
Automatic Test Generation
using Checkpoint Encoding and Antirandom Testing *

Huifang Yin, Zemen Lebne-Dengel-t and Yashwant E(. Malaiya
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

malaiyaecs. colost at e. edu

t Graphics Technology Lab
Hewlett-Packard Co.

Fort Collins, CO 80525

ABSTRACT

T h e imp lemen ta t ion of a n e f i c i en t au tomat i c t e s t
generat ion s c h e m e f o r black-box testing i s discussed.
I t u ses checkpoint encoding and an t i random test ing
schemes. Checkpoint encoding converts t e s t genera-
t i o n t o a binary problem. T h e checkpoints are se-
lected as the boundary and illegal cases in addi t ion
to valid cases t o probe t h e inpu t space. A n t i r a n d o m
test ing selects each tes t case such tha t it i s as dif fer-
e n t as possible f r o m all t he previous tes ts . T h e im-
p lemen ta t ion is illustrated using benchmark examples
t h a t have been used in the literature. Use of r a n d o m
test ing both w i th checkpoint encoding and w i thou t i s
also reported. Compar i son and evaluat ion of t h e ef-
fect iveness of t hese methods is also presented. Impli-
cations of t he observations f o r larger software s y s t e m s
are noted. Overall , an t i random testing gives higher
code coverage than encoding r a n d o m test ing, wh ich
gives higher code coverage t h a n pure r a n d o m test ing.

Keywords: antirandom testing, random testing,
checkpoint encoding, test coverage, software testing.

‘This research was supported by a BMDO funded project
monitored by ONR

1 Introduction

Testing of software requires a significant commit-
ment of resources [12, 171. It is of considerable prac-
tical and theoretical importance to explore ways to
reduce the testing effort while maximizing test effec-
tiveness [3, 6, 13, 151.

There are many testing techniques discussed in
the literature that can be termed black-box tes t -
ing [6, 8 , 9, 13, 201. R a n d o m test ing [8] chooses tests
randomly based on some input distribution, without
attempting to exploit information gained by tests ap-
plied earlier. It considers the program’s input domain
as a single whole and randomly selects test inputs from
this domain. There are different opinions regarding
the effectiveness of random testing. Meyers [17] claims
that random testing is an ineffective strategy to un-
cover errors in the software. Other studies such as that
of Duran and Natfos have shown that random testing
under certain situations can be effective and is worth
considering [B] , specially considering the relative ease
of test generation and potential for automation.

A number of test data selection strategies [6, 11, 261
have been discussed in the literature. In part i t ion tes t -
ing approach, the program’s input domain is divided
into subsets, and one or more tests from each of these
subsets are selected to exercise the program. In di-
viding the input space into subdomains, it is expected

1071-9458/97 $10.00 0 1997 IEEE
84

that software responds to all the points within the
same subdomain in a similar way by validating pro-
gram correctness or by uncovering a fault or exhibiting
illegal behavior [1, 20, 231. While this expectation is
an idealization, it allows us to feel reasonably assured
that only one or few test cases within a subdomain are
enough to cover the expected behavior for the whole
subdomain. Economizing on test data selection this
way can make the cumulative number of input test
cases manageable and can make testing much more
cost effective.

In real programs, however, this idealized scenario
of clean and nonoverlapping partitioning into subdo-
m,ains happens rarely [9, 10, 19, 23, 251. Useful heuris-
tics [6] of selecting test da ta are designed to exercise
boundary values [a, 251 as well as uncover simple er-
rors that tend to have a coupling effect [8] to larger
errors (errors that violate the software specifications).
This has the advantage of reducing testing effort while
preserving testing effectiveness. Another approach to
increasing test effectiveness and efficiency is t o reduce
the number of tests required by limiting the number
of combinations of tests to be considered. Orthogo-
nal latin squares [15] and combinatorial design [3] are
among the approaches that have been discussed in the
literature.

Recently, Malaiya [13] introduced the concept of
antirandom testing for black-box testing. It is based
on the view that testing is efficient if the next test in
the sequence is chosen to have maximum dzstance from
all previous tests that have been applied. Antirandom
test sequences are constructed using this approach.
Ha,mming and Cartesian maximum distance measures
are defined to help generate these antirandom test se-
quences. Unlike random testing, antirandom testing
generates input test sequences designed from the out-
set t o exploit information about the tests that were
applied in the past.

In this paper, techniques for automatic test genera-
tion using checkpoint encoding are investigated using
both antirandom testing and random testing. These
two testing approaches are compared with random
testing based on some input distribution. For this
study we take three common benchmark programs

which have been used in the literature. We present
possible approaches for checkpoint encoding to ensure
that we are probing the input space in an efficient way.

