Reverse compilation of Digital Signal Processor
assembler source to ANSI-C

Experience and observation paper

Adrian Johnstone

A.Johnstone@rhbnc.ac.uk

Elizabeth Scott
E.Scott@rhbnc.ac.uk

Tim Womack

T.Womack@rhbnc.ac.uk

Department of Computer Science, Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK.

Tel: +44 (0) 1784 443425,

Abstract

Digital Signal Processors (DSPs) are special purpose mi-
croprocessors optimised for embedded applications that re-
quire high arithmetic rates. These devices are often diffi-
cult to compile for: compared to modern general purpose
processors DSPs often have very small address spaces. In
addition they contain unusual hardware features and they
require correct scheduling of operands against pipeline reg-
isters to extract the highest levels of available performance.
As a result, high level language compilers for these devices
generate poor quality code, and are rarely used in practice.

Recently, new generation processors have been launched
that are very hard to program by hand in assembler because
of the complezity of their internal pipelines and arithmetic
structures. DSP users are therefore having to migrate to
using high level language compilers since this is the only
practical development environment. However, there exist
large quantities of legacy code written in assembler which
represent o significant investment to the user who would
like to be able to deploy core algorithms on the new pro-
cessors without having to re-code from scratch. This paper
presents a working report on the development and use of a
tool to automatically reverse-compile assembler source for
the ADSP-21zz family of DSPs to ANSI-C. We include a
discussion of the architectural features of the ADSP-21zx
processors and the ways in which they assist the translation
process. We also identify a series of translation challenges
which, in the limit, can only be handled with manual in-
tervention and give some statistics for the frequency with
which these pathological cases appear in real applications.

Keywords: reverse compilation
digital signal processing
low to high level language translation

Fax: +44 (0) 1784 439786

1. Introduction

Digital Signal Processors are special purpose micro-
processors optimised for embedded applications that
require high rate fixed and floating point arithmetic.
Application areas include mobile telecommunications,
video signal modulation and image processing. Histor-
ically, technology and cost constraints have stratified
the market into two layers:

1. low cost, short word length processors typically
supporting 16-bit fixed point arithmetic, and

2. higher cost processors supporting 32-bit fixed
point and floating point arithmetic.

Recently, a third class of processors has appeared:

3. processors that provide a high degree of paral-
lelism in the form of multiple, simultaneously ac-
tive functional units.

In comparison to a general purpose RISC architec-
ture such as MIPS, all of these processors present ir-
regular architectures to the programmer, with many
restrictions on the combinations of registers and oper-
ators that may be executed. In addition, they typi-
cally feature special purpose hardware to support in-
direct addressing and looping that, once initialised,
executes in parallel with the main instruction stream
allowing repetitive code to execute with no overhead
from decrementing and testing induction variables. As
in a general purpose superscalar processor, to extract
the maximum performance from these devices requires
careful scheduling of operations and memory-register
transfers.

It is usual for digital signal processors of all classes to
support multiple independent memory spaces so that
multiple operands can be fetched in parallel. The short
word length (class 1) processors have very small ad-
dress spaces (typically as little as 16K instructions).

These architectural eccentricities present significant
challenges to the compiler writer, and in reality the
performance of compilers for the class 1 architectures
is very poor: a widely used rule of thumb suggests that
there is a 20:1 performance ratio between hand-written
assembler and compiled code. As a result, the manu-
facturer supplied C compilers are rarely deployed for
real applications and most real programs for both class
1 and class 2 processors are hand coded in assembler.

The class 3 ‘super-processors’ display all of the spe-
cial features of the class 1 and class 2 processors but
in addition provide hardware that can exploit the reg-
ularity of many DSP algorithms through large scale
data and instruction parallelism. We will describe
the differences between general purpose processors and
DSPs in some detail in Section 2 below. For now
we note that the class 3 processors are highly paral-
lel and highly pipelined. It is well known that such
processors are extremely hard to program at assem-
bler level because of the requirement to manage the
timing relationships between operand usage within the
pipeline and across functional units which are intercon-
nected using switching matrices that themselves intro-
duce constraints. The hardware does not guarantee to
enforce the correct pipeline data dependencies and so
simple programming errors can yield extremely subtle
and hard to find bugs. The class 3 processors are sup-
ported by ANSI-C compilers with suitable scheduling
algorithms that can guarantee to preserve data depen-
dencies, and practical large scale software development
for these processors is likely to be performed in a high
level language.

