Using Generalized Markup and SGML for Reverse Engineering
Graphical Representations of Software

James H. Cross and T. Dean Hendrix
Computer Science and Engineering
Auburn University
Auburn, AL 36849

cross@eng.auburn.edu, thendrix@eng.auburn.edu

Abstract

As part of the ongoing research of Auburn Univer-
sity’s GRASP Project (Graphical Representations of
Algorithms, Structures, and Processes), a markup lan-
guage has been designed and prototyped to facilitate
the automatic generation of static program visualiza-
tions from source code. Specifically, the latest release
of the GRASP/Ada tool uses a markup language called
GRASP-ML as the basis for automatically generating
control structure diagrams from Ada source code. This
markup language is described and its role in reverse
engineering with GRASP/Ada is ezplained. Finally,
promising future work is outlined and discussed.

1 Introduction

A primary goal of reverse engineering is to sup-
port reusability, verification, and maintenance of soft-
ware. For this process to be successful, a sufficient
design-level understanding of the software must be at-
tained. This usually involves creating representations
of the software in another form at the same relative
level of abstraction or at a higher level of abstraction
[1]. These alternate forms and representations may be
goals in and of themselves, as in a redocumentation ef-
fort, or as comprehension aids for subsequent reverse
engineering or reengineering efforts.

A primary goal of our current work is to demon-
strate that a markup language can be used to capture
information necessary for creating graphical represen-
tations and abstractions in a generalized and persis-
tent manner, and in so doing yield significant bene-
fits. GRASP-ML is a markup language designed by
the authors to capture information necessary to auto-
matically generate static program visualizations from
source code or PDL. We employ GRASP-ML as the
basis of the latest release of GRASP/Ada, a program
visualization tool for reverse engineering control struc-
ture diagrams from Ada source code [2]. The following
sections describe the basis of our efforts, the structure
and design of GRASP-ML, how GRASP-ML is used
to facilitate reverse engineering control structure dia-
grams, and directions for future research.

0-8186-7111-4/95 $4.00 © 1995 IEEE

2 Graphical Representations of Source
Code

Graphical representations have been recognized as
playing an important role in communication and un-
derstanding from the perspective of both the writer
and the reader. Graphical representations can have
a positive impact in communicating throughout the
stages of design, implementation, testing, and mainte-
nance. Considering the resources expended in the soft-
ware development life cycle, effective graphical repre-
sentations which aid communication and comprehen-
sion could significantly reduce software project costs.
Indeed, [3] found that code reading was the most ef-
fective method of detective errors during the verifica-
tion process when compared to functional testing and
structural testing. And [4] reported that program un-
derstanding may represent as much as 90% of the cost
of maintenance. Hence, effective graphical representa-
tions can have a dramatic effect on the cost of software
systems.

While there are numerous graphical notations for
source code — [5] cites many notations that have been
developed and used in the past — their use has seen
a marked neglect by business and industry in the U.S,
in favor of non-graphical PDL. A lack of automated
support and the results of several studies conducted
in the seventies which found no significant difference
in the comprehension of algorithms represented by
flowcharts and pseudo-code [6] have been major fac-
tors in this underutilization. However, automation is
now available in the form of numerous CASE tools
and later empirical studies reported in [7, 8] have con-
cluded that graphical notations may indeed improve
the comprehensibility and overall productivity of soft-
ware. The study reported in [8] involved a well- con-
trolled experiment in which deeply nested if-the-else
constructs, represented in structured flowcharts and
pseudo-code, were read by intermediate-level students.
Scores for the flowchart were significantly higher than
those for the pseudo-code. The statistical studies re-
ported in [7] involved several tree-structured diagrams
(e.g., PAD, YACC II, and SPD) widely used in Japan
which, in combination with their environments, have
led to significant gains in productivity. The results
of these more recent studies suggest that the use of

task body TASK_NAME is

for p_in PRIORITY loop
select

accept REQUEST(p) (D : DATA) do
ACTION (D);

end;
exit;

else
null;

end select;
end loop;

end loop:
end TASK_NAME;

Figure 1: Ada task in plain source code.

graphical notations with appropriate automated sup-
port should provide considerable increases in produc-
tivity over current non-graphical approaches.