Various approaches can be taken to gauge the ef-
fectiveness of testing [21, 221. Here effectiveness of
the various testing approaches was evaluated by mea-
suring code coverage. This is an acceptable approach,
since higher test coverage generally implies better de-
fect detection capability [14, 271. Test generation in
this case is based on thc external specification of the
problem (black-box). Test coverage, unlike testing ef-
fort, is a direct measure of how well the software under
test has been exercised [14].

The purpose of this paper is t o demonstrate the fea-
sibility of automatic test generation using approaches
that are not random, and to show the promise of such
approaches. In future work we will apply the meth-
ods developed here to larger programs to do a system-
atic comparison of the proposed approaches to random
testing.

In the next section, we introduce the approach us-
ing antirandom testing and checkpoint encoding. In
the third section the three benchmark examples are
described, and for each example, the encoding scheme
and the code coverage results are shown. Finally con-
cluding remarks are presented and future areas of in-
vestigation are briefly discussed.

2 The CEAR test generation scheme

The Checkpoint Encoded Antirandom testing
(CEAR) scheme used here was proposed by
Malaiya [13]. This scheme integrates antirandom test-
ing with checkpoint encoding as explained below, and
is designed to process input test vectors on the Ay au-
tomatically and to exercise the software under test,
thus making the scheme cost effective. The CEAR
scheme has three major components:

0 The MHDATS(MCDATS) binary sequence gen-
erator.

0 The random value generator.

0 The binary-to-actual input translator

85

As shown in Figure 1, the CEAR is a collection
of software tools that produce actual input vector for
the software under test. The MHDATS(or MCDATS)
binary sequence generator calculates the next binary
vector in the antirandom sequence. Its bit values are
examined for a match to the bit values assigned to
the fields in the checkpoint encoding definition. The
appropriate actual input test vector is generated and
fed to the software under test.

Checkpoinl
en c o d i n g Actual Binary

Binary 10 Actual

Translation

MHDATS
(MCDATS) under

generator

Range(s) Random value(s) 1 R;m11"," 1 ProposedCEARscheme

Gcnerator

Figure 1: The CEAR scheme with encoded antiran-
dom vectors

2.1 Antirandom testing

In antirandom testing, each test in a sequence is
defined to be maximally distant from all of the previ-
ous tests. Test vectors which are closer together are
likely to exercise the software in a similar way, and
no new information is likely to he gained. However,
in the antirandom testing paradigm, each test in the
sequence attempts to exercise different areas of the
software and thus has the potential of getting higher
code coverages.

In antirandom test vector generation, distance is
defined using either the Hamming or the Cartesian
distance measure. If we assume binary vector encod-
ing is used to represent the input variables, one first
chooses the initial binary test vector t o to be all O's,
without lose of generality. The next binary test vec-
tor in the sequence, tl is then obtained by calculating
the maximum hamming or maximum Cartesian dis-
tance away from t o . Construction of maximal ham-

ming distance antirandom test sequence (MHDATS)
and maximal Cartesian distance antirandom test se-
quence (MCDATS) is discussed in detail in [13]. Each
subsequent test vector t , is then chosen such that the
total distance between t; and all the previous tests
ti-1, t z - 2 , ..., t o is a maximum. The procedures pre-
sented by Malaiya have been implemented in the An-

tirandom Testing Generation ARTG program [30].
An integral part of antirandom testing is the check-

point encoding scheme that enables the efficient cap-
ture of proper combinations of typical, boundary and
illegal tests cases so that the test coverage is as high
as possible.

2.2 Checkpoint encoding

In general, the desire is to exercise not only ex-
pected or usual program behavior but also corner or
boundary cases. Moreover, regions of expected illegal
behavior need to also be tested to ensure the software
under test is responding appropriately. The objective
of checkpoint encoding is to make the testing effort as
effective as possible by converting the problem to that
of constructing binary antirandom sequences. Sample
points representing the range of input characteristics
(e.g. typical, boundary and illegal) are encoded into
binary. These sample points (or checkpoints) are then
obtained by automatic translation.

Typically, a boundary value in the input space
maps to a specific field encoding which then results
in the generation of a test tailored to exercise that
boundary condition. For homogeneous values, corre-
sponding to a subdomain partition in the input space,
the checkpoint field definition and encoding consists
of multiple values which are then randomly selected
using the random value generator in accordance with
some input distribution assumption. Uniform distri-
bution has been used for this study.