Programmers used to developing applications in as-
sembler for the relatively simple traditional fixed and
floating point digital signal processors are now having
to move to development in a high level language. Usu-
ally the language of choice is ANSI-C with some hard-
ware specific language extensions to support particular
features.

In many cases, companies have already invested
years of effort in the development of algorithms that
they wish to use on the new architecture, but which
are coded in assembler for the older style processors.

Our translation tool provides three levels of transla-
tion from assembler to C:

1. low level translation, in which internal register
and symbol names are preserved in the ANSI-C
code and in which control structures are mostly

based on gotos,

2. control flow translation in which a structural con-
trol flow algorithm is used to map assembly level
control flow into high-level ANSI-C control flow
statements such as for and switch,

3. data flow translation in which references to inter-
nal data pipeline and address registers are elimi-
nated.

All three levels of analysis are useful when porting
an application. It is rare for a complete embedded
application to be ported as-is since all embedded sys-
tems contain references to hardware which is applica-
tion specific. Therefore, our reverse compiler is used
both for program comprehension and for the produc-
tion of working code in the new environment. When at-
tempting to understand an assembler program (whose
author may not be available) it is very useful to be
able to see a low level translation to C in which there
is an (approximately) one-to-one correspondence be-
tween the assembler code and the lines of translated C.
Later stages of the porting process benefit from having
the higher level code available.

It turns out that those features of the DSP which
make compilation hard (such as zero-overhead looping
hardware) assist the reverse compilation process. This
is because the special purpose hardware directly imple-
ments specific coding idioms (such as nested for loops
and circular buffer addressing) which can easily be ren-
dered as high level code. From the compiler’s point of
view, recognition of such idioms is hard, but their pres-
ence in our translated code aids human comprehension.

In this paper we present a working report on the de-
velopment and use of a tool to automatically reverse-
compile assembler source for the ADSP-21xx [1] family
of DSPs to ANSI-C. We include a discussion of the ar-
chitectural features of the ADSP-21xx processors and
the ways in which they assist the translation process.
We also identify a series of translation challenges which,
in the limit, can only be handled with manual interven-
tion, and give some statistics for the frequency with
which these pathological cases appear in real applica-
tions.

2. DSP architectures

In order to motivate the discussion of our transla-
tor, we present here an overview of the architecture of
typical Digital Signal Processors. Our aim is to high-
light the ways in which DSPs differ from conventional
general purpose processors.

DSP architectures are characterised by the presence
of some or all of the following features.

Single cycle multiply and shift
Traditional single cycle arithmetic operations of
addition and subtraction are supplemented by
single cycle multiply, multiply-and-accumulate
and barrel shifter units.

Parallel operand fetch
Multiple operand spaces allowing single-cycle
fetching of two operands from memory in parallel
with an arithmetic operation.

Extended and saturated arithmetic

Extended arithmetic precision allows the accu-
mulation of large results over a sequence of op-
erations without overflow occurring. Saturated
arithmetic prevents wrap around of values when
overflow occurs: the result instead saturates and
is forced to the maximum or minimum value that
can be represented.

Parallel update of data address pointers
Special hardware index registers are provided
with associated increment and bounds registers
that allow a pointer to be stepped through an in-
memory buffer without needing explicit update
instructions. The bounds registers allow so-called
circular addressing where the address pointer re-
sets to the beginning of a buffer when it overflows

the buffer.

Conditional instructions

DSP algorithms often feature if statements with
very small blocks of code: sometimes as little as
one instruction, In such cases, rather than eval-
uating a condition and optionally jumping over
the block it is more efficient to attach a condi-
tion field to each instruction that can be used to
disable it. The cost of this approach is in growth
of the instruction word.

Zero-overhead looping

DSPs provide special hardware counter registers
that can be used to control repetition of blocks
of code without requiring explicit instructions to
update and test the counter. Usually, these units
require one instruction to initialise and then sub-
sequent execution of the loop proceeds with no
overhead in loop control instructions.

Many of these features also appear in mainstream
processors. Some Intel processors have a simple facil-
ity to repeat an instruction without overhead, and the
ARM architecture allows for conditional instruction ex-
ecution.

