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Abstract 

Generation of program patterns from source code is a 
difficult, time consuming and error-prone process when 
performed by programmers. We describe an implemented 
system which generates patterns from an abstract syntax 
tree with interaction by the user. Our approach is based on 
creating intermediate pattems by exploring d.m 
dependencies in the source code and allowing the user to 
change andor eliminate parts of it in order to create a final 
pattern. We describe the architecture of our system as well 
as the pattem language used, and illustrate our upproach 
with examples. 

1. Introduction 

Many software engineering tasks are being automated 
using program comprehension. One significant method of 
utilizing program comprehension uses program patterns to 
identify concepts of interest within source code. These 
patterns are written to allow a software engineering tool to 
assist a programmer in finding code segments of interest for 
maintenance [8] or within automatic parallelization tools 
[3]. A programmer may have to write a pattern at the time 
of search to locate code parts of interest. Additionally, a set 
of patterns may be collected in a knowledge library to be 
used to search a large set of programs for concepts of 
interest. 

Writing such patterns is difficult and prone to 
programmer error. The syntax for constructing patterns can 
be difficult since the programmer may have to guess at the 
dependencies within code fragments and may not understand 
all the possible permutations of the implementation of a 
program concept of interest. We also believe that 
programmers will use examples from existing code to 
formulate the patterns for code fragments which are of 
interest to them. For these reasons, it is beneficial to have 
a tool to automatically generate appropriately generalized 
patterns from example code fragments. 

We have implemented such a tool to assist with 
pattern development in the recognition of concepts for 
algorithmic code transformation for parallel computing. It 

uses an annotated abstract syntax tree to analyze code 
examples and user/programmer inputs to generate patterns 
which recognize parallelizable concepts in scientific 
FORT” programs. In this first experiment, we used 
programmer input to assist and guide the generation of 
patterns. In this paper we first briefly describe the SPUR 
project for automatic parallelization of existing sequential 
code, and then concentrate on one of its tools, the pattem- 
builder. The pattern language, the analysis of data 
dependencies and the system for generating patterns are 
described. We give examples of the generation of a pattem 
from source code and explain the analysis process. 

2. SPUR project 

One significant barrier inhibiting the use of parallel 
computing is the difficulty of writing parallel software. In 
addition to that, the scientific community has accumulated 
a large corpus of sequential programs to support their 
research efforts, and are unwilling to give up on these 
efficient and well tested programs. SPUR project proposes 
a solution to the problem of parallelization by building 
tools that would automatically (or semi-automatically) 
replace these sequential programs by equivalent, more 
efficient parallel programs from the library. The approach 
is based on a knowledge base of patterns that represent 
concepts in a specific domam that are amenable to a parallel 
solution. 

An architectural overview of the system is shown on 
Figure 1. The first phase of the system consists of building 
the pattern library. The parser reads sequential FORTRAN 
source programs that represent base concepts we want to 
recognize and builds an annotated representation of the 
abstract syntax tree that is used by the pattern-builder to 
generate patterns and store them in the pattern library. In 
the second phase, the pattern matching engine performs a 
systematic search, under domain specific direction from a 
user, of the abstract syntax tree created from the program 
we want to parallelize for domain concepts that are 
amenable to parallelization. In the third phase, the code 
transformer utilizes a library of target replacement code for 
replacing matched patterns by the efficient parallel code. 
This phase will be interactive, with the system suggesting 
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potential regions of code to be parallelized, and the user 
making the final decision on code replacement. A 
verification tool is planned to allow evaluation of known 
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test cases to ensure that specification semantics are 
preserved after a code transformation , 
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Figure 1. Architecture of an knowledge-based parallelizing tool 

3. Pattern-building tool 

Any system designed to automatically generate patterns 
from source code examples must rely on the syntax of the 
language and the data dependencies. Our system represents a 
way to gather semantic information for a program and 
instantiate a semantic fragment. In this section we first 
describe the pattern language used as the target of automatic 
pattern generation. We then discuss data dependency 
analysis and give brief examples. Next, we outline user 
involvement in the system and, finally, show how we 
combine user involvement and data analysis to generate 
valid patterns for semantic fragments from source code 
examples. 