In checkpoint encoding the design of the encoding
scheme needs to be carefully considered. We need to
decide how many bits to use and need to allocate the
combinations to the typical, illegal or boundary case
situations. Careful attention needs to be given to how
much of the black-box information needs to be cap-

86

tured by checkpoint encoding and to what level of
resolution. Also one has to balance the number of
bit encodings that are assigned to legal range versus
illegal or boundary cases in the input space. For in-
stance, if the bit assignment in the encoding scheme is
weighed heavily toward the illegal input combinations,
the software under test will have initially low cover-
age as the common cases (or legal operations) in the
input space are not being exercised as often in com-
parison to the illegal situations. Detailed observations
are presented in the next section.

In devising an encoding scheme, one starts from the
problem specification and tries to conceptually parti-
tion the problem space into subdomains, where each of
the subdomain has a common or homogeneous charac-
teristic. Another way to look a t the subdomain clas-
sification is to see the problem as made of possibly
one or more dimensions, each dimension occupying a
hyperplane in the hamming space.

3 Experimental methods, results and
analysis

Three typical benchmark programs frequently men-
tioned in the literature are used in our investiga-
tion. They are a string matching program STR-
MAT [as] , a triangle classification program TRIAN-
GL,E [6, 8, 12, 171 and FIND which can be part of a
sorting program [6, 13, 291. Coverage measures are
used to quantitatively compare the testing approaches.
The GCT coverage tool [16] is used to instrument
the programs to get quantitative code coverage mea-
sures using branches, loops, multiple conditions and
relational operations covered. Test coverage measures
have been demonstrated to have a relationship to de-
fect coverage [5, 141.

3.11 Testing data generation procedure

Automatic test generation [4, 7, 241 is designed to
ease the test effort. Here we have used three different
approaches for automatic test generation.

1. Antirandom with checkpoint encoding

2. Random with checkpoint encoding.

3. Random without checkpoint encoding.

In the plots and the tables, these are respectively
indicated by AE, R E and RWI or RW2.

We first need to analyze the program specifications
and the natures of the problem. Then according to
some general encoding rules, we decide the specific
encoding scheme for each program. After determining
the number of binary bits, we use the ARTG program
to generate the necessary antirandom test sequences.
Each antirandom binary vector is then decoded to ac-
tual input value for each variable. In decoding the bi-
nary vector, we use randomly generated value within
the range specified in the encoding scheme. In check-
point encoding, we use the random function to gen-
erate the binary test vectors, then decode them to
actual input values just like in antirandom testing. In
purerandom testing, for each program, we choose two
different seeds to generate the actual input values ran-
domly according to the range specified to illustrate the
possible variation of the results.

3.2 Testing code coverage evaluation

Once a test suite is prepared based on the testing
[16] is approaches discussed earlier, the GCT tool

used to instrument the program.

he coverage measures used are:

Branch coverage: Complete branch coverage re-
quires every branch be exercised a t least once in
both the true and false directions.

Loop coverage: Complete loop coverage requires
that a loop condition be executed once, several
times and also should be skipped (without ever
entering the loop) in some test condition.

Multi-condition coverage: This has a stronger re-
quirement than branch coverage. It checks for all
parts of a logical expression being used. That is,
each of the logical expression components must

evaluate to TRUE in some test, and to FALSE
in some other test. Multi-condition coverage is

*

87

stronger requirement compare to branch cover-
age. Field

text length

pattern positions

pattern length

0 Relational coverage: this checks for tests that
probe common mistakes regarding relational op-
erators. A likely mistake could be using "<" when
"<=" is intended.

Bits Value Significance
b2,bl,b0 110 0

010 80(tmax)
011 80 < tlen < 100 (illegal)
rest 1-79

b5,b4,b3 110 no pattern
010 beginning
011 end
rest middle

bS,b7,b6 110 0
010 3 (pmax)
011
rest 1-2

3 < plen < 10 (illegal)

3.3 Experimental results

3.3.1 The STRMAT program

This example has also been used by Wong et al. [27,28]
to investigate test coverage issues. The program is
given as input a string of zero to 80 characters, and a
pattern at most 3 characters long. The objective is to
see if the pattern is matched in the string. If so, the
pattern position in the string is returned.

In choosing the checkpoint encoding scheme one is
interested in dividing the problem space into subdo-
mains that conceptually can be seen as consisting of
orthogonal dimensions. The text length can be seen as
a variable in one dimension, the pattern length can be
seen as a variable in a second dimension orthogonal to
the first. Finally, the pattern position can be seen as
a third dimension orthogonal t o the first two. As will
be seen later, it turns out that checkpoint encoding
with antirandom testing is particularly effective and
is superior to the other testing schemes when many
dimensions are characteristic of the problem specifica-
tion.

The encoding scheme for STRMAT string match-
ing program chosen is shown in Table 1. The following
subdomains can be identified from the problem speci-
fication in considering black-box testing.

