, I. Jacobson, G. Booch, The Unified
Language Reference Manual, Addison-Wesley Publishing
Company, 1999.

[17] Aonix, MetaEdit+, http://www.metacase.com/mep.
[18] Rational Software, Rational
http://www.rational.com/)
[19] Microsoft, The Component Object Model: A Technical
Overview,
http://msdn.microsoft.com/library/techart/msdn_comppr.htm,
October, 1994.

Rose,

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