A significant graphical representation that has been
developed in recent years is the control structure di-
agram [9]. The control structure diagram is intended
specifically for the graphical representation of algo-
rithms in detailed designs as well as actual source
code. The primary purpose of the control structure
diagram is to reduce the time required to comprehend
software by clearly depicting the control constructs
and control flow at all relevant levels of abstraction.
This is accomplished by using a concise set of compact,
intuitive graphical constructs that appear as compan-
ions to lines of source code and do not disrupt the
familiar appearance of pretty-printed source code. Ini-
tial studies [10] suggest that the control structure di-
agram can have a substantial positive effect on com-
prehension of software.

As an example of the expressive power of the con-
trol structure diagram, consider the Ada source code
in Figure 1. This figure contains Ada source code
adapted from [11] featuring a simple level of complex-
ity using a concurrent control structure, the task ren-
dezvous. The code in Figure 1 loops through a prior-
ity list attempting to accept selectively a Request with
priority P. Upon acceptance, some action is taken, fol-
lowed by an exit from the priority list loop to restart
the loop with the first priority. In typical Ada task
fashion, the priority list loop is contained in an outer
infinite loop.

This short example contains two threads of control:
the rendezvous, which enters and exits at the accept
statement, and the thread within the task body. In
addition, the priority list loop contains two exits: the
normal exit at the beginning of the loop when the
priority list has been exhausted, and an explicit exit
invoked within the select statement. While the con-
currency and multiple exits are useful in modeling the
solution, they do increase the effort required of the
reader to comprehend the code.

Figure 2 visualizes the source code from Figure 1 as
a control structure diagram, which increases compre-
hensibility. This is especially useful with the multiple

‘/task body TASK_NAME is

begin

—{} loop
|—{ for p in PRIORITY loop
select

accept REQUEST(p) (D : DATA) do

ACTION(D) :

«— end;
“r exit;
else
- null;

end select:;
end loop;

end TASK_NAME;

Figure 2: Task rendered as a CSD.

threads of control introduced by tasking, as well as the
nested forms of control found in both concurrent and
sequential programs.

3 Markup Languages

Markup languages have been used for a number of
years as the basis for specifying and processing struc-
tured documents, that is, documents having a standard
or orderly structure. The general thesis of markup is
that this orderly structure can be made explicit, per-
haps in the form of a context-free grammar. Markup
languages allow the structure of a document to be
specified by a set of identifying fags. Tags, each of
which have an associated generic identifier, indicate
the logical structure of documents by enclosing each
structural element by a start and end symbol contain-
ing the appropriate generic identifier.

Although active for some time, work in markup lan-
guages has been made a popular attraction recently by
internet tools based on Hypertext Markup Language
(HTML) [12]. Tools such as TEX[13] have also served
to increase popular awareness of the general ideas of
markup languages. An excellent survey of issues in-
volved in markup languages and structured documents
can be found in {14].

An extremely important occurrence in markup lan-
guage research has been the development of SGML
— Standard Generalized Markup Language [15] —
and its wide acceptance by government agencies and
electronic publishers. SGML is an ISO standard for
specifying markup languages. Many tools have been
developed that are based on SGML and can process
SGML-specified documents. SGML also addresses the
particular needs of marking-up hypertext and multi-
media documents through the HyTime [16] standard.

SGML, HyTime and related efforts have led to a
great deal of research in building tools to process
structured documents. One promising area of struc-
tured document research is that of using markup as
a data model on which tezt databases can be built.
Collections of tagged documents can be treated as
a text database and queried much like conventional
databases [17].

