
Semi-automatic Generation of Parallelizable Patterns From Source Code
Examples

Dejan Markovic Jack R. Hagemeister Cauligi S. Raghavendra
School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA 99164-2752

Sanjay Bhansali
Semantic Designs, 12636 Research Blvd. #C-214, Austin TX 78759-2200

Abstract

Generation of program patterns from source code is a
difficult, time consuming and error-prone process when
performed by programmers. We describe an implemented
system which generates patterns from an abstract syntax
tree with interaction by the user. Our approach is based on
creating intermediate pattems by exploring d.m
dependencies in the source code and allowing the user to
change andor eliminate parts of it in order to create a final
pattern. We describe the architecture of our system as well
as the pattem language used, and illustrate our upproach
with examples.

1. Introduction

Many software engineering tasks are being automated
using program comprehension. One significant method of
utilizing program comprehension uses program patterns to
identify concepts of interest within source code. These
patterns are written to allow a software engineering tool to
assist a programmer in finding code segments of interest for
maintenance [8] or within automatic parallelization tools
[3]. A programmer may have to write a pattern at the time
of search to locate code parts of interest. Additionally, a set
of patterns may be collected in a knowledge library to be
used to search a large set of programs for concepts of
interest.

Writing such patterns is difficult and prone to
programmer error. The syntax for constructing patterns can
be difficult since the programmer may have to guess at the
dependencies within code fragments and may not understand
all the possible permutations of the implementation of a
program concept of interest. We also believe that
programmers will use examples from existing code to
formulate the patterns for code fragments which are of
interest to them. For these reasons, it is beneficial to have
a tool to automatically generate appropriately generalized
patterns from example code fragments.

We have implemented such a tool to assist with
pattern development in the recognition of concepts for
algorithmic code transformation for parallel computing. It

uses an annotated abstract syntax tree to analyze code
examples and user/programmer inputs to generate patterns
which recognize parallelizable concepts in scientific
FORT” programs. In this first experiment, we used
programmer input to assist and guide the generation of
patterns. In this paper we first briefly describe the SPUR
project for automatic parallelization of existing sequential
code, and then concentrate on one of its tools, the pattem-
builder. The pattern language, the analysis of data
dependencies and the system for generating patterns are
described. We give examples of the generation of a pattem
from source code and explain the analysis process.

2. SPUR project

One significant barrier inhibiting the use of parallel
computing is the difficulty of writing parallel software. In
addition to that, the scientific community has accumulated
a large corpus of sequential programs to support their
research efforts, and are unwilling to give up on these
efficient and well tested programs. SPUR project proposes
a solution to the problem of parallelization by building
tools that would automatically (or semi-automatically)
replace these sequential programs by equivalent, more
efficient parallel programs from the library. The approach
is based on a knowledge base of patterns that represent
concepts in a specific domam that are amenable to a parallel
solution.

An architectural overview of the system is shown on
Figure 1. The first phase of the system consists of building
the pattern library. The parser reads sequential FORTRAN
source programs that represent base concepts we want to
recognize and builds an annotated representation of the
abstract syntax tree that is used by the pattern-builder to
generate patterns and store them in the pattern library. In
the second phase, the pattern matching engine performs a
systematic search, under domain specific direction from a
user, of the abstract syntax tree created from the program
we want to parallelize for domain concepts that are
amenable to parallelization. In the third phase, the code
transformer utilizes a library of target replacement code for
replacing matched patterns by the efficient parallel code.
This phase will be interactive, with the system suggesting

50
1092-8138/97 $10.00 0 1997 IEEE

potential regions of code to be parallelized, and the user
making the final decision on code replacement. A
verification tool is planned to allow evaluation of known

S ecpential
Parser

test cases to ensure that specification semantics are
preserved after a code transformation ,

Library of

Replzement Cod: P
PATTERN

PROGRAMMER

Pattan Abstrzt CO&
builckr syntax tree x v

PATTERN
PROGRAMMER

A USER

Matched
patterns

Figure 1. Architecture of an knowledge-based parallelizing tool

3. Pattern-building tool

Any system designed to automatically generate patterns
from source code examples must rely on the syntax of the
language and the data dependencies. Our system represents a
way to gather semantic information for a program and
instantiate a semantic fragment. In this section we first
describe the pattern language used as the target of automatic
pattern generation. We then discuss data dependency
analysis and give brief examples. Next, we outline user
involvement in the system and, finally, show how we
combine user involvement and data analysis to generate
valid patterns for semantic fragments from source code
examples.

