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ABSTRACT 

T h e  imp lemen ta t ion  of a n  e f i c i en t  au tomat i c  t e s t  
generat ion s c h e m e  f o r  black-box testing i s  discussed. 
I t  u ses  checkpoint encoding and an t i random test ing 
schemes.  Checkpoint encoding converts t e s t  genera- 
t i o n  t o  a binary problem. T h e  checkpoints are se- 
lected as  the  boundary and illegal cases in addi t ion 
to valid cases t o  probe t h e  inpu t  space. A n t i r a n d o m  
test ing selects each tes t  case such tha t  it i s  as  dif fer- 
e n t  as possible f r o m  all t he  previous tes ts .  T h e  im- 
p lemen ta t ion  is illustrated using benchmark examples  
t h a t  have been used in the  literature. Use of r a n d o m  
test ing both w i th  checkpoint encoding and w i thou t  i s  
also reported. Compar i son  and evaluat ion of t h e  ef- 
fect iveness  of t hese  methods is also presented. Impli-  
cations of t he  observations f o r  larger software s y s t e m s  
are noted.  Overall ,  an t i random testing gives higher 
code coverage than encoding r a n d o m  test ing,  wh ich  
gives higher code coverage t h a n  pure  r a n d o m  test ing.  

Keywords: antirandom testing, random testing, 
checkpoint encoding, test coverage, software testing. 
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1 Introduction 

Testing of software requires a significant commit- 
ment of resources [12, 171. It is of considerable prac- 
tical and theoretical importance to explore ways to 
reduce the testing effort while maximizing test effec- 
tiveness [3, 6, 13, 151. 

There are many testing techniques discussed in 
the literature that can be termed black-box tes t -  
ing [6, 8 ,  9, 13, 201. R a n d o m  test ing [8] chooses tests 
randomly based on some input distribution, without 
attempting to exploit information gained by tests ap- 
plied earlier. It considers the program’s input domain 
as a single whole and randomly selects test inputs from 
this domain. There are different opinions regarding 
the effectiveness of random testing. Meyers [17] claims 
that random testing is an ineffective strategy to  un- 
cover errors in the software. Other studies such as that 
of Duran and Natfos have shown that random testing 
under certain situations can be effective and is worth 
considering [B]  , specially considering the relative ease 
of test generation and potential for automation. 

A number of test data selection strategies [6, 11, 261 
have been discussed in the literature. In part i t ion tes t -  
ing approach, the program’s input domain is divided 
into subsets, and one or more tests from each of these 
subsets are selected to  exercise the program. In di- 
viding the input space into subdomains, it is expected 
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that software responds to  all the points within the 
same subdomain in a similar way by validating pro- 
gram correctness or by uncovering a fault or exhibiting 
illegal behavior [1, 20, 231. While this expectation is 
an idealization, it allows us to  feel reasonably assured 
that only one or few test cases within a subdomain are 
enough to  cover the expected behavior for the whole 
subdomain. Economizing on test data  selection this 
way can make the cumulative number of input test 
cases manageable and can make testing much more 
cost effective. 

In real programs, however, this idealized scenario 
of clean and nonoverlapping partitioning into subdo- 
m,ains happens rarely [9, 10, 19, 23, 251. Useful heuris- 
tics [6] of selecting test da ta  are designed to  exercise 
boundary values [a, 251 as well as uncover simple er- 
rors that tend to  have a coupling effect [8] to  larger 
errors (errors that violate the software specifications). 
This has the advantage of reducing testing effort while 
preserving testing effectiveness. Another approach to  
increasing test effectiveness and efficiency is t o  reduce 
the number of tests required by limiting the number 
of combinations of tests to  be considered. Orthogo- 
nal latin squares [15] and combinatorial design [3] are 
among the approaches that have been discussed in the 
literature. 

Recently, Malaiya [13] introduced the concept of 
antirandom testing for black-box testing. It is based 
on the view that testing is efficient if the next test in 
the sequence is chosen to  have maximum dzstance from 
all previous tests that have been applied. Antirandom 
test sequences are constructed using this approach. 
Ha,mming and Cartesian maximum distance measures 
are defined to  help generate these antirandom test se- 
quences. Unlike random testing, antirandom testing 
generates input test sequences designed from the out- 
set t o  exploit information about the tests that were 
applied in the past. 

In this paper, techniques for automatic test genera- 
tion using checkpoint encoding are investigated using 
both antirandom testing and random testing. These 
two testing approaches are compared with random 
testing based on some input distribution. For this 
study we take three common benchmark programs 

which have been used in the literature. We present 
possible approaches for checkpoint encoding to ensure 
that we are probing the input space in an efficient way. 

Various approaches can be taken to  gauge the ef- 
fectiveness of testing [21, 221. Here effectiveness of 
the various testing approaches was evaluated by mea- 
suring code coverage. This is an acceptable approach, 
since higher test coverage generally implies better de- 
fect detection capability [14, 271. Test generation in 
this case is based on thc external specification of the 
problem (black-box). Test coverage, unlike testing ef- 
fort, is a direct measure of how well the software under 
test has been exercised [14]. 