Ranges:
text length: 0 5 texlen 5 80
pattern positions: l,textlen, middle, outside
pattern length: 0 5 patlen 5 3

Using this encoding scheme for the STRMAT
program, coverage measures (branch, loop, multi-
condition, relational and total coverages) for antiran-
dom testing(AE), random testing with checkpoint en-
coding (RE), and pure random testing with two dif-
ferent seeds (RW1 and RW2) are shown in Tables 2-5
and Figures 2-5.

From the results we can make three observations:

1. Antirandom testing generally gives better cover-
age values.

2. Testing using the checkpoint encoding is generally
better than purerandom testing.

3. As expected, coverage may vary when applying
random tests generated using different seeds as
shown in Figures 2-5. In some situations, it can
be better than random testing with checkpoint
encoding.

In exercising the STRMAT program as instru-
mented by GCT, we find that there are 18 binary
conditions, 9 loop conditions, 4 multiple conditions,
15 relational operator conditions. So the total con-
ditions for STRMAT is 46, and the total coverage is
given by the sum of coverage percentage for each con-
dition.

In general, there is no significant difference among
the testing approaches in the first few test vector appli-
cations. Sometimes the coverage achieved by random
testing appears to rise quickly. This is because random
testing has a better chance of probing homogeneous

88

cascs more cffcctively at thc beginning. Antirandom
testing, however, tries to maintain a balance between
the boundary cases and the homogeneous cases, with
the objective of achieving overall better test coverage
after a reasonable number of test vectors have been
applied.

Field
Not

a Triangle

Table 2: Branch coverage
RE

Bits
b4,b3,b2,bl,b0

-

83.33

100

Value
x l l l l
xl00l
xOOll
xOlO0
xOl0l
xll00
01010
11010
00110
10110
rest

72.22
72.22
72.22
83.33
94.44
100
100

Significance
a+b < c, a!=b or a=b
b+c < a, b!=c or b=c
a+c < b, a!=c or a=c
a+b=c, a!=b or a=b
b+c=a, b!=c or b=c

a+c=b, a!=c a=c
a=b
a=c
b=c

a=b=c
scalene

%) for STRMAT
RW1

AE
58.70
60.87
76.09
95.65
95.65
95.65
97.83

77.78
77.78
94.44
94.44
94.44
100
100

RE RW1 RW2
58.70 63.04 60.87
60.87 63.04 63.04
65.22 86.96 69.57
73.91 86.96 76.09
82.61 86.96 76.09
91.30 91.30 76.09
93.48 91.30 76.09

RW2
72.22
77.78
77.78
83.33
83.33
83.33
83.33

Table 3: Loop coverage(%) for STRMAT

14

20

44.44 44.44
77.78 44.44
88.89 44.44
88.89 66.67
88.89 66.67
88.89 66.67

RW1
33.33
33.33
55.56
55.56
55.56
66.67
66.67

RW2
33.33
33.33
44.44
44.44
44.44
44.44
44.44

Table 4: Relational Operator coverage(%)

-- --
rest No.

1
2
6
10
14
16
20

--

-- --
Tsest No.

1
2
6
10
14
16
20

- . I

for STRMAT

AE I RE 1 RW1 I RW2
53.33 153.33 I60 160
53.33 53.33
66.67 66.67 93.33
93.33 93.33
93.33 93.33
93.33 93.33 93.33
100 100 93.33

60
73.33
86.67
86.67
86.67
86.67

RW1 ' . . - -
branch RW2 -

coverage 85 - -
..

-

-

7 0 - ' I I ' I I ' ' '
2 4 6 8 10 12 14 16 18 20

test vector no.

Figure 2: Branch coverage for STRMAT

3.3.2 The TRIANGLE program

This triangle example is used by Jorgenson [12]. De-
millo [6] has also discussed test data selection for this
program. Given three integers as input values for the
three sides, TRIANGLE classifies whether we have a
legal triangle or not. If the triangle is legal , there
is a further classification whether it is isosceles, equi-
lateral or scalene triangle. Any combination of input
sides where the sum of the inputs of any given two
sides is less than or equal to the third side is classified
as "Not a Triangle".

Table 6 shows the checkpoint encoding used.

Side a,b,c are integer values in [1..200]
Here x indicates both 0 and 1

We used the triangle example to examine how dif-

89

2 4 6 8 10 12 14 16 18 20
test vector no.

Figure 3: Loop coverage for STRMAT

-

relational 80 -
-

AE -+- -
RE 0 -

RW1 . . . - -
RW2 - -

50 I I I I I I ’ ’ I

2 4 6 8 10 12 14 16 18 20
test vector no.

Figure 4: Relational coverage for STRMAT

total
coverage

(%) 75 t ‘ f b o o

60

2 4 6 8 10 12 14 16 18 20
test vector no.