3.1. Pattern language 

Our pattern language is designed to facilitate searching 
for complex application-specific concepts for which exist 
alternative parallel algorithms or system-specific library 
routines. The primary concern is that the pattern language 
will be expressive enough to describe programming 
concepts as well as domain concepts (as defined by 
Kozaczynski, Ning and Engberts (1992)) [5 ] .  The pattern 
language should also be close to the syntax of the target 
programming language to aid in readability. Finally, it 

should be possible to search efficiently for patterns in the 
source code. 

The pattern language uses a functional notation that is 
designed to facilitate efficient pattern matching. Since our 
target programming language is FORTRAN, the syntax of 
our pattern language parallels that of FORTRAN. Figure 2 
shows part of the syntax of the pattern language. 

The keyword SEQ indicates a sequence and the keyword 
SET irldicates a set of statements following the keyword. 
Normally, patterns are written using the keyword SEQ. 
However, there are cases where we want to match 
statements and are not concemed with the order in which 
they occur. In the absence of the SET construct, we would 
have to write several different patterns, one for each 
possible permutation of the statement. By using the SET 
construct, we can write one pattern and leave the pattern 
matching engine to automatically try all possible 
combinations during matching. Examples of patterns using 
these constructs are given shortly. 

In addition to the basic pattern language, we introduce 
a set of symbols that match different syntactic entities in 
the source code. These symbols can be thought of as typed 
wild cards that match different kinds of source code 
fragments. Providing such typed wild cards increases the 
readability of patterns, reduces errors in writing patterns, 
and increases the efficiency of the pattern matcher. The 
pattern symbols are shown on Figure 3. 
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pattem-ckf = (PATIERN pattem-name (args) pattem-body [constraints]) 
pattem-body = (SEQ pattem-body ) I (SET pattem-body) I Lstatements 
Lstatements = Lstatements I Lstatement 
Lstatement = (label statement) 
label = (NO-LABEL) I (LABEL INTEGER) 
statement = (ASSIGN identifier expression) I 

(ASSIGN my-term expression) 
(IF-THEN condition pattem-body) I 
(IF-THEN-ELSE condition pattem-body pattem-body) 
(DOFOR label-num index start end step pattem-body) 
(GOT0 label-num) I 

(CALL subroutine-call) I 
(RETURN expression) I 
(STOP) 

( C 0 " L J E )  I 

subroutine-call = (SUBROUTINE symbol expressions) 
array-term = (ARRAY identifier dimension array-args) 
array-args = expression [expression . . .] 
expression = arithmetic-exp I boolean-exp I relational-exp I function-call 
function-call = (FUNCTION symbol expressions) 

Figure 2. Syntax of Pattern Language 

Syntactic Entity I Pattern Symbol 1 
I variable I ?V I 

Figure 3. Symbols used for syntactic entities in source code. 

The ellipses (...) in the array and function entries stand 
for a list of arguments that can themselves be other wild 
cards, identifiers, or constants. In addition we use the 
following notation to denote argument lists: 

$* = Oormorearguments 
$+ = 1 ormore arguments 

For example, ?a/$*] would match X ,  X [ i ] ,  X / i , j ] ,  etc. and 
?f($+) would match abs(i), gcd(i,j), etc. 

A * is also used to indicate optional entities and is 
essential with certain patterns. For examplc, a common 
practice in FORTRAN is to skip the step size of a DO 
loop (which defaults to 1). However, many programs will 
explicitly set the step size. If the step size is not important 

to the concept we are trying to recognize, we would have to 
write two patterns, one with the step size omitted and one 
with the step size explicitly given, although there would be 
no other difference in the two patterns. By using the 
optional wild card, ?e*, we can recognize both forms using 
one pattern and thus eliminate the redundancy in writing 
patterns. 