The purpose of this paper is t o  demonstrate the fea- 
sibility of automatic test generation using approaches 
that are not random, and to  show the promise of such 
approaches. In future work we will apply the meth- 
ods developed here to  larger programs to  do a system- 
atic comparison of the proposed approaches to  random 
testing. 

In the next section, we introduce the approach us- 
ing antirandom testing and checkpoint encoding. In 
the third section the three benchmark examples are 
described, and for each example, the encoding scheme 
and the code coverage results are shown. Finally con- 
cluding remarks are presented and future areas of in- 
vestigation are briefly discussed. 

2 The CEAR test generation scheme 

The Checkpoint Encoded Antirandom testing 
(CEAR) scheme used here was proposed by 
Malaiya [13]. This scheme integrates antirandom test- 
ing with checkpoint encoding as explained below, and 
is designed to  process input test vectors on the Ay au- 
tomatically and to  exercise the software under test, 
thus making the scheme cost effective. The CEAR 
scheme has three major components: 

0 The MHDATS(MCDATS) binary sequence gen- 
erator. 

0 The random value generator. 

0 The binary-to-actual input translator 
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As shown in Figure 1, the CEAR is a collection 
of software tools that produce actual input vector for 
the software under test. The MHDATS(or MCDATS) 
binary sequence generator calculates the next binary 
vector in the antirandom sequence. Its bit values are 
examined for a match to  the bit values assigned to  
the fields in the checkpoint encoding definition. The 
appropriate actual input test vector is generated and 
fed to  the software under test. 

Checkpoinl 
en c o d i n g Actual Binary 

Binary 10 Actual 

Translation 

MHDATS 
(MCDATS) under 

generator 

Range(s) Random value(s) 1 R;m11"," 1 ProposedCEARscheme 

Gcnerator 

Figure 1: The CEAR scheme with encoded antiran- 
dom vectors 

2.1 Antirandom testing 

In antirandom testing, each test in a sequence is 
defined to  be maximally distant from all of the previ- 
ous tests. Test vectors which are closer together are 
likely to  exercise the software in a similar way, and 
no new information is likely to  he gained. However, 
in the antirandom testing paradigm, each test in the 
sequence attempts to  exercise different areas of the 
software and thus has the potential of getting higher 
code coverages. 

In antirandom test vector generation, distance is 
defined using either the Hamming or the Cartesian 
distance measure. If we assume binary vector encod- 
ing is used to represent the input variables, one first 
chooses the initial binary test vector t o  to be all O's, 
without lose of generality. The next binary test vec- 
tor in the sequence, tl is then obtained by calculating 
the maximum hamming or maximum Cartesian dis- 
tance away from t o .  Construction of maximal ham- 

ming distance antirandom test sequence (MHDATS) 
and maximal Cartesian distance antirandom test se- 
quence (MCDATS) is discussed in detail in [13]. Each 
subsequent test vector t ,  is then chosen such that the 
total distance between t; and all the previous tests 
ti-1, t z - 2 ,  ..., t o  is a maximum. The procedures pre- 
sented by Malaiya have been implemented in the An- 

tirandom Testing Generation ARTG program [30]. 
An integral part of antirandom testing is the check- 

point encoding scheme that enables the efficient cap- 
ture of proper combinations of typical, boundary and 
illegal tests cases so that the test coverage is as high 
as possible. 

2.2 Checkpoint encoding 

In general, the desire is to  exercise not only ex- 
pected or usual program behavior but also corner or 
boundary cases. Moreover, regions of expected illegal 
behavior need to also be tested to  ensure the software 
under test is responding appropriately. The objective 
of checkpoint encoding is to  make the testing effort as 
effective as possible by converting the problem to that 
of constructing binary antirandom sequences. Sample 
points representing the range of input characteristics 
(e.g. typical, boundary and illegal) are encoded into 
binary. These sample points (or checkpoints) are then 
obtained by automatic translation. 

Typically, a boundary value in the input space 
maps to  a specific field encoding which then results 
in the generation of a test tailored to  exercise that 
boundary condition. For homogeneous values, corre- 
sponding to  a subdomain partition in the input space, 
the checkpoint field definition and encoding consists 
of multiple values which are then randomly selected 
using the random value generator in accordance with 
some input distribution assumption. Uniform distri- 
bution has been used for this study. 

In checkpoint encoding the design of the encoding 
scheme needs to  be carefully considered. We need to 
decide how many bits to use and need to  allocate the 
combinations to the typical, illegal or boundary case 
situations. Careful attention needs to  be given to how 
much of the black-box information needs to be cap- 
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tured by checkpoint encoding and to  what level of 
resolution. Also one has to  balance the number of 
bit encodings that are assigned to  legal range versus 
illegal or boundary cases in the input space. For in- 
stance, if the bit assignment in the encoding scheme is 
weighed heavily toward the illegal input combinations, 
the software under test will have initially low cover- 
age as the common cases (or legal operations) in the 
input space are not being exercised as often in com- 
parison to  the illegal situations. Detailed observations 
are presented in the next section. 