Figure 5: Total code coverage for STRMAT

ferent encoding schemes affect test coverage. The mo-
tivation for this is to see if we can come up with efi-
cient encoding scheme and to understand the under-
lying reasons why some encoding scheme give better
coverage than others.

The triangle example demonstrated that the check-
point encoding exercise can actually force the tester
to look more closely at the specification. Studies
[12, 171 have shown that one of the causes for soft-
ware bugs that are not being identified early enough is
that testers were not exercising the specification fully.
At first, our encoding did not take into account the
“equal” part in the requirement that says if the sum
of any two sides is less than or equal to the third does
not constitute a triangle. The poor coverage results for
the initial encoding scheme alerted us to this missing
specification. This indicated that we were not captur-
ing the specification fully.

Another lesson learned in the checkpoint encoding
exercise for the triangle is that it is important the bit
values assigned in the encoding scheme should map
to the combinations occurring in antirandom test vec-
tor sequence if the number of tests applied is small.
Otherwise, some of the conditions identified for check-
point encoding can have bit values assigned that may
not be triggered by the antirandom test vectors. This
concern does not apply to random testing with check-
point encoding because the input vector sequence is
obtained randomly. However, for antirandom test se-
quence each test vector is chosen to be as far away
from all previous test vectors as possible. When deal-
ing with less than exhaustive testing, we can choose
encoding such that each antirandom test vector in the
sequence exercises a different aspect of the software

90

dom test sequences, thus resulting in the highest cov-
erage. For the special “Not a Triangle” case, we assign
each vector for each situation. For the special case of
an equilateral triangle, one input vector was assigned.
Similarly, one input vector each was assigned to the
t h e e situations that make a triangle isosceles (there
are three situations where any two sides are equal).

In exercising the TRIANGLE program as instru-
mented by GCT, we find that there are 22 binary con-
ditions, 8 multiple conditions, 18 relational operator
conditions. So the total conditions for TRIANGLE
is 48, and the total coverage is given by the sum of
coverage percentage for each condition.

Note that in this case, an encoding scheme that uses
a minimum number of bits results in a single dimen-
sion as given in Table 6. This makes the effectiveness
Oil antirandom testing very dependent on the code as-
signment used. Real problems would often be com-
plex and would involve multiple dimensions. There
the results would have a smaller dependence on code
assignment.

For this encoding scheme, the total code coverage
obtained for TRIANGLE is shown in Table 7 and Fig-

under test as compared with earlier tests. This is
slpecially important in getting higher coverage quickly 100 ‘ I I I

when dealing with much less than exhaustive testing.
After experimenting with several encoding schemes,

we obtained the encoding scheme which is shown in
Table 6. Using this encoding scheme, we can map the
warious boundaries to the early part of the antiran-

AE

-
- coverage 6o

-

. . ..
20 ’I I I I I I

5 10 15 20 25 30
test vector no.

Figure 6: Total code coverage for TRIANGLE

such that all elements to the left of B(F) are no larger
than B(F), and all elements to the right of B(F) are no
smaller than B(F). The legal range for F is 1 5 F 5 S.
In [13], Malaiya examined this program to illustrate
how checkpoint encoding can be used.

The encoding scheme for this program shown in Ta-
ble 8 is similar to what was described in [13]. The
following subdomains can be identified from the prob-
lem specification in considering black-box testing.

Table 8: Encoding scheme for FIND

u:re 6.

Table 7: Total code coveram
-~ -___
Test No.

1
4
7
10
14
18
22
26
28
30

-~ AE
25
54.17
66.67
77.08
83.33
85.42
87.50
89.58
89.58
91.67

”
RE
25
56.25
66.67
72.92
77.08
79.17
79.17
79.17
79.17
79.17

‘?G) for TRIANGLE
L - I

RW1
25
25
33.33
35.42
35.42
35.42
35.42
35.42
35.42
35.42

33.33
33.33
33.33
33.33
47.92

47.92

3,,3.3 The FIND program

This program takes an integer array B of size S 2 1
and index F. The program sorts the array elements

-
Field I Bits I Value

Array Size I b1,bO I 01

Array status

Element Values

b4,b3,b2 110

b7,b6,b5 010

7
rest

Significance 4
reverse ordered

all equal

all negative

first element
last element

a middle element

Ranges:
Array size: 1 5 n 5 10
Index: 1 5 F’ 5 10
Element values: 0 5 V’ 5 511, -256 5 V 5 255

In assigning bit values to various subdomains and
the categories within the subdomains, the first consid-
eration is how many bits to assign to each subdomain.
The second issue is to distribute the values among the
categories within the subdomain suitably. A subdo-

91

main usually would incorporate a homogeneous or a
normal range that largely spans the subdomain space.
In addition, within the subdomain are the categories
or boundaries and special situation that are special
and require a category assignment. The homogeneous
case normally would have more bits combinations so
that a larger fraction of the assigned values would fall
in this range. The boundary or the corner cases are
assigned fewer specific bit combinations.