3.1. Pattern language

Our pattern language is designed to facilitate searching
for complex application-specific concepts for which exist
alternative parallel algorithms or system-specific library
routines. The primary concern is that the pattern language
will be expressive enough to describe programming
concepts as well as domain concepts (as defined by
Kozaczynski, Ning and Engberts (1992)) [5] . The pattern
language should also be close to the syntax of the target
programming language to aid in readability. Finally, it

should be possible to search efficiently for patterns in the
source code.

The pattern language uses a functional notation that is
designed to facilitate efficient pattern matching. Since our
target programming language is FORTRAN, the syntax of
our pattern language parallels that of FORTRAN. Figure 2
shows part of the syntax of the pattern language.

The keyword SEQ indicates a sequence and the keyword
SET irldicates a set of statements following the keyword.
Normally, patterns are written using the keyword SEQ.
However, there are cases where we want to match
statements and are not concemed with the order in which
they occur. In the absence of the SET construct, we would
have to write several different patterns, one for each
possible permutation of the statement. By using the SET
construct, we can write one pattern and leave the pattern
matching engine to automatically try all possible
combinations during matching. Examples of patterns using
these constructs are given shortly.

In addition to the basic pattern language, we introduce
a set of symbols that match different syntactic entities in
the source code. These symbols can be thought of as typed
wild cards that match different kinds of source code
fragments. Providing such typed wild cards increases the
readability of patterns, reduces errors in writing patterns,
and increases the efficiency of the pattern matcher. The
pattern symbols are shown on Figure 3.

51

pattem-ckf = (PATIERN pattem-name (args) pattem-body [constraints])
pattem-body = (SEQ pattem-body) I (SET pattem-body) I Lstatements
Lstatements = Lstatements I Lstatement
Lstatement = (label statement)
label = (NO-LABEL) I (LABEL INTEGER)
statement = (ASSIGN identifier expression) I

(ASSIGN my-term expression)
(IF-THEN condition pattem-body) I
(IF-THEN-ELSE condition pattem-body pattem-body)
(DOFOR label-num index start end step pattem-body)
(GOT0 label-num) I

(CALL subroutine-call) I
(RETURN expression) I
(STOP)

(C 0 " L J E) I

subroutine-call = (SUBROUTINE symbol expressions)
array-term = (ARRAY identifier dimension array-args)
array-args = expression [expression . . .]
expression = arithmetic-exp I boolean-exp I relational-exp I function-call
function-call = (FUNCTION symbol expressions)

Figure 2. Syntax of Pattern Language

Syntactic Entity I Pattern Symbol 1
I variable I ?V I

Figure 3. Symbols used for syntactic entities in source code.

The ellipses (...) in the array and function entries stand
for a list of arguments that can themselves be other wild
cards, identifiers, or constants. In addition we use the
following notation to denote argument lists:

$* = Oormorearguments
$+ = 1 ormore arguments

For example, ?a/$*] would match X , X [i] , X / i , j] , etc. and
?f($+) would match abs(i), gcd(i,j), etc.

A * is also used to indicate optional entities and is
essential with certain patterns. For examplc, a common
practice in FORTRAN is to skip the step size of a DO
loop (which defaults to 1). However, many programs will
explicitly set the step size. If the step size is not important

to the concept we are trying to recognize, we would have to
write two patterns, one with the step size omitted and one
with the step size explicitly given, although there would be
no other difference in the two patterns. By using the
optional wild card, ?e*, we can recognize both forms using
one pattern and thus eliminate the redundancy in writing
patterns.