In devising an encoding scheme, one starts from the 
problem specification and tries to  conceptually parti- 
tion the problem space into subdomains, where each of 
the subdomain has a common or homogeneous charac- 
teristic. Another way to  look a t  the subdomain clas- 
sification is to see the problem as made of possibly 
one or more dimensions, each dimension occupying a 
hyperplane in the hamming space. 

3 Experimental methods, results and 
analysis 

Three typical benchmark programs frequently men- 
tioned in the literature are used in our investiga- 
tion. They are a string matching program STR- 
MAT [as] ,  a triangle classification program TRIAN- 
GL,E [6, 8, 12, 171 and FIND which can be part of a 
sorting program [6, 13, 291. Coverage measures are 
used to quantitatively compare the testing approaches. 
The GCT coverage tool [16] is used to instrument 
the programs to  get quantitative code coverage mea- 
sures using branches, loops, multiple conditions and 
relational operations covered. Test coverage measures 
have been demonstrated to have a relationship to  de- 
fect coverage [5, 141. 

3.11 Testing data generation procedure 

Automatic test generation [4, 7, 241 is designed to 
ease the test effort. Here we have used three different 
approaches for automatic test generation. 

1. Antirandom with checkpoint encoding 

2. Random with checkpoint encoding. 

3. Random without checkpoint encoding. 

In the plots and the tables, these are respectively 
indicated by AE,  R E  and RWI or RW2. 

We first need to analyze the program specifications 
and the natures of the problem. Then according to  
some general encoding rules, we decide the specific 
encoding scheme for each program. After determining 
the number of binary bits, we use the ARTG program 
to  generate the necessary antirandom test sequences. 
Each antirandom binary vector is then decoded to  ac- 
tual input value for each variable. In decoding the bi- 
nary vector, we use randomly generated value within 
the range specified in the encoding scheme. In check- 
point encoding, we use the random function to  gen- 
erate the binary test vectors, then decode them to  
actual input values just like in antirandom testing. In 
purerandom testing, for each program, we choose two 
different seeds to generate the actual input values ran- 
domly according to  the range specified to  illustrate the 
possible variation of the results. 

3.2 Testing code coverage evaluation 

Once a test suite is prepared based on the testing 
[16] is approaches discussed earlier, the GCT tool 

used to instrument the program. 

he coverage measures used are: 

Branch coverage: Complete branch coverage re- 
quires every branch be exercised a t  least once in 
both the true and false directions. 

Loop coverage: Complete loop coverage requires 
that a loop condition be executed once, several 
times and also should be skipped (without ever 
entering the loop) in some test condition. 

Multi-condition coverage: This has a stronger re- 
quirement than branch coverage. It checks for all 
parts of a logical expression being used. That is, 
each of the logical expression components must 

evaluate to  TRUE in some test, and to  FALSE 
in some other test. Multi-condition coverage is 

* 
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stronger requirement compare to  branch cover- 
age. Field 

text length 

pattern positions 

pattern length 

0 Relational coverage: this checks for tests that 
probe common mistakes regarding relational op- 
erators. A likely mistake could be using "<" when 
"<=" is intended. 

Bits Value Significance 
b2,bl,b0 110 0 

010 80(tmax) 
011 80 < tlen < 100 (illegal) 
rest 1-79 

b5,b4,b3 110 no pattern 
010 beginning 
011 end 
rest middle 

bS,b7,b6 110 0 
010 3 (pmax) 
011 
rest 1-2 

3 < plen < 10 (illegal) 

3.3 Experimental results 

3.3.1 The STRMAT program 

This example has also been used by Wong et al. [27,28] 
to  investigate test coverage issues. The program is 
given as input a string of zero to  80 characters, and a 
pattern at  most 3 characters long. The objective is to  
see if the pattern is matched in the string. If so, the 
pattern position in the string is returned. 

In choosing the checkpoint encoding scheme one is 
interested in dividing the problem space into subdo- 
mains that conceptually can be seen as consisting of 
orthogonal dimensions. The text length can be seen as 
a variable in one dimension, the pattern length can be 
seen as a variable in a second dimension orthogonal to  
the first. Finally, the pattern position can be seen as 
a third dimension orthogonal t o  the first two. As will 
be seen later, it turns out that  checkpoint encoding 
with antirandom testing is particularly effective and 
is superior to  the other testing schemes when many 
dimensions are characteristic of the problem specifica- 
tion. 

The encoding scheme for STRMAT string match- 
ing program chosen is shown in Table 1. The following 
subdomains can be identified from the problem speci- 
fication in considering black-box testing. 