2.1. New generation architectures

The arithmetic rate requirements for realtime digi-
tal signal processing are extreme, and it is not uncom-
mon for multiple devices to be used within an applica-
tion, each handling some specialised part of the overall
system. Improvements in semiconductor device pro-
cessing have led to the recent introduction of a group
of new DSP ‘super-processors’ which provide features
that support such parallelism directly. This group (the
third class of architectures identified in Section 1) is in
reality diverse. Just as in the general purpose proces-
sor arena, there is little unanimity on the best way to
add parallelism to an architecture. Indeed, the three
‘super-DSPs’ announced so far adopt three radically
different approaches.

1. Single Instruction, Multiple Data (SIMD) style
extensions add functional units that execute iden-
tical operations on multiple data streams un-
der the control of a single instruction stream.
SIMD array processors have been researched
since the 1950’s but these special purpose pro-
cessors have limited applicability. The integra-
tion of SIMD style instructions into a conven-
tional single-stream processor is a more recent
development: the approach is typified by Analog
Device’s 210xx SHARC series of DSPs [3]. Sim-
ilar ideas have been implemented in the general
purpose processor world: the Pentium IT MMX
instructions, the Pentium I77 KNI extensions and
AMD’s 3D-now! features all add SIMD style in-
structions to the basic Pentium architecture to
provide improved performance on the DSP-type
processing required to support multimedia appli-
cations.

2. Multiple Instruction, Multiple Data (MIMD)
style processing is provided by the Texas Instru-
ments TMS320C8x [4] processor which contains
a master processor and up to four parallel pro-
cessors. The master processor is very similar to a
conventional RISC general purpose processor and
the parallel processors are similar to conventional
fixed point DSPs. The processors are connected
to shared memory via a crossbar switch.

3. Very Long Instruction Word (VLIW) architec-
tures are represented by the Texas Instruments
TMS320C6x [2] DSP. VLIW processors present
the programmer with a heterogeneous collection
of functional units that may in parallel execute
different operations whilst all being under the
control of a single instruction stream. One way to

view VLIW architectures is as a half~way house
between SIMD and MIMD processing: there is
a single instruction stream as in SIMD, but the
data streams each have their own field within the
instruction and so may execute different opera-
tions. In a true SIMD processor, one instruction
is broadcast to all processors so all streams must
be simultaneously executing the same operation.

Of these three, the VLIW approach is perhaps the
most technically interesting and certainly the least well
studied. There have been very few VLIW’s built and
fewer still sold. However, this situation may be about
to change. Much of the original work on VLIW’s
was performed by Josh Fisher’s group at Yale [8] who
went on to market a general purpose Unix computer
called Multiflow based on VLIW techniques. Although
this was not a commercial success, the designers have
continued their work at Intel and Hewlett-Packard.
The forthcoming Merced processor which may finally
displace the 80x86 family of processors incorporates
VLIW principles.

2.2. Programming the new architectures

From the programmer’s point of view, perhaps the
only common feature of these three diverse proces-
sors (the AD2100x SHARC, the TMS320C8x and the
TMS320C6x) is that they are all much harder to
code for than the class 1 and 2 DSPs. In addition
to the system-level parallelism described above, these
new processors have programmer-visible pipeline de-
lays which require the programmer to carefully se-
quence instructions so as to ensure that an instruction
does not attempt to use the result of a previous instruc-
tion that is still in the pipeline. In general, hardware
interlocks are not provided. A programmer may write
a sequence of instructions that appears correct when
viewed as purely sequential code but in which the data
dependencies are not maintained when executed on a
pipeline.

These effects are familiar to any programmer that
has written assembler code for pipelined RISC proces-
sors such as the original MIPS devices which also lacked
hardware interlocks. On the super-DSPs, the pipeline
effects coupled with the difficulty of scheduling opera-
tions efficiently across multiple functional units present
perhaps the most challenging machine level program-
ming environment of any currently available commer-
cial processor. This means that in practice high level,
as opposed to assembler level, programming languages
will be used.

It is not clear that the users of DSPs are anxious
to move to a high level language development envi-

ronment. There is considerable resistance to the in-
efficiencies displayed in machine generated code from
programmers who have spent much of their careers
wringing the last cycle of throughput from the class
1 and 2 processors through the exploitation of subtle
programming tricks. We know of one very experienced
programmer who spent one week constructing a small
program for the TMS320C6x processor and then a fur-
ther three weeks rescheduling and reworking the code
to ensure that no data dependencies were breached.
Overall, code production on this project averaged be-
tween one and two lines per day.