In exercising the FIND program as instrumented
by GCT, we find that there are 20 binary conditions,
15 loop conditions, 4 multiple conditions, 27 relational
operator conditions. So the total conditions for FIND
is 66, and the total coverage is given by the sum of
coverage percentage for each condition.

As shown in Figure 7, test coverage quickly reaches
high coverage for all three test approaches by the ap-
plication of only a few test vectors and no significant
distinction among the three is observed. There are two
reasons for this. First, the implementation of FIND is
quite simple and separate handling of the special cases
is not implemented. Thus the identification of the cat-
egories for the subdomains does not assist in achieving
higher coverage. Secondly we note that good coverage
for all the testing approaches is obtained with only 3
or 4 inputs. That implies that this is a highly testable
program. It is known that random testing is quite ef-
fective in exercising attributes that have high testabil-
ity. For the real problems, such a situation is unlikely
to occur. For a large and complex program there will
be many potential defect sites that will be hard to
reach and exercise, these are the kind of defects that
constitute the real challenge to the testers. Purely ran-
dom testing will be not efficient in testing for such de-
fects which may be triggered only under special input
conditions. The checkpoint encoding and antirandom
testing are formulated to generate such test cases.

In black-box testing one can not make any assump-
tions about how the problem is implemented as would
be done in case of white-box testing. However, the en-
coding scheme should be general enough while identi-
fying reasonable categories that are likely to be imple-
mented in a special way and thus end up in a differ-
ent section of code in a practical implementation. In
fact, in an industry setting where performance is an
important criteria, a common performance optimiza-
tion technique is to handle special cases separately.
For instance, there may be an upfront test to check
for the equality of all array element values. If they
are all equal, then you bypass the sorting part and
the array index, which presumably is initialized to the
first element of the array is left unmodified. The pro-

RE
25.76
75.76
89.39
92.42
92.42
92.42
92.42
92.42
92.42
92.42

gram then quickly exits rather than blindly trying to
sort the elements, even though it is not needed in this
case. In this situation, the encoding scheme we out-
lined having a subdomain category for all equal values
will quickly generate a test to exercise this situation.
Random testing would be very unlikely to exercise this
scenario and thus under certain conditions the check-
point encoding scheme would give us better coverage
quickly. Even checking for equal values may not be
necessary if say the program has a third argument that
passes a hint such as all array element values are equal
or are already sorted. We can see that the encoding
scheme we have proposed maintains a balance between
the general and the particular or boundary conditions
based on the problem specification. It is much easy to
identify possible special cases and generate test cases
for them.

RW1
78.79
84.85
84.85
84.85
84.85
84.85
84.85
84.85
86.36
86.36

Tab1
Test No.

10

9: Total
AE
77.27
77.27
80.30
83.33
84.85
86.36
90.91
90.91
90.91
90.91

FIND
R W 2
25.76
71.21
81.82
90.91
90.91
90.91
90.91
90.91
90.91
90.91

80

AE -
RW1 . . . -

30 RW2 -
20 I I

I I I I I I

1 2 3 4 5 6 7 8 9 10
test vector no.

Figure 7: Total code coverage for FIND

92

3.4 Infeasible path condition

The code coverage obtained above (e.g., figure 7
- Total code coverage for FIND) would actually reach
higher coverage percentage values quickly if steps were
taken to remove infeasible path conditions. Infeasible
path conditions are ones that the coverage instrumen-
tation tool, GCT, flags as not traversed in its report
but close examination of the code reveals that test
path can never happen based on the specification of
the problem. For instance, a report from GCT for
the FIND program after a few test vectors are applied
shows the following:
"find.c", line 17: loop zero times: 0, one
time: 1, many times: 15.
"find.c", line 26: loop zero times: 0, one
t:tme: 1, many times: 15.

Examination of lines 17 and 26 as shown in the
program listing (see Appendix [as]) shows that it is
impossible to traverse the for loop 0 times, since the
problem specification say that the array size, n, is
greater than 1:

17 for(i=l;i<=n;i++)

18 {
19 scanf ("Xd", &aril) ;
20 gets(mystr1;

21 }

26 for(i=l;i<=n;i++)

27 printf ("%5d\n", aril) ;

GCT [16] does have a mechanism to edit the report
and remove infeasible path conditions, once the tester
determines which ones they are. This was not done in
the above coverage plot data, as it was not germane
to' the issues that are the subject of the paper.