Ranges: 
text length: 0 5 texlen 5 80 
pattern positions: l,textlen, middle, outside 
pattern length: 0 5 patlen 5 3 

Using this encoding scheme for the STRMAT 
program, coverage measures (branch, loop, multi- 
condition, relational and total coverages) for antiran- 
dom testing(AE), random testing with checkpoint en- 
coding (RE), and pure random testing with two dif- 
ferent seeds (RW1 and RW2) are shown in Tables 2-5 
and Figures 2-5. 

From the results we can make three observations: 

1. Antirandom testing generally gives better cover- 
age values. 

2. Testing using the checkpoint encoding is generally 
better than purerandom testing. 

3. As expected, coverage may vary when applying 
random tests generated using different seeds as 
shown in Figures 2-5. In some situations, it can 
be better than random testing with checkpoint 
encoding. 

In exercising the STRMAT program as instru- 
mented by GCT, we find that there are 18 binary 
conditions, 9 loop conditions, 4 multiple conditions, 
15 relational operator conditions. So the total con- 
ditions for STRMAT is 46, and the total coverage is 
given by the sum of coverage percentage for each con- 
dition. 

In general, there is no significant difference among 
the testing approaches in the first few test vector appli- 
cations. Sometimes the coverage achieved by random 
testing appears to  rise quickly. This is because random 
testing has a better chance of probing homogeneous 
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cascs more cffcctively at thc beginning. Antirandom 
testing, however, tries to maintain a balance between 
the boundary cases and the homogeneous cases, with 
the objective of achieving overall better test coverage 
after a reasonable number of test vectors have been 
applied. 

Field 
Not 

a Triangle 

Table 2: Branch coverage 
RE 

Bits 
b4,b3,b2,bl,b0 

- 

83.33 

100 

Value 
x l l l l  
xl00l 
xOOll 
xOlO0 
xOl0l 
xll00 
01010 
11010 
00110 
10110 
rest 

72.22 
72.22 
72.22 
83.33 
94.44 
100 
100 

Significance 
a+b < c, a!=b or a=b 
b+c < a, b!=c or b=c 
a+c < b, a!=c or a=c 
a+b=c, a!=b or a=b 
b+c=a, b!=c or b=c 

a+c=b, a!=c a=c 
a=b 
a=c 
b=c 

a=b=c 
scalene 

%) for STRMAT 
RW1 

AE 
58.70 
60.87 
76.09 
95.65 
95.65 
95.65 
97.83 

77.78 
77.78 
94.44 
94.44 
94.44 
100 
100 

RE RW1 RW2 
58.70 63.04 60.87 
60.87 63.04 63.04 
65.22 86.96 69.57 
73.91 86.96 76.09 
82.61 86.96 76.09 
91.30 91.30 76.09 
93.48 91.30 76.09 

RW2 
72.22 
77.78 
77.78 
83.33 
83.33 
83.33 
83.33 

Table 3: Loop coverage(%) for STRMAT 

14 

20 

44.44 44.44 
77.78 44.44 
88.89 44.44 
88.89 66.67 
88.89 66.67 
88.89 66.67 

RW1 
33.33 
33.33 
55.56 
55.56 
55.56 
66.67 
66.67 

RW2 
33.33 
33.33 
44.44 
44.44 
44.44 
44.44 
44.44 

Table 4: Relational Operator coverage(%) 

-- -- 
rest No. 

1 
2 
6 
10 
14 
16 
20 

-- 

-- -- 
Tsest No. 

1 
2 
6 
10 
14 
16 
20 

- .  I 

for STRMAT 

AE I RE 1 RW1 I RW2 
53.33 153.33 I60 160 
53.33 53.33 
66.67 66.67 93.33 
93.33 93.33 
93.33 93.33 
93.33 93.33 93.33 
100 100 93.33 

60 
73.33 
86.67 
86.67 
86.67 
86.67 

RW1 ' . . -  - 
branch RW2 - 

coverage 85 - - 
.. 

- 

- 

7 0 - '  I I ' I I ' ' ' 
2 4 6 8 10 12 14 16 18 20 

test vector no. 

Figure 2: Branch coverage for STRMAT 

3.3.2 The TRIANGLE program 

This triangle example is used by Jorgenson [12]. De- 
millo [6] has also discussed test data  selection for this 
program. Given three integers as input values for the 
three sides, TRIANGLE classifies whether we have a 
legal triangle or not. If the triangle is legal , there 
is a further classification whether it is isosceles, equi- 
lateral or scalene triangle. Any combination of input 
sides where the sum of the inputs of any given two 
sides is less than or equal to the third side is classified 
as "Not a Triangle". 

Table 6 shows the checkpoint encoding used. 

Side a,b,c are integer values in [1..200] 
Here x indicates both 0 and 1 

We used the triangle example to examine how dif- 
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2 4 6 8 10 12 14 16 18 20 
test vector no. 

Figure 3: Loop coverage for STRMAT 

- 

relational 80 - 
- 

AE -+- - 
RE 0 - 

RW1 . . . -  - 
RW2 - - 

50 I I I I I I ’ ’ I 

2 4 6 8 10 12 14 16 18 20 
test vector no. 