Super-DSP vendors emphasise the utility of their
associated C compilers (in contrast to the compilers
for class 1 and 2 processors which are unpopular with
users) but provide little in the way of migration aids for
assembly code written for those earlier processors. At
one level this may seem reasonable: DSPs by their very
nature are used almost exclusively in embedded appli-
cations where they interact with application specific
hardware —large parts of the embedded code are there-
fore inherently unportable. However, at the heart of
each application there is usually a set of reusable func-
tions such as mobile telecommunications protocol han-
dlers, image processing kernels and audio conditioning
filters. These functions written in assembler represent
significant intellectual property for the developer, and
it would be ideal if the code could be moved to the
new processors rather than being reimplemented from
scratch in a high level language.

3. The asm21toc translator

asm21itoc is a translator from asm21 (the assembly
language of the Analog Devices ADSP-21xx series pro-
cessors) to ANSI-C. The code is intended to be com-
piled for the TMS320C6x VLIW style super-DSP, and
we support optional translations that exploit some of
the language extensions provided by Texas Instruments
in their C compiler for that processor. Its design goals
are as follows.

1. To produce an ANSI-C program with the same
semantics as the input asm21 program.

2. To produce ANSI-C programs which are readable
and which aid comprehensibility of the original
code.

3. To provide copious diagnostic information, par-
ticularly concerning variable usage.

4. To identify and report on asm21 code which is
not directly translatable, such as self-modifying
code and non-statically visible jumps.

We call asm2itoc a reverse compiler since it pro-
duces ANSI-C from hand-written assembler code as
opposed to a de-compiler which produces C from pre-
viously compiled C. A de-compiler, by its very nature,
is unlikely to encounter features in the code to be de-
compiled that have no counterpart in the high level
language. A reverse compiler, on the other hand, must
be able to cope at some level with the complete uni-
verse of possible assembly language programs. In ez-
tremis (say when encountering self-modifying code) the
reverse compiler should at least report the problem,
whereas a decompiler is unlikely to even attempt the
necessary analysis.

3.1. Thefeasibility of tranglation

There is a very small number of successful reverse
and de-compilers reported in the literature, and so our
design goals might be seen as rather ambitious. More
than one of our correspondents has asserted that they
are completely unachievable, and were we dealing with
conversion of binary code to C conversion for a modern,
pipelined RISC processor we might be inclined to agree.
However, it turns out that many of the features of small
DSPs aid the translation process.

1. The fundamental problem of binary decompila-
tion is how to separate code and data within a
single memory image. We start from assembler
source and our processor has (almost) separate
code and data spaces. Apart from the potential
for self-modifying code (which requires writes to
the code space) our program and data are trivial
to separate.

2. Our assembler programs are almost exclusively
concerned with integer and fixed point opera-
tions which are clearly signaled in the instruc-
tion stream. As a result, high-level type analysis
is not required.

3. The asm21 assembler allows one dimensional ar-
rays to be declared which significantly eases the
data flow analyser’s task and allows us to make
assumptions about patterns of data access to
variables.

4. The DSP’s high level control flow instructions
such as the zero-overhead looping unit and the
conditional instructions enable us to extract high
level for loops and simple if-then statements
trivially.

5. On the ADSP 21xx, indexed indirect access to
data and program memory can only be performed

via special data address generator registers. This
significantly simplifies the analysis of addressing
modes. Indeed, on the ADSP-21xx data accesses
trivially translate into either simple variable ac-
cesses or into dereferenced pointer accesses.

6. The use of small hardware stacks restricts the
nestability of functions and loops to only 16 and
4 levels respectively for the ADSP-21xx which
eases many inter-functional control and data flow
analyses. Some programmers implement software
controlled stacks for parameter passing, in which
case a fuller analysis would be required.

On the debit side, DSPs do present some special
challenges of their own. On the simple fixed-point pro-
cessors, division and floating point operations are often
only partially supported. On the ADSP-21xx, signed
and unsigned 16-bit divisions are constructed from a
sequence of 16 division substep instructions. There are
many ways to optimise or distribute these substep op-
erations for short word length arithmetic, and we have
seen examples of code in which the substep instructions
have been used creatively for purposes not related to di-
vision, such as packing the result of a series of threshold
operations into a single word. These possibilities make
it quite difficult to identify all of the possible assembly
language idioms that might represent a valid division.
Similar considerations apply to the block floating point
instructions on the ADSP-21xx.