Despite the volume of research in structured doc-
uments and markup languages, the application of

procedure BinarySearch (Key : in KeyType; A : in ArrayType; WhereFound :
out integer) is
low, high, middle : integer;
begin
WhereFound := 0;
low := A'First;
high := A’Last:
while (WhereFound = 0) and (low <= high) loop
middle := (low + high) / 2;
if (Key < A{middle)) then
high := middle - 1;
elsif (Key > A{middle}} then
low := middle + 1:
else
WhereFound := middle;
end if;
end loop;

end BinarySearch;

Figure 3: Sample Ada source code.

markup languages to software engineering tools and
environments is just beginning. Effective use of
markup can provide important benefits to software en-
gineering efforts.

4 GRASP-ML

GRASP-ML is a markup language designed to cap-
ture information needed to automatically produce
static visualizations of program control from source
code and PDL. GRASP-ML tags are automatically in-
serted into source code or PDL to identify all control
structures. The tagged source can then be rendered
as an appropriate program visualization such as the
control structure diagram. The latest release of the
GRASP/Ada tool employs GRASP-ML to identify all
structural elements necessary to reverse engineer con-
trol structure diagrams from Ada source code.

The syntax of GRASP-ML tags essentially follows
that specified by SGML. All tags have associated
with them a unique identifier whose name suggests
the structural element which its tag identifies plus
a start and end symbol. The start symbol has the
form <_identifier_> and the end symbol has the form
</Aidentifier_>. For example, the tag that desig-
nates an if statement has “IF” as its unique identifier,
<JF_> as its start symbol, and </IF_> as its end
symbol. Each element of control has its own tag.

The source code in Figure 3 will be used to demon-
strate the use of GRASP-ML. Figure 4 shows this
source code tagged using GRASP-ML. The embed-
ded tags of the markup language make all the control
structures explicit and captures the control flow at a
higher level of abstraction than the source code.

To automatically produce an appropriate visualiza-
tion (such as the control structure diagram) of the
source code, the marked-up version rather than the
plain source code can be processed. Indeed, the en-
tire process of rendering a control structure diagram
can be based on the markup language rather than the
source language. This GRASP-ML model of static
program visualization separates graphical rendering
from source language processing, and thus is language-
independent [18].

In the GRASP/Ada tool, the process of reverse en-
gineering control structure diagrams from Ada source

<_PROCBODY_>

<_PROCHEADING_>

procedure BinarySearch (Key : in KeyType: A : in ArrayType; WhereFound :
out integer) is

</_PROCHEADING_>

<_DECLARATION_>low, high, middle : integer; </_DECLARATION >

<_PROCSTMTPART_> begin <_STMT_>WhereFound := 0;</_STMT_>
<_STMT_>low := A'First;</_STMT >
<_STMT_>high := A’Last;</_STMT >

<_PRE_TEST_LOOP_>while {(WhereFound = 0) and (low <= high) loop
<_STMT_>middle := (low + high} / 2;</_STMT >
<_IF_>if (Key < A(middle)} then
<_STMT_>high := middle - 1;</_STMT >
<_ELSE_>elsif (Key > A(middle)) then
<_STMT_>low := middle + 1;</_STMT_></_ELSE_>
<_ELSE_>else
<_STMT_>WhereFound := middle;</_STMT_></_ELSE_ >
end if;</_IF_>
end loop;</_PRE_TEST _LOOP_>

end BinarySearch;</_PROCSTMTPART_ >
</_PROCRODY_>

Figure 4: Source code tagged using GRASP-ML.

source Ada intermediate
—
code Tagger ;epnuenmior\
source c intermediste
Tede L T resentation Language endeced
Independent version for =%
Renderer display
source intermediate /
e Puel } ‘
e Togger representation

Figure 5: Language independent model.

code is based on this GRASP-ML model. Thus, con-
trol structure diagrams are reverse engineered from
Ada source code in two distinct and independent
phases: the markup phase and the rendering phase,
as pictured in Figure 5. During the markup phase ap-
propriate GRASP-ML tags are used to bracket all Ada
control structures present in the source code. This
phase is implemented by an Ada “Tagger”, as depicted
in Figure 5. This tagger is an Ada parser/scanner that
embeds GRASP-ML tags in Ada compilation units or
in fragments of Ada code.