Figure 4: Relational coverage for STRMAT 

total 
coverage 

(%) 75 t ‘ f  b o o  

60 

2 4 6 8 10 12 14 16 18 20 
test vector no. 

Figure 5: Total code coverage for STRMAT 

ferent encoding schemes affect test coverage. The mo- 
tivation for this is to  see if we can come up with efi- 
cient encoding scheme and to  understand the under- 
lying reasons why some encoding scheme give better 
coverage than others. 

The triangle example demonstrated that the check- 
point encoding exercise can actually force the tester 
to  look more closely at  the specification. Studies 
[12, 171 have shown that one of the causes for soft- 
ware bugs that are not being identified early enough is 
that testers were not exercising the specification fully. 
At first, our encoding did not take into account the 
“equal” part in the requirement that  says if the sum 
of any two sides is less than or equal to the third does 
not constitute a triangle. The poor coverage results for 
the initial encoding scheme alerted us to  this missing 
specification. This indicated that we were not captur- 
ing the specification fully. 

Another lesson learned in the checkpoint encoding 
exercise for the triangle is that  it is important the bit 
values assigned in the encoding scheme should map 
to the combinations occurring in antirandom test vec- 
tor sequence if the number of tests applied is small. 
Otherwise, some of the conditions identified for check- 
point encoding can have bit values assigned that may 
not be triggered by the antirandom test vectors. This 
concern does not apply to  random testing with check- 
point encoding because the input vector sequence is 
obtained randomly. However, for antirandom test se- 
quence each test vector is chosen to be as far away 
from all previous test vectors as possible. When deal- 
ing with less than exhaustive testing, we can choose 
encoding such that each antirandom test vector in the 
sequence exercises a different aspect of the software 
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dom test sequences, thus resulting in the highest cov- 
erage. For the special “Not a Triangle” case, we assign 
each vector for each situation. For the special case of 
an equilateral triangle, one input vector was assigned. 
Similarly, one input vector each was assigned to  the 
t h e e  situations that make a triangle isosceles (there 
are three situations where any two sides are equal). 

In exercising the TRIANGLE program as instru- 
mented by GCT, we find that there are 22 binary con- 
ditions, 8 multiple conditions, 18 relational operator 
conditions. So the total conditions for TRIANGLE 
is 48, and the total coverage is given by the sum of 
coverage percentage for each condition. 

Note that in this case, an encoding scheme that uses 
a minimum number of bits results in a single dimen- 
sion as given in Table 6. This makes the effectiveness 
Oil antirandom testing very dependent on the code as- 
signment used. Real problems would often be com- 
plex and would involve multiple dimensions. There 
the results would have a smaller dependence on code 
assignment. 

For this encoding scheme, the total code coverage 
obtained for TRIANGLE is shown in Table 7 and Fig- 

under test as compared with earlier tests. This is 
slpecially important in getting higher coverage quickly 100 ‘ I I I 

when dealing with much less than exhaustive testing. 
After experimenting with several encoding schemes, 

we obtained the encoding scheme which is shown in 
Table 6. Using this encoding scheme, we can map the 
warious boundaries to  the early part of the antiran- 

AE 

- 
- coverage 6o 

- 

. . .. 
20 ’I I I I I I 

5 10 15 20 25 30 
test vector no. 

Figure 6: Total code coverage for TRIANGLE 

such that all elements to  the left of B(F) are no larger 
than B(F),  and all elements to  the right of B(F)  are no 
smaller than B(F).  The legal range for F is 1 5 F 5 S. 
In [13], Malaiya examined this program to illustrate 
how checkpoint encoding can be used. 

The encoding scheme for this program shown in Ta- 
ble 8 is similar to what was described in [13]. The 
following subdomains can be identified from the prob- 
lem specification in considering black-box testing. 

Table 8: Encoding scheme for FIND 

u:re 6. 

Table 7: Total code coveram 
-~ -___ 
Test No. 

1 
4 
7 
10 
14 
18 
22 
26 
28 
30 

-~ AE 
25 
54.17 
66.67 
77.08 
83.33 
85.42 
87.50 
89.58 
89.58 
91.67 

” 
RE 
25 
56.25 
66.67 
72.92 
77.08 
79.17 
79.17 
79.17 
79.17 
79.17 

‘?G) for TRIANGLE 
L - I  

RW1 
25 
25 
33.33 
35.42 
35.42 
35.42 
35.42 
35.42 
35.42 
35.42 

33.33 
33.33 
33.33 
33.33 
47.92 

47.92 

3,,3.3 The FIND program 

This program takes an integer array B of size S 2 1 
and index F. The program sorts the array elements 

- 
Field I Bits I Value 

Array Size I b1,bO I 01 

Array status 

Element Values 

b4,b3,b2 110 

b7,b6,b5 010 

7 
rest 

Significance 4 
reverse ordered 

all equal 

all negative 

first element 
last element 

a middle element 

Ranges: 
Array size: 1 5 n 5 10 
Index: 1 5 F’ 5 10 
Element values: 0 5 V’ 5 511, -256 5 V 5 255 