All pattern symbols can be named, e.g. ?a-name where
name can be any symbol made of alphanumeric characters.
The name is used to bind a variable so that it can be used in
another part of the pattern. This allows us to express
certain constraints and restrict the kinds of code fragments
that are matched. We do not allow optional entities to be

52

named. However, argument lists to arrays and functions can
be named, e.g. ?a-a[$+-l]. To handle such cases, we found
it necessary to augment the pattern language with a set of
additional constraints. These constraints are implemented
using a set of service routines after the pattern matcher
completes a syntactic match and binds all pattern variables.
Such service routines were also used by Kozaczynski, Ning
et al.

Finally, we use the symbol ?Ppzrrem-nume to match
other patterns. Here, puttem-nume is the name of a pattern
defined in the pattern library. (Note that unlike other wild
card symbols, the name for the pattern is mandatory). With
the pattern wild card we can compose patterns from sub-
patterns in a hierarchical manner.

3.2. Data dependencies

One of the most important issues in generating
patterns is the ability to determine whether parts of original
code can be moved without changing the program’s
semantics. If we embed that information in our pattern, we
will be able to use it to recognize pieces of code that
essentially differ only in initial order of the statements, but
have the same semantics. We show that this step in pattern
generation can be completely automated using data
dependency analysis.

The first step in our process consists of analysis of
data dependencies and creation of a data dependency graph
for each sequence of statements in our source code. We
construct a separate graph for the main sequence and for
each of the sequences contained within statements (bodies
of if and do statements). We deal with dependencies from
“inside” sequences as if they were generated by enclosing
statements themselves in an outer data dependency graph.
This approach prevents us from recognizing variations of
code having unrolled loops for a few iterations or having
statements inside both branches of ‘if with the same
pattern. As we will discuss later, it is necessary to enhance
pattern language itself to handle these situations.

Creation of a data dependency graph for every sequence
is accomplished by creating a symbol table, finding where
and how each symbol is used and, finally, using this
information to create lists of statements-predecessors and
statements-successors for each statement in the sequence.
We look for three types of data dependencies:

read after write (real data dependency) - if statement s
writes variable x , statement t reads that variable , and
statement s preceeds statement t in original code, then
statement t is dependent on statement s.
write after read (anti-dependency) - if statement s mds
variable x, statement t writes that variable , and
statement s preceeds statement t in original code, then
statement t is dependent on statement s.
write after write (output dependency) - if statement s
writes variable x, statement t also writes that variable ,

and statement s preceeds statement t in original code,
then statement t i s dependent on statement s.

Write after readand write after write dependencies are not
true dependencies because they can be eliminated by
introducing extra variables into program. However, we still
look for these dependencies in the source code because their
existence limits freedom in the pattern.

The presence of arrays slightly complicates data
dependency analysis. Arrays are mostly used in loops,
therefore creating possibilities for existence of loop-carried
dependencies (dependency between operation s in iteration i
and operation t in iteration i+k). We decided not to
implement analysis of loop-carried dependencies at this
stage, because the pattern language and pattern matcher can
not support pattern recognition based on information that
can be obtained from such analysis. Instead, we decided to
treat array as a single variable (therefore treating using or
changing any element of the array the same way as using or
changing the whole array). The only difference between
arrays and scalar variables is that we treat blocks of
successive read or write operations as a single read or write
operation , making each read of the current block dependent
on all the writes from the previous block (in the case of
read after write dependency) or each write in the current
block dependent on all the reads from the previous block.
That prevents us from losing dependencies between a loop
and several statements that change (or use) particular
elements of the array before or after the loop.

After creating a data dependency graph, we compute the
earliest and latest point for execution of each statement in
it. This helps us to determine whether that statement has
freedom to move within code. Following this step, we m
able to identify pattern parameters as variables whose first
use is reading.

In the second step of our algorithm we determine
whether the data dependency graph for each sequence is
connected. If it is not, we can represent the sequence as a
set of (sub)sequences, and apply processing from the next
step to each subsequence separately.