All pattern symbols can be named, e.g. ?a-name where 
name can be any symbol made of alphanumeric characters. 
The name is used to bind a variable so that it can be used in 
another part of the pattern. This allows us to express 
certain constraints and restrict the kinds of code fragments 
that are matched. We do not allow optional entities to be 
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named. However, argument lists to arrays and functions can 
be named, e.g. ?a-a[$+-l]. To handle such cases, we found 
it necessary to augment the pattern language with a set of 
additional constraints. These constraints are implemented 
using a set of service routines after the pattern matcher 
completes a syntactic match and binds all pattern variables. 
Such service routines were also used by Kozaczynski, Ning 
et al. 

Finally, we use the symbol ?Ppzrrem-nume to match 
other patterns. Here, puttem-nume is the name of a pattern 
defined in the pattern library. (Note that unlike other wild 
card symbols, the name for the pattern is mandatory). With 
the pattern wild card we can compose patterns from sub- 
patterns in a hierarchical manner. 

3.2. Data dependencies 

One of the most important issues in generating 
patterns is the ability to determine whether parts of original 
code can be moved without changing the program’s 
semantics. If we embed that information in our pattern, we 
will be able to use it to recognize pieces of code that 
essentially differ only in initial order of the statements, but 
have the same semantics. We show that this step in pattern 
generation can be completely automated using data 
dependency analysis. 

The first step in our process consists of analysis of 
data dependencies and creation of a data dependency graph 
for each sequence of statements in our source code. We 
construct a separate graph for the main sequence and for 
each of the sequences contained within statements (bodies 
of if and do statements). We deal with dependencies from 
“inside” sequences as if they were generated by enclosing 
statements themselves in an outer data dependency graph. 
This approach prevents us from recognizing variations of 
code having unrolled loops for a few iterations or having 
statements inside both branches of ‘if with the same 
pattern. As we will discuss later, it is necessary to enhance 
pattern language itself to handle these situations. 

Creation of a data dependency graph for every sequence 
is accomplished by creating a symbol table, finding where 
and how each symbol is used and, finally, using this 
information to create lists of statements-predecessors and 
statements-successors for each statement in the sequence. 
We look for three types of data dependencies: 

read after write (real data dependency) - if statement s 
writes variable x ,  statement t reads that variable , and 
statement s preceeds statement t in original code, then 
statement t is dependent on statement s. 
write after read (anti-dependency) - if statement s mds 
variable x, statement t writes that variable , and 
statement s preceeds statement t in original code, then 
statement t is dependent on statement s. 
write after write (output dependency) - if statement s 
writes variable x,  statement t also writes that variable , 

and statement s preceeds statement t in original code, 
then statement t i s  dependent on statement s. 

Write after readand write after write dependencies are not 
true dependencies because they can be eliminated by 
introducing extra variables into program. However, we still 
look for these dependencies in the source code because their 
existence limits freedom in the pattern. 

The presence of arrays slightly complicates data 
dependency analysis. Arrays are mostly used in loops, 
therefore creating possibilities for existence of loop-carried 
dependencies (dependency between operation s in iteration i 
and operation t in iteration i+k). We decided not to 
implement analysis of loop-carried dependencies at this 
stage, because the pattern language and pattern matcher can 
not support pattern recognition based on information that 
can be obtained from such analysis. Instead, we decided to 
treat array as a single variable (therefore treating using or 
changing any element of the array the same way as using or 
changing the whole array). The only difference between 
arrays and scalar variables is that we treat blocks of 
successive read or write operations as a single read or write 
operation , making each read of the current block dependent 
on all the writes from the previous block (in the case of 
read after write dependency) or each write in the current 
block dependent on all the reads from the previous block. 
That prevents us from losing dependencies between a loop 
and several statements that change (or use) particular 
elements of the array before or after the loop. 

After creating a data dependency graph, we compute the 
earliest and latest point for execution of each statement in 
it. This helps us to determine whether that statement has 
freedom to move within code. Following this step, we m 
able to identify pattern parameters as variables whose first 
use is reading. 