A particular difficulty arises from the many proces-
sor modes that these devices provide. On the ADSP-
21xx, the detailed operation of the arithmetic units, the
active register bank and the multiplier rounding mode
(amongst other things) are specified using control bits
in a global status register. As long as this register is
updated in a statically visible way, the translator can
generate semantically equivalent code in a straightfor-
ward fashion. If however, the status register is modified
within, say, an if statement whose control expression
is data-dependent then its value is only run-time, or
dynamically, visible. In this case we must either report
failure or simulate the behaviour of the processor in
our generated ANSI-C code by providing a status bit
which is tested during arithmetic evaluation.

We consider several related problems and give some
statistics on the frequency of occurrence in real code of
these difficulties in Section 6 below.

4. asm21 language structure

The asm21 assembler for ADSP-21xx processors
recognises a language that is an unusual hybrid of a
conventional line-oriented assembler and a free-format

.module/ram dump_mod;

.external txhex4;
.var/dm count;
.init count: 5;

{ Declare count variable }
{ Initialise count to 5 }
.entry dumper; { Dumper is function }
dumper: i4=1000; m4=1; 14=0;
cntr=dm(count) ;

DO dumploop UNTIL ce;
call txhex4;
dumploop: pm(i4,m4)=ar; {get word}

rts;

.endmod;

Figure 1. asm21 example source code

high level language. Common arithmetic instructions,
for instance, are represented by algebraic expressions in
asm21 rather than the more usual assembler convention
of a mnemonic opcode followed by a list of parameters.
Figure 1 shows an example of a self contained code
module.

This example defines a single function dumper that
updates a block of memory with values delivered by an
external function txhex4. The statement DO dumploop
UNTIL ce; initialises the zero-overhead loop control
hardware on the termination condition ce (counter
empty). The statement pm(i4,m4)=ar; writes the con-
tents of the arithmetic result (ar) register to the pro-
gram memory address pointed to by index register i4
and then increments i4 by the value of modifier register
m4.

5. Translation levels

asm21toc can produce three different levels of trans-
lation. Level 1 translations are designed to be as sim-
ilar to the original assembler source code as possible,
with essentially a one-to-one correspondence between
the lines of code. The aim is to allow a programmer
who is familiar with the assembler program to see the
manner in which asm21toc converts symbols and in-
struction expressions into ANSI-C variables and func-
tions. Some high level analysis is performed: zero-
overhead loop constructs are converted into do-while
statements; and indirect accesses via the Data Address

Generators are converted to pointer dereference oper-
ations with optional pointer update. A level 1 transla-
tion of the example code is shown in Figure 2.

Level 1 translations also provide extensive diagnos-
tics concerning variable usage, and a simplified text-
based control flow diagram which we call a control-flow
sketch. The level 1 translator also constructs a hybrid
call-graph/basic block graph which is passed to later
translator stages.

Level 2 translations extend the control flow anal-
ysis by removing explicit goto instructions from the
code wherever possible. Our algorithm is based on the
structural flow analysis of Sharir [12] with extensions to
cope with the (possibly ill-formed) call graphs arising
from hand-written code. The output of a level 2 trans-
lation retains explicit references to condition code bits
and machine registers but displays high level control
structures, converting counter based loops to ANSI-C
for loops, for instance. The effect of this conversion
on function dumper is shown in Figure 3.

Level 3 translation is based on extensive structural
data flow analysis. We exploit the information pro-
vided by the control flow analysis from level 2 to en-
able high-level data flow equations to be solved. This
approach, sometimes called syntactic data flow analy-
sis because it effectively exploits the syntactic group-
ing in high-level control constructs, is in contrast to
the more conventional use of simple interval-based data
flow analysis followed by dominator-based control flow
analysis. The purpose of the level 3 translation is to
remove references to redundant intermediate variables
and unused condition codes. The effect is to remove the
majority of register references, yielding a program that
is mainly composed of expressions containing variables
declared using the .var directive in the original asm21
source code. This is particularly important when trans-
lating DSP code because the arithmetic units are usu-
ally surrounded by pipeline registers with computation
being a three stage process: (i) load input pipeline
register from memory; (ii) compute function and load
result to output pipeline register; (iii) write output
pipeline register to memory. The level 3 analysis effec-
tively removes steps (i) and (iii) from the code, leading
to significant clarification of the underlying algorithm.