The final step involves optimization of the data
dependency graph for each pattern. Since our pattern
language cannot express all valid combinations of
statements (see discussion below), our goal is to create
patterns that would be able to represent most of the valid
combinations. We are using greedy approach because:
0 Code examples from which we generalize are typically

not very large pieces of code, therefore do not contain
very many statements.
Patterns at which we are looking typically do not have
very complicated data dependency graphs, so greedy
approach will give a solution close to optimal most of
the time.
Our approach includes sorting data dependency graphs

topologically (level by level) and then, starting at topmost
level in the graph, performing the following:

53

If there is more than one statement on the level, for only of HCS statement, and the third consists of all
each pair of topmost statements find the statement that successors of HCS statement. After that we recursively
is their highest common (not necessarily immediate) apply the same procedure to the first and third
successor in the data dependency graph. Choose the subpatterns.
pair of statements whose highest common successor e If there is only one statement on a given level, create a
(HCS) is lowest of all and create the pattern as a (sub)pattem that is a sequence of two parts -- the
sequence of three subpattems. The first subpattern statement, and the subpattern created from the rest of
consists of all (not necessarily immediate) predecessors the graph (can again be a sequence, or a set of
of the chosen HCS and all their successors that are not sequences), and apply the same procedure to the rest of
also successors HCS, the second subpattern consists the graph.

1 O S ; Q = T * A I

Figure 4 : Fragment of code, corresponding data dependency graph and pattern created

Figure 4 shows how we create pattern from a simple
data dependency graph. In this case we first try to identify
any disconnected parts of the graph. Since there are no
disconnected parts, and there is only one statement (01) on
the topmost level, we create the sequence of statement 01
and the rest of graph. Then we apply the same procedure to
the rest of the graph, where we find two independent parts,

0 1 : x = Y + z

02: A = E + X

0 3 : D = A - E

04: C = G - X

05: H = A / C

06: B = F * X

I 0 7 : K = H - B I

create a set of two sequences, and again apply the same
procedure to each of the sequences in the set. The final
result is outlined in the graphic above.

Note that we sometimes embed single statements in
one-element sequences, and sometimes not, since both
representations are recognized by the pattern matcher.

3.

I

Figure 5: Fragment of code and corresponding data dependency graph

statements, sequences or sets. In the
data dependency graph that cannot be

1

ure 5. we show a
represented

Our pattern language is able to represent pattern as
either a sequence or set of elements that can themselves be

54 I

in our pattern language.
As in the previous example, we begin our analysis by

determining whether there are any independent parts of the
data dependency graph. Since there are none, we create a
sequence of 0 1 and the rest of the graph, and apply the
same procedure to the remainder of the graph. There, we
find three non-independent statements on the top (02, 0 4
and 06). We compute the highest common successor for all
pairs of statements on the top level, and choose either pair
(04,06) or (02 ,06) because they have lowest HCS (07).
Then, as we described earlier, we split the graph in three
parts: all predecessors of 0 7 and their successors, 07, and
successors of 0 7 (in this case we do not have this part).
This way, we created artificial dependency from 0 3 to 07,
because our three subpattems are in sequence so any
pattems thus generated would not be able to recognize any

(valid) code in which 0 3 comes after 07. Our approach
to minimization of the effects of this problem consists of
creating a set of patterns that match different valid orders of
statements. One method is to create the other pattern
starting from statements at the bottom of the graph and
looking for the lowest common predecessor for pairs of
statements. In our example, we can cover all valid
situations with two patterns - one created with a top-down
approach, the other with a bottom-up approach. Both
patterns are shown in Figure 6.

In our opinion this does not represent a serious
drawback, because we expect patterns to be created from
relatively small pieces of code, that do not have much
freedom in data dependency graphs. Therefore, few
situations would occur similarly to the example given in
Figure 5.