In assigning bit values to  various subdomains and 
the categories within the subdomains, the first consid- 
eration is how many bits to  assign to each subdomain. 
The second issue is to  distribute the values among the 
categories within the subdomain suitably. A subdo- 
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main usually would incorporate a homogeneous or a 
normal range that largely spans the subdomain space. 
In addition, within the subdomain are the categories 
or boundaries and special situation that are special 
and require a category assignment. The homogeneous 
case normally would have more bits combinations so 
that a larger fraction of the assigned values would fall 
in this range. The boundary or the corner cases are 
assigned fewer specific bit combinations. 

In exercising the FIND program as instrumented 
by GCT, we find that there are 20 binary conditions, 
15 loop conditions, 4 multiple conditions, 27 relational 
operator conditions. So the total conditions for FIND 
is 66, and the total coverage is given by the sum of 
coverage percentage for each condition. 

As shown in Figure 7, test coverage quickly reaches 
high coverage for all three test approaches by the ap- 
plication of only a few test vectors and no significant 
distinction among the three is observed. There are two 
reasons for this. First, the implementation of FIND is 
quite simple and separate handling of the special cases 
is not implemented. Thus the identification of the cat- 
egories for the subdomains does not assist in achieving 
higher coverage. Secondly we note that good coverage 
for all the testing approaches is obtained with only 3 
or 4 inputs. That implies that  this is a highly testable 
program. It is known that random testing is quite ef- 
fective in exercising attributes that have high testabil- 
ity. For the real problems, such a situation is unlikely 
to occur. For a large and complex program there will 
be many potential defect sites that will be hard to  
reach and exercise, these are the kind of defects that  
constitute the real challenge to  the testers. Purely ran- 
dom testing will be not efficient in testing for such de- 
fects which may be triggered only under special input 
conditions. The checkpoint encoding and antirandom 
testing are formulated to  generate such test cases. 

In black-box testing one can not make any assump- 
tions about how the problem is implemented as would 
be done in case of white-box testing. However, the en- 
coding scheme should be general enough while identi- 
fying reasonable categories that  are likely to be imple- 
mented in a special way and thus end up in a differ- 
ent section of code in a practical implementation. In 
fact, in an industry setting where performance is an 
important criteria, a common performance optimiza- 
tion technique is to handle special cases separately. 
For instance, there may be an upfront test to check 
for the equality of all array element values. If they 
are all equal, then you bypass the sorting part and 
the array index, which presumably is initialized to  the 
first element of the array is left unmodified. The pro- 
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75.76 
89.39 
92.42 
92.42 
92.42 
92.42 
92.42 
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gram then quickly exits rather than blindly trying to  
sort the elements, even though it is not needed in this 
case. In this situation, the encoding scheme we out- 
lined having a subdomain category for all equal values 
will quickly generate a test to  exercise this situation. 
Random testing would be very unlikely to  exercise this 
scenario and thus under certain conditions the check- 
point encoding scheme would give us better coverage 
quickly. Even checking for equal values may not be 
necessary if say the program has a third argument that 
passes a hint such as all array element values are equal 
or are already sorted. We can see that the encoding 
scheme we have proposed maintains a balance between 
the general and the particular or boundary conditions 
based on the problem specification. It is much easy to  
identify possible special cases and generate test cases 
for them. 
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3.4 Infeasible path condition 

The code coverage obtained above (e.g., figure 7 
- Total code coverage for FIND) would actually reach 
higher coverage percentage values quickly if steps were 
taken to remove infeasible path conditions. Infeasible 
path conditions are ones that the coverage instrumen- 
tation tool, GCT, flags as not traversed in its report 
but close examination of the code reveals that  test 
path can never happen based on the specification of 
the problem. For instance, a report from GCT for 
the FIND program after a few test vectors are applied 
shows the following: 
"find.c", line 17: loop zero times: 0, one 
time: 1, many times: 15. 
"find.c", line 26: loop zero times: 0, one 
t:tme: 1, many times: 15. 

Examination of lines 17 and 26 as shown in the 
program listing (see Appendix [as])  shows that it is 
impossible to  traverse the for loop 0 times, since the 
problem specification say that the array size, n, is 
greater than 1: 

17 for(i=l;i<=n;i++) 

18 { 
19 scanf ("Xd", &aril) ; 
20 gets(mystr1; 

21 } 

26 for(i=l;i<=n;i++) 

27 printf ("%5d\n", aril ) ; 

GCT [16] does have a mechanism to  edit the report 
and remove infeasible path conditions, once the tester 
determines which ones they are. This was not done in 
the above coverage plot data, as it was not germane 
to' the issues that are the subject of the paper. 