As part of future work we plan to extend the data
flow analysis to the extraction of parameters for func-
tions. In the present translator, all registers and vari-
ables are represented by global variables, and all func-
tions have the signature void (void). By analysing
the usage of variables within functions we can find vari-
ables that are used before definition (which are either
programming errors or input parameters) and variables
that are defined and not used (which are either pro-

/* Translated from module ’dump_mod’

in file ’dsp2c.dsp’

by asm21toC V1.01 Mar 05 1999 07:43:05 */
#include "a2c_main.h"
/* Declare variables local to this module */
static long int count;
/* Declare variable initialisation function */
void asm21_data_initialiser_for_dump_mod(void)
{

count = 5 ;
}

/* Function prototypes */

void dumper(void);
extern void txhex4(void);

/* Function bodies */

void dumper(void)

{
i4 = 1000 ;
cntr = count;
do
{
txhex4();
((long int) i4++) = ar; /* get word */
}
while (--cntr > 0);
}

/* End of translation from module ’dump_mod’ */

Figure 2. asm21toc level 1 translation

void dumper(void)
{
i4 = 1000 ;
for (cntr = count; cntr > 0; cntr—-)
{
txhex4();
((long int) i4++) = ar; /* get word */
}

Figure 3. asm21toc level 2 translation

gramming errors or output parameters).
5.1. asm21toc implementation

asm21toc is written in rdp, our compiler generator
tool [10]. Reverse compilation is not fundamentally
different from normal forward compilation in that a
source language must be parsed into an intermediate
form, and control and data flow analyses must be per-
formed to support a walk of the intermediate form that
outputs the translated code. rdp is a general purpose
translator generator which provides support for lan-
guage specification using an attributed extended BNF
notation. rdp has built-in lexical analysis and symbol
table support and a rich library of functions to manip-
ulate sets, symbol tables and generalised graphs. The
symbol table handler implements nested scope rules au-
tomatically, and we make use of this to maintain inde-
pendent sub-tables for each module in the application
during linking, as described below. A feature of rdp
is that dynamic data structures (including trees and
completely unrestricted graphs) built by rdp generated
compilers may be rendered as text files suitable for in-
put to Georg Sander’s VCG (Visualisation of Compiler
Graphs) visualisation tool [11].

The translator front end parses asm21 code into a
tree based intermediate form. rdp can automatically
build abstract syntax tree based intermediate forms
using a set of promotion operators that convert the
full derivation tree into a form that we call a Reduced
Derivation Tree (RDT). An example RDT, visualised
using the VCG tool, is shown in Figure 4.

During parsing, information from asm21 declara-
tions is loaded into the main symbol table. Symbols are
updated whenever they are used, so that by the end of
the parse a complete map of symbols that are the tar-
gets of jump instructions, call instructions (function in-
stantiation) and do loop initialisers can be constructed.
Usually, DSP applications are written as a series of sep-
arately assembled modules which must be linked to-
gether, and complete usage information can therefore
only be obtained by reading all modules. asm2itoc
therefore must be supplied with the names of all files
in the application and, whilst parsing this set of files,
performs the functions of the linker in resolving cross
references.

The result of the parse, then, is a forest of RDT’s,
one for each module in the application, along with
a symbol table listing all symbols in the applica-
tion. Subsequent tree-walk phases traverse the forest of
RDT’s constructing a hybrid control flow graph which
represents both call graph style information and tra-
ditional basic block control flow. We use this hybrid

ol] o ey =y
var

[count] [dumper| [INTEGER: 0] [INTEGER: 1] [INTEGER: 0]

Figure 4. Reduced Derivation Tree for example code

because assembly language programmers can and do
write code which can not be rendered as a set of single
entry functions in a straightforward way. It is possible
for a label to appear both as a jump target and as a
call target, and fatal error handlers in particular often
take the form of basic block with one entry and no exits
(which we call a ‘black-hole’ block) that is called from

a large number of places.

6. Difficult translations and their fre-
quency

In this section we consider a set of difficult-to-
translate structures along with our proposed solutions
and some initial statistics on their occurrence in real
code. The measurements were obtained by analysing
over 600 asm21 source files together amounting to over
300,000 lines of code. A large part of the code com-
prises real time image processing functions supplied by
one of our industrial collaborators. Also included are
some protocol converters and the complete source code
from Analog Device’s Web site which hosts an extensive
library of example files. The image processing code was
considered by its authors to contain instances of diffi-
cult programming, in particular the use of self modify-
ing code, non-standard control structures and unusual
function call conventions. This is in contrast to the
example code from Analog Devices which is intended
to be straightforward to understand and therefore is
much more well behaved. In spite of this emphasis on
‘trick’ code, we found the number of instances of truly
difficult code to be very low.