Figure 6: Patterns obtained using top-down (left) and bottom-up (right) approach

3.3. User interaction

In a data dependency graph, we can automatically create
the pattern. However, parts of the ccde are often too
specific to the particular application, and it is possible that
code which should constitute our pattern is interleaved
with a few statements that do not belong to our pattern, or
that we need to find all the occurrences of code similar to
the example (like double DO loop with arbitrary statements
in the body). Sometimes, the parser needs declarations of
arrays in the source code in order to distinguish between
arrays and function calls in FORTRAN, but we do not
want these declarations to be a part of our pattern. Also,
there are parts of expressions that are not important for us
(for example, we want to find all DO loops that go from 1

to N, with an arbitrary step). In these cases, the user can
give us valuable information about what parts of the code
we can ignore, Without user interaction (with only data
dependency analysis) we would not be able to identi@
patterns for more general purposes.

Our pattern-generator has a graphical user interface that
allows the user to perform the following:

browse through the source code and select a part of the
code from which a pattern will be created
mark statements that are not important h r our pattern
(deletc them) or generalize them into “statements”
delete sequences or sets of statements
remove unimportant expressions or parts of them
generalize specific variables into general variables

55

Provided that the user may want to change some part
of the pattern, a list of allowed options is provided.. For
example, assume that the user wants to change the DO
statement. The following set of options is given:

generalize to “general statement” deleting body of the

0 generalize to general DO statement, that is do
statement with general variable for index, general
expressions index boundaries (therefore removing its
data dependencies from data dependency graph) and step
and arbitrary body
change name of index variable only
change boundaries and/or step only
go to loop body (another sequence or set) and change it
insert a new statement after this statement

loop

0

3.4 Combining data dependency analysis and user
interaction

Our approach for combining data dependency analysis
and user int

at the beginning by default since, once it is performed, the
user receives information about which parts of code can be
moved or what code creates data dependencies that are not
important for that particular pattern, so that such code can
be changed. This is the point at which user interaction can
help create a pattern which is more suitable for some
particular use.

Conversely, in some cases the user may want to first
remove some statements which are known to be
unimportant. Therefore, an option to change the pattem
before performing data dependency analysis by bypassing
default settings, is also provided.

Of course, after any change user made we must perform
the data dependency analysis again, because user changes
may affect data dependencies. This will occur automatically
when the user finishes with changes. However, the option
to perform it at any time will be added since the user may
want to see how any previous changes affected the data
dependency graph prior to continuing with other changes.

ction is to perform data dependency analysis -
C
C THIS IS A THIRD ORDER NEWTON-GREGORY INTERPOLATION SCHEME
I:

Figure 7. User can select piece of code from which pattern is to be created

4. A Complete Example Figure 7 shows the initial screen where the user can select
the part of code that is going to be used to create the
pattem. When the user presses the “Parse” button, the
Parser t r a n & ~ ~ ~ ~ ~ lec t ed Code to an abstract syntax tree,

As an example of pattern generation from real world
FORTRAN code, we present here generation of a pattern
for a third order Newton-Gregory interpolation scheme.

56

which is then transformed to an initial pattern - sequence initial modifications, only the data dependency analysis is
of statements in initial order. performed. The data dependency graph is given on Figure 8,

After creating an initial pattern, the user can choose and the pattern obtained is shown on Figure 9. Note that,
either to perform a dependency analysis or to modify the for this data dependency graph, the same pattern is obtained
initial pattern. Since in this example we do not need any using top-down and bottom up ananlysis

Top level data dependency graph for third order Newton-Gregory interpolation Figure 8.

defpattem interp (? r S ?a-Y)
(seq

(seq
(set
(seq

(lstatement ?L-1
(dofor ?L-10 ?v-I (constant l)(constant 3)

(constant 1)
(set

(lstatement ?L-2
(assign ?a-D[?v-I]

(minus ?a-Y[(plus ? r I (constant 1))l
?a-Y[?vlI

(lstatement ?LJO (continue!))
))I
(set
(Istatement ?L-3
(assign ?a-DEL[(constant l)] ?a-D[(constant l)]))
(lstatement ?L-4
(assign ?a-DEL[(constant 2)3
(minus ?a-D[(constant 2)] ?a-D[(constant l)])))

(lstatement ?L-5
(assign ?a-DEL[(constant 3)]

(minus
(minus ?a-D[(constant 3)] ?a-D[(constant 2)])
(minus ?a-D[(constant 2)] ?a-D[(constant l)]))