In the second step of our algorithm we determine 
whether the data dependency graph for each sequence is 
connected. If it is not, we can represent the sequence as a 
set of (sub)sequences, and apply processing from the next 
step to each subsequence separately. 

The final step involves optimization of the data 
dependency graph for each pattern. Since our pattern 
language cannot express all valid combinations of 
statements (see discussion below), our goal is to create 
patterns that would be able to represent most of the valid 
combinations. We are using greedy approach because: 
0 Code examples from which we generalize are typically 

not very large pieces of code, therefore do not contain 
very many statements. 
Patterns at which we are looking typically do not have 
very complicated data dependency graphs, so greedy 
approach will give a solution close to optimal most of 
the time. 
Our approach includes sorting data dependency graphs 

topologically (level by level) and then, starting at topmost 
level in the graph, performing the following: 
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If there is more than one statement on the level, for only of HCS statement, and the third consists of all 
each pair of topmost statements find the statement that successors of HCS statement. After that we recursively 
is their highest common (not necessarily immediate) apply the same procedure to the first and third 
successor in the data dependency graph. Choose the subpatterns. 
pair of statements whose highest common successor e If there is only one statement on a given level, create a 
(HCS) is lowest of all and create the pattern as a (sub)pattem that is a sequence of two parts -- the 
sequence of three subpattems. The first subpattern statement, and the subpattern created from the rest of 
consists of all (not necessarily immediate) predecessors the graph (can again be a sequence, or a set of 
of the chosen HCS and all their successors that are not sequences), and apply the same procedure to the rest of 
also successors HCS, the second subpattern consists the graph. 

1 O S ; Q = T * A  I 

Figure 4 : Fragment of code, corresponding data dependency graph and pattern created 

Figure 4 shows how we create pattern from a simple 
data dependency graph. In this case we first try to identify 
any disconnected parts of the graph. Since there are no 
disconnected parts, and there is only one statement (01) on 
the topmost level, we create the sequence of statement 01 
and the rest of graph. Then we apply the same procedure to 
the rest of the graph, where we find two independent parts, 

0 1 :  x = Y + z 

02: A = E + X 

0 3 :  D = A - E 

04: C = G - X 

05: H = A /  C 

06: B = F * X 

I 0 7 : K = H - B  I 

create a set of two sequences, and again apply the same 
procedure to each of the sequences in the set. The final 
result is outlined in the graphic above. 

Note that we sometimes embed single statements in 
one-element sequences, and sometimes not, since both 
representations are recognized by the pattern matcher. 

3. 

I 

Figure 5: Fragment of code and corresponding data dependency graph 

statements, sequences or sets. In the 
data dependency graph that cannot be 

1 

ure 5. we show a 
represented 

Our pattern language is able to represent pattern as 
either a sequence or set of elements that can themselves be 
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in our pattern language. 
As in the previous example, we begin our analysis by 

determining whether there are any independent parts of the 
data dependency graph. Since there are none, we create a 
sequence of 0 1  and the rest of the graph, and apply the 
same procedure to the remainder of the graph. There, we 
find three non-independent statements on the top (02, 0 4  
and 06). We compute the highest common successor for all 
pairs of statements on the top level, and choose either pair 
(04,06) or (02 ,06)  because they have lowest HCS (07). 
Then, as we described earlier, we split the graph in three 
parts: all predecessors of 0 7  and their successors, 07, and 
successors of 0 7  (in this case we do not have this part). 
This way, we created artificial dependency from 0 3  to 07, 
because our three subpattems are in sequence so any 
pattems thus generated would not be able to recognize any 

(valid) code in which 0 3  comes after 07. Our approach 
to minimization of the effects of this problem consists of 
creating a set of patterns that match different valid orders of 
statements. One method is to create the other pattern 
starting from statements at the bottom of the graph and 
looking for the lowest common predecessor for pairs of 
statements. In our example, we can cover all valid 
situations with two patterns - one created with a top-down 
approach, the other with a bottom-up approach. Both 
patterns are shown in Figure 6. 