4 Concluding Remarks

In this work we have demonstrated that it is pos-
sible to have automatic test generation that can be
more efficient than random testing. The benchmark
examples considered here give us insight into some im-
portant considerations:

I. Even with random testing there is an aspect of
systematic testing in the sense of deducing from
the problem specification, the range of values for
the specific dimension from which random values

are selected. Understanding of the subdomain di-
mension help narrow the space from which ran-
dom tests are chosen.

2. Using a coverage measure as an indicat.or of ef-
fectiveness is limited, because code coverage does
not ensure uncovering errors.

3. In antirandom testing with checkpoint encoding,
we are much more likely to probe boundaries than
random testing, and thus the antirandom tech-
nique may detect faults that may not be directly
associated with some of the coverage measures.

This investigation suggests certain basic rules for a
checkpoint encoding scheme to be efficient:

a) It is important to look a t the problem specifica-
tion and the subdomains that have been identi-
fied and recognize what are the legal, illegal and
boundary conditions in the input space that need
to be exercised. Here the emphasis is to cover as
much as possible using a suitable of homogeneous,
boundary and illegal cases with the test vectors
being applied.

b) To decide how many bits are appropriate for the
encoding scheme, we need to identify different
ranges of identifiable similar characteristics. One
needs to analyze each subdomain and assign bi-
nary combinations to each range within the sub-
domain. For instance, the problem statement
may involve illegal conditions, but the things that
make it illegal could be due to many ways that re-
sults in illegal behavior.

c) In assigning bits for the encoding scheme within
each subdomain we need to give more weight
to the most common cases, which almost always
map to the legal input range.

d) The total bit length of the encoding scheme is the
concatenation of the bits in each subdomain.

e) In devising the checkpoint encoding scheme, it is
important that the subdomains in the input space
that we identify really exercise different aspects of
the problem. If a subdomain is not orthogonal to
the rest, then we can encounter a situation where
some combinations for the input test vector may
not be generated resulting in low test coverage.
Also, one needs to ensure that conflicting assign-
ments for different fields do not occur.

93

For this study, the examples used are small and are
not representative of real problems. Future research
would use larger programs to apply the concepts devel-
oped here. For larger programs the coverage measure-
ments would be more significant. Antirandom testing
is specially formulated to be effective when there are
multiple dimensions. Larger programs will be able t o
demonstrate the capabilities of this scheme better.

References

V. Basili and D. Weiss, “A methodology for collecting
valid software engineering data,” IEEE Trans. Soft-
ware Engineering, Vol. SE-10, pp. 728-738, Nov. 1984.
T. Y. Chen and Y. T. Yu, “On the expected num-
ber of failures detected by subdomain testing and
random testing,” IEEE Trans. Software Engineering,
Feb. 1996, pp. 109-119.
D. M. Cohen, S. R. Dalal, J. Parelius and G. C. Pat-
ton, A., “The combinatorial design approach to au-
tomatic test generation,” IEEE Software, Sept. 1996,

D. M. Cohen, S. R. Dalal, A. Kajla and G. C. Patton,
A., “The automatic efficient test generator (AETG)
system,” Proc. ISSRE, Nov. 1994, pp. 303-309.
S. R. Dalal, J. R. Horgan and J. R. Kettenring, “Reli-
able Software and Communication: Software Quality,
Reliability and Safety,” Proc. International Confer-
ence on Software Engineering, 1993, pp. 425-435.
R. A. Demillo, R. J. Lipton and F. G. Sayward, “Hints
on test data selection: Help for the practicing pro-
grammer,” IEEE Computer, Apr. 1978, pp. 34-41.
R. A. Demillo and A. J. Offutt, ‘Constrained based
automatic test data generation,” IEEE Trans. Soft-
ware Engineering, Vol. SE-17, No. 9, pp. 900-910,
Sept. 1991.
J. W. Duran and S. C. Natfos, “An evaluation of
random testing,” IEEE Trans. Software Engineering,

R. G. Hamlet and R. Taylor, “Partition testing does
not inspire confidence,” IEEE Trans. Software Engi-
neering, Vol. SE-16, No. 12, pp. 1402-1411, Dec. 1990.
D. Hamlet, “Are we testing for true reliability,” IEEE
Software, July 1992, pp. 21-27.
W. E. Howden, “The theory and practice of functional
testing,” IEEE Software, Sept. 1995, pp. 6-17.
Paul C. Jorgensen, Software Testing: A Craftsman’s
Approach, CRC Press, New York 1995.
Y. K. Malaiya, “Antirandom Testing: Getting the
most out of black-box testing,” Proc. International
Symposium On Software Reliabzlity Engineering, Oct.

pp. 83-88.