))
))
(Istatement ?L-6
(assign ?v_YINTER ?a-Y[(constant l)]))

(Istatement ?L-7

(lstatement ?L-8
(assign ?v-FS ?v-S))

(assign ?vDEN (constant 1)))
)
(lstatement ? L 9
(dofor ?L-20 ?v-I (constant l)(constant 3)

(constant 1)
(set

(lstatement ?/11
(assign ?v-YINTER

(plus ?v-YINTER
(divide

(multiply ?v-FS ?a-DEL[?v-I])
?vDEN)

>>>
(Istatement ?LA2

(assign ?v-FS
(multiply ?v-FS

(minus ?v-S ?v-I))
N
(lstatement ?L-13

(assign ?v-DEN
(multiply ?v-DEN
(plus ?v-I (constant 1)))

))
(lstatement ?L-20 (continue!))

>))
1)

Figure 9. Pattern generated for third order Newton-Gregory interpolation

57

Label: N0ne
IlQ statement

Index variable: ?u,I
Initial value: (constant 1)
Upper bound: bxnstant 3)
Step value: (constant 1>
End label: ?L,20

No changes
General statement
General DO statement
Change index uar i ab 1 e

Change step value
Change loop body
Inser t new statement

Figure 10. Example of dialog window for changing pattern for DO statement

After generating a pattern, we can change some
statements. For example, if we want to make a pattern for
Newton-Gregory interpolation of arbitrary order, we need to
change the upper bound for DO loops and insert a general
assign statement in the set of statements that assigns
values to the DEL array with the constraint that DEL must
be on the left side of the assignment. On Figure 10, we
show an example of a dialog window for changing DO
statements.

5. Conclusion

We have described an approach to pattern generation
that is based on two basic techniques: data dependency
analysis and user interaction. We have described details of
both techniques and illustrated the application of our
approach in creating patterns from parallelizable fragments
of FORTRAN code by utilizing several examples.

We are currently finishing implementation of an X-
windows-based graphical user interface for the system. Our
next step will include testing the results of integration of
this system with the pattern matcher from SPUR project.
In the longer term, we have the following goals:
0 To extend our system to be able to generate patterns

that match several given examples of similar code.
To improve the system by adding more methods to
create the patterns from the data dependency graph, so
that more patterns can be mated from one example in
cases where we have to deal with more complicated

DDGs. The system is designed to be extensible in this
respect.
To explore possibilities for creating composite patterns
(patterns that contain subpatterns) through user
interaction and searching the pattern library.

References

[l] Banerjee, U. (1988) “An introduction to a formal theory of
dependence analysis” J. Supercomput. 2 , 2 (Oct.), 133-
149

[2] Bhansali, S, J. Hagemeister (1995) “A Pattern-matching
Approach for Reusing Parallel Software Libraries” Proc. of
the 1st Intnl. Workshop on Knowledge-based Systems for
the (re-)use of program libraries, Sophia Antipolis

[3] Bhansali, S., J. Hagemeister, et al. (1994). “Parallelizing
sequential programs using algorithm-level
transformations.” Proc. of the 3rd Workshop on Program
Comprehension, Washington D.C.

[4] Kessler, C. W. (1 995). “Pattem-Driven Automatic
Parallelization.” Workshop on Automatic Data Layout and
Performance Prediction, Rice University, Center for
Research on Parallel Computing.

[5] Kozaczynski, W., J. Ning, et al. (1992). “Program
Concept Recognition and Transformation.” IEEE
Transactions on Sofware Engineering lS(12): 1065-
1074.

[6] Martino, B. D. and G. Iannello (1994). ‘Towards
Automated Code Parallelization Through Program
Comprehension.” 3rd Workshop on Program
Comprehension, Washington D.C.

58

[7] Paul, S. and A. Prakash (1994). “A framework for source
code search using program patterns.” IEEE Transactions
on Sofmare Engineering 20(6): 463-475.

[8] Wills, L. M. (1990). “Automated Program Recognition: A
Feasibility Demonstration.” Artificial Intelligence 4 5 :
113-171.

59