In our opinion this does not represent a serious 
drawback, because we expect patterns to be created from 
relatively small pieces of code, that do not have much 
freedom in data dependency graphs. Therefore, few 
situations would occur similarly to the example given in 
Figure 5. 

Figure 6: Patterns obtained using top-down (left) and bottom-up (right) approach 

3.3. User interaction 

In a data dependency graph, we can automatically create 
the pattern. However, parts of the ccde are often too 
specific to the particular application, and it is possible that 
code which should constitute our pattern is interleaved 
with a few statements that do not belong to our pattern, or 
that we need to find all the occurrences of code similar to 
the example (like double DO loop with arbitrary statements 
in the body). Sometimes, the parser needs declarations of 
arrays in the source code in order to distinguish between 
arrays and function calls in FORTRAN, but we do not 
want these declarations to be a part of our pattern. Also, 
there are parts of expressions that are not important for us 
(for example, we want to find all DO loops that go from 1 

to N, with an arbitrary step). In these cases, the user can 
give us valuable information about what parts of the code 
we can ignore, Without user interaction (with only data 
dependency analysis) we would not be able to identi@ 
patterns for more general purposes. 

Our pattern-generator has a graphical user interface that 
allows the user to perform the following: 

browse through the source code and select a part of the 
code from which a pattern will be created 
mark statements that are not important h r  our pattern 
(deletc them) or generalize them into “statements” 
delete sequences or sets of statements 
remove unimportant expressions or parts of them 
generalize specific variables into general variables 
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Provided that the user may want to change some part 
of the pattern, a list of allowed options is provided.. For 
example, assume that the user wants to change the DO 
statement. The following set of options is given: 

generalize to “general statement” deleting body of the 

0 generalize to general DO statement, that is do 
statement with general variable for index, general 
expressions index boundaries (therefore removing its 
data dependencies from data dependency graph) and step 
and arbitrary body 
change name of index variable only 
change boundaries and/or step only 
go to loop body (another sequence or set) and change it 
insert a new statement after this statement 

loop 

0 

3.4 Combining data dependency analysis and user 
interaction 

Our approach for combining data dependency analysis 
and user int 

at the beginning by default since, once it is performed, the 
user receives information about which parts of code can be 
moved or what code creates data dependencies that are not 
important for that particular pattern, so that such code can 
be changed. This is the point at which user interaction can 
help create a pattern which is more suitable for some 
particular use. 

Conversely, in some cases the user may want to first 
remove some statements which are known to be 
unimportant. Therefore, an option to change the pattem 
before performing data dependency analysis by bypassing 
default settings, is also provided. 

Of course, after any change user made we must perform 
the data dependency analysis again, because user changes 
may affect data dependencies. This will occur automatically 
when the user finishes with changes. However, the option 
to perform it at any time will be added since the user may 
want to see how any previous changes affected the data 
dependency graph prior to continuing with other changes. 

ction is to perform data dependency analysis - 
C 
C THIS IS A THIRD ORDER NEWTON-GREGORY INTERPOLATION SCHEME 
I: 

Figure 7. User can select piece of code from which pattern is to be created 

4. A Complete Example Figure 7 shows the initial screen where the user can select 
the part of code that is going to be used to create the 
pattem. When the user presses the “Parse” button, the 
Parser t r a n & ~ ~ ~ ~  ~ lec t ed  Code to an abstract syntax tree, 

As an example of pattern generation from real world 
FORTRAN code, we present here generation of a pattern 
for a third order Newton-Gregory interpolation scheme. 
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which is then transformed to an initial pattern - sequence initial modifications, only the data dependency analysis is 
of statements in initial order. performed. The data dependency graph is given on Figure 8,  