4 Concluding Remarks 

In this work we have demonstrated that it is pos- 
sible to  have automatic test generation that can be 
more efficient than random testing. The benchmark 
examples considered here give us insight into some im- 
portant considerations: 

I. Even with random testing there is an aspect of 
systematic testing in the sense of deducing from 
the problem specification, the range of values for 
the specific dimension from which random values 

are selected. Understanding of the subdomain di- 
mension help narrow the space from which ran- 
dom tests are chosen. 

2. Using a coverage measure as an indicat.or of ef- 
fectiveness is limited, because code coverage does 
not ensure uncovering errors. 

3. In antirandom testing with checkpoint encoding, 
we are much more likely to probe boundaries than 
random testing, and thus the antirandom tech- 
nique may detect faults that  may not be directly 
associated with some of the coverage measures. 

This investigation suggests certain basic rules for a 
checkpoint encoding scheme to  be efficient: 

a) It is important to look a t  the problem specifica- 
tion and the subdomains that have been identi- 
fied and recognize what are the legal, illegal and 
boundary conditions in the input space that need 
to  be exercised. Here the emphasis is to  cover as 
much as possible using a suitable of homogeneous, 
boundary and illegal cases with the test vectors 
being applied. 

b) To decide how many bits are appropriate for the 
encoding scheme, we need to  identify different 
ranges of identifiable similar characteristics. One 
needs to analyze each subdomain and assign bi- 
nary combinations to each range within the sub- 
domain. For instance, the problem statement 
may involve illegal conditions, but the things that 
make it illegal could be due to many ways that re- 
sults in illegal behavior. 

c) In assigning bits for the encoding scheme within 
each subdomain we need to  give more weight 
to  the most common cases, which almost always 
map to  the legal input range. 

d )  The total bit length of the encoding scheme is the 
concatenation of the bits in each subdomain. 

e) In devising the checkpoint encoding scheme, it is 
important that  the subdomains in the input space 
that we identify really exercise different aspects of 
the problem. If a subdomain is not orthogonal to 
the rest, then we can encounter a situation where 
some combinations for the input test vector may 
not be generated resulting in low test coverage. 
Also, one needs to  ensure that conflicting assign- 
ments for different fields do not occur. 
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For this study, the examples used are small and are 
not representative of real problems. Future research 
would use larger programs to apply the concepts devel- 
oped here. For larger programs the coverage measure- 
ments would be more significant. Antirandom testing 
is specially formulated to be effective when there are 
multiple dimensions. Larger programs will be able t o  
demonstrate the capabilities of this scheme better. 

References 

V. Basili and D. Weiss, “A methodology for collecting 
valid software engineering data,” IEEE Trans. Soft- 
ware Engineering, Vol. SE-10, pp. 728-738, Nov. 1984. 
T. Y. Chen and Y. T. Yu, “On the expected num- 
ber of failures detected by subdomain testing and 
random testing,” IEEE Trans. Software Engineering, 
Feb. 1996, pp. 109-119. 
D. M. Cohen, S.  R. Dalal, J. Parelius and G. C. Pat- 
ton, A., “The combinatorial design approach to au- 
tomatic test generation,” IEEE Software, Sept. 1996, 

D. M. Cohen, S. R. Dalal, A. Kajla and G. C. Patton, 
A., “The automatic efficient test generator (AETG) 
system,” Proc. ISSRE, Nov. 1994, pp. 303-309. 
S. R. Dalal, J. R. Horgan and J. R. Kettenring, “Reli- 
able Software and Communication: Software Quality, 
Reliability and Safety,” Proc. International Confer- 
ence on Software Engineering, 1993, pp. 425-435. 
R. A. Demillo, R. J. Lipton and F. G. Sayward, “Hints 
on test data selection: Help for the practicing pro- 
grammer,” IEEE Computer, Apr. 1978, pp. 34-41. 
R. A. Demillo and A. J. Offutt, ‘Constrained based 
automatic test data generation,” IEEE Trans. Soft- 
ware Engineering, Vol. SE-17, No. 9, pp. 900-910, 
Sept. 1991. 
J. W. Duran and S. C. Natfos, “An evaluation of 
random testing,” IEEE Trans. Software Engineering, 

R. G. Hamlet and R. Taylor, “Partition testing does 
not inspire confidence,” IEEE Trans. Software Engi- 
neering, Vol. SE-16, No. 12, pp. 1402-1411, Dec. 1990. 
D. Hamlet, “Are we testing for true reliability,” IEEE 
Software, July 1992, pp. 21-27. 
W. E. Howden, “The theory and practice of functional 
testing,” IEEE Software, Sept. 1995, pp. 6-17. 
Paul C. Jorgensen, Software Testing: A Craftsman’s 
Approach, CRC Press, New York 1995. 
Y. K. Malaiya, “Antirandom Testing: Getting the 
most out of black-box testing,” Proc. International 
Symposium On Software Reliabzlity Engineering, Oct. 

pp. 83-88. 

July 1984, pp. 438-444. 

1995, pp. 86-95. 