The total number of machine instructions repre-
sented by our sample set was 120,195. The number
of assembler directives was 18,376 of which 3,712 were
variable declarations. We were surprised to find that
only 4.59% of the instructions were multifunction (the
ADSP-21xx term for instructions that parallelise an

ALU operation and one or two memory transfers). A
further 3.58% of the instructions used the conditional
execution capability. Multifunction instructions do not
allow conditional execution (due to a lack of bits in
the instruction word), and so a total of 91.56% of the
instructions were straightforward sequential, uncondi-
tional operations.

6.1. Processor modes

The ADSP-21xx processors have a set of processor
modalities that modify the behaviour of instructions.
Modes include the following.

Bit reverse mode which, when set, bitwise reverses
the address generated by one of the Data Address
Generators. This assists the implementation of
the Fast Fourier Transform.

AR saturation mode which sets the output of the
ALU to a full scale value in the event of an over-
flow rather than wrapping the value round as on
a conventional processor.

ALU overflow latch which causes the overflow con-
dition code bit to stay set after an overflow rather
than being reset on subsequent arithmetic oper-
ations. This allows an overflow within a long se-
quence of operations to be checked for at the end
rather than wasting an instruction after each in-
termediate result.

Multiplier accumulator placement which selects
between fractional and integer output represen-
tations.

If a processor mode is changed in a non-statically
visible manner then we cannot statically write the
corresponding ANSI-C code. In this case we must

provide a status flag which is checked during execu-
tion, effectively simulating the operation of the orig-
inal processor. In reality, it is most unlikely that
a user would wish to preserve this behaviour in the
ported application, preferring instead to rewrite the
code in a clearer fashion. We found only 280 mode
changes in our sample of 120,195 instructions. Of
these, less than 40 are potentially non-statically visi-
ble, since the usual convention is to set processor modes
during system initialisation. The majority of the dif-
ficult cases involve the multiplier-accumulator place-
ment mode which is switched to distinguish between
integer and non-integer multiplies. We believe that we
can use type information gathered from the contexts in
which the source operands are later used to infer the
correct multiplier mode in most cases, and are able to
flag the remaining cases for human intervention.

6.2. Indirect jump and call

Most processors (including DSPs) have a facility
to execute a call or jump via the contents of a reg-
ister rather than to an absolute address. Such indirect
control flow switches have few counterparts in high-
level languages: the computed-goto statement in FOR-
TRAN is one example and some compilers use indirect
jumps in association with a table of addresses to imple-
ment switch and case statements. Our approach to
translating indirect jumps and calls is to use program
slicing to detect the range of addresses which could be
reached.

Indirect jumps and calls are even rarer than mode
switches: we found 79 indirect calls and 77 indirect
jumps in our sample. More than half of these instances
were in only two modules which contained large scale
dispatch tables. Since these instructions are so rare, we
do not feel at present that we have fully explored their
possible uses. We are actively seeking new examples.

6.3. Self maodifying code

DSP programmers occasionally resort to self modi-
fying code in an effort to save critical cycles in an in-
ner loop. One example we have contains two memory
buffers held at identical addresses but in different mem-
ory spaces. By masking a single bit in a memory ref-
erence instruction, the active buffer could be switched
between the two address spaces.

Direct translation of self modifying code is not feasi-
ble, given the strict separation into static code and dy-
namic data in most high level programming languages.
A more pertinent issue is whether such code can be de-
tected. General purpose Von Neumann processors do

not lend themselves to such analysis, but the modified-
Harvard architecture ADSP-21xx with its separate pro-
gram and data memories at least allows us to narrow
down the possible instances of self modifying code. In
detail, the ADSP-21xx does allow data to be held in
program space, but the capabilities of the processor are
such that normal practice is to store only read-only
constants in program memory and place read/write
data in data memory. In our sample of 120,195 in-
structions we found only 16 writes to program memory,
about half of which were accounted for by genuinely
self-modifying code. This very encouraging result has
led us to adopt a strategy of issuing a warning message
for every program memory write we encounter and re-
quiring the user to manually check the validity of the
access.