After creating an initial pattern, the user can choose and the pattern obtained is shown on Figure 9. Note that, 
either to perform a dependency analysis or to modify the for this data dependency graph, the same pattern is obtained 
initial pattern. Since in this example we do not need any using top-down and bottom up ananlysis 

Top level data dependency graph for third order Newton-Gregory interpolation Figure 8. 

defpattem interp ( ? r S  ?a-Y ) 
(seq 

(seq 
(set 
(seq 

(lstatement ?L-1 
(dofor ?L-10 ?v-I (constant l)(constant 3) 

(constant 1) 
(set 

(lstatement ?L-2 
(assign ?a-D[?v-I ] 

(minus ?a-Y[(plus ? r I  (constant 1))l 
?a-Y[?vlI 

(lstatement ?LJO (continue!)) 
))I 
(set 
(Istatement ?L-3 
(assign ?a-DEL[(constant l)] ?a-D[(constant l)] )) 
(lstatement ?L-4 
(assign ?a-DEL[(constant 2)3 
(minus ?a-D[(constant 2)] ?a-D[(constant l)] ))) 

(lstatement ?L-5 
(assign ?a-DEL[(constant 3)] 

(minus 
(minus ?a-D[(constant 3)] ?a-D[(constant 2)]) 
(minus ?a-D[(constant 2)] ?a-D[(constant l)])) 

)) 
)) 
(Istatement ?L-6 
(assign ?v_YINTER ?a-Y[(constant l)] )) 

(Istatement ?L-7 

(lstatement ?L-8 
(assign ?v-FS ?v-S )) 

(assign ?vDEN (constant 1) )) 
) 
(lstatement ? L 9  
(dofor ?L-20 ?v-I (constant l)(constant 3) 

(constant 1) 
(set 

(lstatement ?/11 
(assign ?v-YINTER 

(plus ?v-YINTER 
(divide 

(multiply ?v-FS ?a-DEL[?v-I ] ) 
?vDEN ) 

>>> 
(Istatement ?LA2 

(assign ?v-FS 
(multiply ?v-FS 

(minus ?v-S ?v-I )) 
N 
(lstatement ?L-13 

(assign ?v-DEN 
(multiply ?v-DEN 
(plus ?v-I (constant 1))) 

)) 
(lstatement ?L-20 (continue!)) 

>)) 
1) 

Figure 9. Pattern generated for third order Newton-Gregory interpolation 
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Label: N0ne 
IlQ statement 

Index variable: ?u,I 
Initial value: (constant 1) 
Upper bound: bxnstant  3) 
Step value: (constant 1> 
End label: ?L,20 

No changes 
General statement 
General DO statement 
Change index uar i ab 1 e 

Change step value 
Change loop body 
Inser t  new statement 

Figure 10. Example of dialog window for changing pattern for DO statement 

After generating a pattern, we can change some 
statements. For example, if we want to make a pattern for 
Newton-Gregory interpolation of arbitrary order, we need to 
change the upper bound for DO loops and insert a general 
assign statement in the set of statements that assigns 
values to the DEL array with the constraint that DEL must 
be on the left side of the assignment. On Figure 10, we 
show an example of a dialog window for changing DO 
statements. 

5. Conclusion 

We have described an approach to pattern generation 
that is based on two basic techniques: data dependency 
analysis and user interaction. We have described details of 
both techniques and illustrated the application of our 
approach in creating patterns from parallelizable fragments 
of FORTRAN code by utilizing several examples. 

We are currently finishing implementation of an X- 
windows-based graphical user interface for the system. Our 
next step will include testing the results of integration of 
this system with the pattern matcher from SPUR project. 
In the longer term, we have the following goals: 
0 To extend our system to be able to generate patterns 

that match several given examples of similar code. 
To improve the system by adding more methods to 
create the patterns from the data dependency graph, so 
that more patterns can be mated from one example in 
cases where we have to deal with more complicated 

DDGs. The system is designed to be extensible in this 
respect. 
To explore possibilities for creating composite patterns 
(patterns that contain subpatterns) through user 
interaction and searching the pattern library. 
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