July 1984, pp. 438-444.

1995, pp. 86-95.

[14] Y. K. Malaiya, N. Li, R. Karcich and B. Skbbe, “The
relationship between test coverage and reliability,”
Proc. International Symposium On Software Reliabil-
ity Engineering, Nov. 1994, pp. 186-195.

[15] R. Mandl, “Orthogonal Latin Squares: An appli-
cation of experiment design to compiler testing,”
Comm. ACM, Oct. 1985, pp. 1054-1058.

[16] Brian Marick, The Generic Coverage Test (GCT)
User’s Manual, 1981.

[17] G. Meyers, The Art of Software Testing, John Wiley
& Sons Inc., New York, 1979.

[18] T. J. Ostrand and E. J. Weyuker, “Collecting and
categorizing software error data in an industrial en-
vironment,” Journal of Systems, Vol. 14, 1984, pp.

[19] K. C. Tai, “Condition based software testing strate-
gies,” Proc. GOMPSAC 1990, Oct. 1990, pp. 564-569.

[ZO] Markos Z. Tsoukalas and Joe W. Duran, “On some
reliability estimation problems in Random and Par-
tition testing,” IEEE Transactions on Software Engi-
neering, Vol 19, No 7, pp. 687-697, Jul. 1993.

[21] M. D. Weiser, J. D. Gannon and P. R. McMullin, “A
comparison of structural test coverage metrics,” IEEE
Software, Vol. 19, no.6, 1989, pp. 80-85.

[22] N. Weiss, “Comparing test data adequacy criteria,”
Software Engineering Notes vol. 14, no. 6, pp. 42-49.

[23] E. J. Weyuker, S. N. Weiss and R. G. Hamlet, “A com-
parison of program testing strategies,” Proceedings of
the fourth Symposium on Software testing, Analysis
and Verification, Victoria, Canada, Oct. 1991, pp.

[24] E. J. Weyuker, T. Goradia and A. Singh, “Automat-
ically generating test data from a boolean specifica-
tion,” IEEE Trans. Software Engineering, May 1994,

[25] E. J. Weyuker and B. Jeng, “Analyzing partition test-
ing strategies,” IEEE Transactions on Software Engi-
neering, Vol. SE-17, No 7, pp. 703-711, July 1991.

[26] L. White and E. Cohen, “A domain strategy for com-
puter program testing,” IEEE Trans. Software Engi-
neering, May 1980, pp. 247-257.

[27] W. E. Wong, J. R. Horgan, S. London and A. P.
Mathur, “Effect of test set minimization on fault de-
tection effectiveness,” IEEE International Conference
on Software Engineering, 1995, pp. 41-50.

[28] W. E. Wong, J. R. Horgan, S. London and A.
P. Mathur, “Effect of test size and block coverage
on fault detection effectiveness,” Fifth International
Symposium on Software Reliabzlzty Engineering, 1994,

[29] W. E. Wong, On mutation and dataflow, PhD thesis,
Purdue University, Computer Science Department,
1993.

289-300.

154-164.

pp. 353-363.

pp. 230-238.

94

[30] Huifang Yin, "Antirandom test patterns generation
tool," Project Report, Colorado State University,
Computer Science Dept., Fall 1996.

5 Appendix - FIND Program list-
ing [29]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include <stdio.h>
#define max 256
typedef enum boolean {false, true) BOOLEAN;
int aCmax+ll;
int n, f;

main (1
c
char *mystr;
int i;
char *gets() ;
mystr = (char *)malloc (80);
scanf ("%d", &n) ;
gets(mystr) ;
scanf ("%d", &f> ;
gets(mystr1;
for(i=l;i<=n;i++)
c
scanf ("%d", &a[il) ;
gets(mystr) ;

1
find(n, f);
printf ("%5d\n", n) ;
printf ("%5d\n", f) ;

for(i=l;i<=n;i++)
printf ("%5d\n", aril) ;

1

find(n, f)
int n;
int f;
c
int m, ns, i, j, w;
BOOLEAN b ;
b = false;
m = 1;
ns = n;
while ((m < ns) I I b)
c

if (!b)
c
i = m;
j = ns;

3
else

if (i>j)
b = false;

49 c
50 if (f>j)
51 c
52 if (i>f
53
54 else
55 m = i;
56 1
57 else
58
59 1
60 else
61 c
62
63
64
65
66 if (i <= j)
67 c
68 w = a[il;
69 aril = aCj3;

aCj1 = U; 70
71
72
73 1;
74
75)
76 >
77 1
78

m = ns;

ns = j;

while (aril < aCf1)

while (aCf1 < a[jl>
i = i+l;

j = j-1;

i = i+l;
j = j-1.

b = true;

95