7. Related work

The most well known work in this area is that of
Cifuentes whose dcc tool translates Intel 80286 bina-
ries into C. The tool is well documented in her the-
sis [6] and in some related papers [7]. Although dcc
is specific to the 80286, some claims are made for the
generality of the main decompilation engine, and later
papers discuss their extension to cover some aspects of
RISC architectures. Cifuentes uses traditional interval-
based data flow analysis followed by a two control flow
analysis phases. The first phase derives a sequence of
of graphs for each subroutine in the call graph and cal-
culates intervals and then the second phase uses these
sequences to find loop and conditional structures. dcc
expends considerable effort on detecting function sig-
natures and can perform some useful type analysis.

Fuan and Zongtang have reported on an 8086 de-
compiler [9] which is restricted to a particular combi-
nation of compiler and memory model. In this tool,
much effort is invested in recognising standard C li-
brary functions, and hence the restriction to a partic-
ular compiler/memory model combination.

A variety of unsophisticated partial decompilers cir-
culate on the Internet mostly, it seems, in response
to attempts by games players to investigate the inter-
nal workings of commercial programs. These tools are
characterised by a lack of control and data flow anal-
ysis and they typically produce output that is similar
to our level 1 translation.

Breuer and Bowen investigated the feasibility of a
decompiler-decompiler as part of the ReDo project [5].
In this work, decompilers are generated from the at-
tribute grammar that provides the compiler specifica-
tion. The work is theoretically interesting but not di-
rectly applicable since attribute grammars for real pro-

duction quality compilers are not available.

A wider overview of previous academic work in this
area is given by Cifuentes in her thesis. There are also
a variety of commercial concerns that offer decompi-
lation services and assistance in the porting of appli-
cations between architectures. Usually, the techniques
employed are not reported in the literature, and we
are not aware of any commercial translation services

for DSP code.

8. Conclusions

Our translator from asm21 to ANSI-C is fully op-
erational to Level 1 (naive translation) and partially
operational to Level 2 (control flow analysis) and Level
3 (data flow analysis). Our statistical analysis of over
300,000 lines of asm21 code indicates that the difficult
translation issues we have identified are sufficiently rare
that it is appropriate to flag them for the user to re-
view manually. We have found, in general, that the re-
stricted scope of fixed point Digital Signal Processors
compared to modern general purpose processors make
reverse compilation practical and useful, both for auto-
matic porting and for general program comprehension
purposes.

We intend to extend the work to provide better data
flow analysis of parameter usage. We also expect to
add a back end that can directly emit sequential as-
sembler code for the TMS320C6x family of devices.
We will then be able to directly compare the efficiency
of ADSP-21xx programs that have been converted to
C and then compiled down to TMS320C6x code with
the efficiency of programs that have been translated
directly from assembler.

9. Acknowledgements

The authors would like to acknowledge the support
of the directors of Image Industries Ltd who provided
much of the source code used in our statistical sample
and Georg Sander, the author of VCG, for permission
to include his tool in the distribution package for our
rdp compiler generator. We are grateful to Paul Mar-
getts of Image Industries Ltd and to the anonymous
referees for their helpful suggestions.

References

[1] ADSP 2101 User’s manual (architecture). Analog De-
vices, 1990.

[2] TMS320C8z system level synopsis. Texas Instruments,
1995.

(3]
[4]
[5]

ADSP 2106z SHARC DSP microcomputer family.
Analog Devices, 1998.

TMS320C6000 CPU and instruction reference guide.
Texas Instruments, 1999.

P. T. Breuer and J. P. Bowen. Decompilation: the
enumeration of types and grammars. Transactions
on Programming Languages and Systems, 16(5):1613—
1648, September 1994.

C. Cifuentes. Reverse compilation technigues. PhD
thesis, Queensland University of Technology, July
1994.

C. Cifuentes and K. J. Gough. Decompilation of bi-
nary programs. Software — Practice and Ezperience,
25(7):811-829, July 1995.

J. R. Ellis. Bulldog: a compiler for VLIW architec-
tures. MIT Press, 1985.

C. Fuan, L. Zongtian, and L. Li. Design and imple-
mentation techniques of the 8086 ¢ decompiling sys-
tem. Mini-micro systems, 14(4):10-18, 1993.

A. Johnstone and E. Scott. rdp — an iterator based
recursive descent parser generator with tree promotion
operators. SIGPLAN notices, 33(9), Sept. 1998.

G. Sander. VCG Visualisation of Compiler Graphs.
Universitat des Saarlandes, 66041 Saarbriicken, Ger-
many, February 1995.

M. Sharir. Structural analysis: a new approach to
flow analysis in optimising compilers. Computer Lan-

guages, 5(3/4):141-153, 1980.