The rendering phase essentially “interprets” the
markup language. During this phase the input is
scanned not for Ada constructs but for GRASP-ML
tags. Each tag encountered gives information about
how the control structure diagram should currently
appear, and the control structure diagram is rendered
to the screen as the tags are interpreted.

As an example, suppose the source code in Fig-
ure 3 were loaded as input to the GRASP/Ada tool.
The Ada tagger processes this code and produces the
marked-up version of Figure 4 as an intermediate step.
This marked-up version is then dynamically rendered
as the control structure diagram in Figure 6.

procedure BinarySearch (Key : in ArrayType; WhereFound :

out integer) is

in KeyType; A :

low, high, middle : integer;
begin
— WhereFound := 0;
— low := A'First;
— high := A'Last;
while (WhereFound = 0) and {low <= high} loop
middle := (low + high) / 2;
if (Key < A{middle)) then
high := middle - 1;

elaif (Key > A(middle)) then
low := middle + 1;

| else
. WhereFound := middle;
end if;

end loop;
end BinarySearch;

Figure 6: Source code rendered as a control structure
diagram.

5 Benefits and Future Directions

Significant benefits are anticipated from this re-
search. The development of GRASP-ML is an impor-
tant contribution to both reverse engineering tools and
program visualization tools. Being a meta-language,
GRASP-ML can free these tools from their present
language-dependence. This research also produces
benefits such as defining a basis for query process-
ing on source code and building hyperlinked webs of
source code modules — all of which provide significant
benefits and power to reverse engineering tools.

Reverse engineering and visualization tools based
on GRASP-ML, such as GRASP/Ada Version 4, can
provide all the advantages of past and current systems
but in a language-independent manner. The implica-
tion of this should not be underestimated. A reverse
engineering effort in which modules of the software
gystem are written in different source languages would
be aided tremendously by the availability of a single
tool to provide visualization of all modules, regardless
of source language. Rather than having to acquire
and learn a suite of tools for the different languages
needed, the software engineers involved in such an ef-
fort would only have to acquire and learn a single tool.
GRASP-ML makes this possible.

Holophrasting is a technique particularly benefi-
cial to program comprehension in which program con-
structs are “collapsed” or made temporarily invisible.
This allows source code to be viewed at user-selected
granularities where the desired level of detail is dis-
played in any area of the code. Through the use
of GRASP-ML, holophrasting can now be provided
in a language-independent manner. Tools based on
GRASP-ML can collapse or expand the source code
view based on language constructs such as loops, if
statements, and subprogram calls without regard for
what language has been used to compose the source
code.

Although this research focuses on using GRASP-
ML to generate control structure diagrams from source
code modules, GRASP-ML could be extended to cap-
ture information needed for other types of visual-
izations, again in a completely language-independent

manner. Two examples are architectural level dia-
grams and visualizations of program plan [19] infor-
mation. GRASP-ML, or an extended form, could be
used as the basis of a tool to produce architectural
level diagrams such as structure charts and object di-
agrams. Extending GRASP-ML to capture program
plan information would allow a software engineer to
graphically view source code at a high degree of ab-
straction, yielding a significant positive effect on pro-
gram comprehension and understanding.

Another benefit of this research is the possible stan-
dardization of the program visualization information
represented by GRASP-ML. By specifying GRASP-
ML as a SGML Document Type Definition (DTD),
standard tools such as the Waterloo Database Browser
[17] {or even versions of commercial wordprocessors
such as WordPerfect) could be used to view the source
code and its graphical representation. This allows
third party document browsers that are SGML-aware
to be used to view and create GRASP-ML based
source code documents, thus eliminating the depen-
dence on proprietary tools.

Not only this, but specifying GRASP-ML in SGML
allows source code modules or groups of modules to
be treated as a text database of program information.
This would allow queries such as “Wkhat is the return
type of function F1 in module M1?' to be automat-
ically processed by a text database tool such as the
Waterloo Database Browser.