[14] Y. K. Malaiya, N. Li, R. Karcich and B. Skbbe, “The 
relationship between test coverage and reliability,” 
Proc. International Symposium On Software Reliabil- 
ity Engineering, Nov. 1994, pp. 186-195. 

[15] R. Mandl, “Orthogonal Latin Squares: An appli- 
cation of experiment design to compiler testing,” 
Comm. ACM, Oct. 1985, pp. 1054-1058. 

[16] Brian Marick, The Generic Coverage Test (GCT) 
User’s Manual, 1981. 

[17] G. Meyers, The Art of Software Testing, John Wiley 
& Sons Inc., New York, 1979. 

[18] T. J. Ostrand and E. J. Weyuker, “Collecting and 
categorizing software error data in an industrial en- 
vironment,” Journal of Systems, Vol. 14, 1984, pp. 

[19] K. C. Tai, “Condition based software testing strate- 
gies,” Proc. GOMPSAC 1990, Oct. 1990, pp. 564-569. 

[ZO] Markos Z. Tsoukalas and Joe W. Duran, “On some 
reliability estimation problems in Random and Par- 
tition testing,” IEEE Transactions on Software Engi- 
neering, Vol 19, No 7, pp. 687-697, Jul. 1993. 

[21] M. D. Weiser, J. D. Gannon and P. R. McMullin, “A 
comparison of structural test coverage metrics,” IEEE 
Software, Vol. 19, no.6, 1989, pp. 80-85. 

[22] N. Weiss, “Comparing test data adequacy criteria,” 
Software Engineering Notes vol. 14, no. 6, pp. 42-49. 

[23] E. J. Weyuker, S.  N. Weiss and R. G. Hamlet, “A com- 
parison of program testing strategies,” Proceedings of 
the fourth Symposium on Software testing, Analysis 
and Verification, Victoria, Canada, Oct. 1991, pp. 

[24] E. J. Weyuker, T. Goradia and A. Singh, “Automat- 
ically generating test data from a boolean specifica- 
tion,” IEEE Trans. Software Engineering, May 1994, 

[25] E. J. Weyuker and B. Jeng, “Analyzing partition test- 
ing strategies,” IEEE Transactions on Software Engi- 
neering, Vol. SE-17, No 7, pp. 703-711, July 1991. 

[26] L. White and E. Cohen, “A domain strategy for com- 
puter program testing,” IEEE Trans. Software Engi- 
neering, May 1980, pp. 247-257. 

[27] W. E. Wong, J. R. Horgan, S. London and A. P. 
Mathur, “Effect of test set minimization on fault de- 
tection effectiveness,” IEEE International Conference 
on Software Engineering, 1995, pp. 41-50. 

[28] W. E. Wong, J. R. Horgan, S. London and A. 
P. Mathur, “Effect of test size and block coverage 
on fault detection effectiveness,” Fifth International 
Symposium on Software Reliabzlzty Engineering, 1994, 

[29] W. E. Wong, On mutation and dataflow, PhD thesis, 
Purdue University, Computer Science Department, 
1993. 

289-300. 

154-164. 

pp. 353-363. 

pp. 230-238. 

94 



[30] Huifang Yin, "Antirandom test patterns generation 
tool," Project Report, Colorado State University, 
Computer Science Dept., Fall 1996. 

5 Appendix - FIND Program list- 
ing [29] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

#include <stdio.h> 
#define max 256 
typedef enum boolean {false, true) BOOLEAN; 
int aCmax+ll; 
int n, f; 

main ( 1 
c 
char *mystr; 
int i; 
char *gets() ; 
mystr = (char *)malloc (80); 
scanf ("%d", &n) ; 
gets(mystr) ; 
scanf ("%d", &f> ; 
gets(mystr1; 
for(i=l;i<=n;i++) 
c 
scanf ("%d", &a[il) ; 
gets(mystr) ; 

1 
find(n, f); 
printf ("%5d\n", n) ; 
printf ("%5d\n", f) ; 

for(i=l;i<=n;i++) 
printf ("%5d\n", aril) ; 

1 

find(n, f) 
int n; 
int f; 
c 
int m, ns, i, j, w; 
BOOLEAN b ; 
b = false; 
m = 1; 
ns = n; 
while ((m < ns) I I b) 
c 

if (!b) 
c 
i = m; 
j = ns; 

3 
else 

if (i>j) 
b = false; 

49 c 
50 if (f>j) 
51 c 
52 if (i>f 
53 
54 else 
55 m = i; 
56 1 
57 else 
58 
59 1 
60 else 
61 c 
62 
63 
64 
65 
66 if (i <= j) 
67 c 
68 w = a[il; 
69 aril = aCj3; 

aCj1 = U; 70 
71 
72 
73 1; 
74 
75 ) 
76 > 
77 1 
78 

m = ns; 

ns = j; 

while (aril < aCf1) 

while (aCf1 < a[jl> 
i = i+l; 

j = j-1; 

i = i+l; 
j = j-1. 

b = true; 
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