The utility of hypertext in software engineering
environments has been documented in the literature
[20, 21]. HyTime [16] is a SGML-based markup lan-
guage that allows definition, presentation, and brows-
ing of electronic documents with embedded hyper-
links. Tools based on an SGML-specified GRASP-
ML would be able to navigate through a automat-
ically generated and/or user- defined web of source
code modules and documentation.

6 Conclusion

GRASP-ML is a markup language used to cap-
ture all the information needed to reverse engineer
graphical representations from source code. The lat-
est release of GRASP/Ada uses GRASP-ML as the
basis of its implementation to automatically gener-
ate control structure diagrams from Ada source code,
thus demonstrating the feasibility of the GRASP-
ML model. Basing a reverse engineering tool on the
GRASP-ML yields several advantages. Among these
advantages is language-independence; the generation
of graphical representations is based solely on the
markup tags rather than on the source language con-
structs. Future work will only increase the effective-
ness of GRASP-ML as a tool for reverse engineering
and program visualization.

References

[1] E. Chikofsky and J. Cross, “Reverse engineering
and design recovery — a taxonomy,” IEEE Soft-
ware, pp. 13-17, Jan. 1990.

[2] J. H. Cross, “Reverse engineering control structure
diagrams,” in Proceedings of International Work-
shop on Reverse Engineering, pp. 107-116, 1993.

[3] R. Selby, “A comparison of software verification
techniques,” NASA Software Engineering Labo-
ratory Series SEL-85-001, Goddard Space Flight
Center, Greenbelt, Maryland, 1985.

[4] T. Standish, “An essay on software reuse,” IEEE
Transactions on Software Engineering, vol. SE-10,
no. 9, pp. 494-497, 1985.

[6] J. Martin and C. McClure, Diagramming Tech-
niques for Analysts and Programmers. Prentice-
Hall, 1985.

[6] B. Schneiderman, “Experimental investigations of
the utility of detailed flowcharts in programming,”
Commaunications of the ACM, no. 20, pp. 373-381,
1977.

[7] M. Aoyama, “Design specification in japan: Tree-
structured charts,” IEEFE Softwere, pp. 31-37,
Mar. 1989.

[8] D. A. Scanlan, “Structured flowcharts outperform
pseudocode: An experimental comparison,” IEEE
Software, pp. 28-36, Sept. 1989.

[9] J. Cross, S. V. Sheppard, and W. H. Carlisle,
“Control structure diagrams for ada,” Journal of

Pascal, Ada, and Modula 2, vol. 9, Sept. 1990.

[16] J. Cross, “Update of grasp/ada reverse engineer-
ing tools for ada,” tech. rep., Auburn University,
Dec. 1993.

[11] J. G. P. Barnes, Programming in Ada. Menlo
Park, CA: Addison-Wesley, 2 ed., 1984.

[12] T. Berners-Lee, “Hypertext markup language.”
Internet Draft, July 1993.

[13] D. E. Knuth, The TgXBook. Addison-Wesley,
1986.

[14] J. André, R. Furuta, and V. Quint, eds., Struc-
tured Documents. Cambridge University Press,
1989.

[15] C. Goldfarb, The SGML Handbook. 1990.

[16] S. R. Newcomb, N. A. Kipp, and V. T. New-
comb, “The hytime hypermedia/time-based doc-
ument structuring language,” Communications of
the ACM, vol. 34, pp. 67-83, Nov. 1991.

[17] E. W. Mackie, “Waterloo text database, system
overview,” Tech. Rep. 94-12, University of Wa-
terloo, Computer Science Department, Waterloo,
Ontario, Mar. 1994.

[18] D. Hendrix and J. Cross, “Language independent
generation of graphical representations of source
code,” in Proceedings of the 23rd Annual ACM
Computer Science Conference, 1995 (to appear).

[19] L. Wills, “Automated program recognition: A
feasibility demonstration,” Artificial Intelligence,
vol. 45, pp. 113-68, Sept. 1990.

[20] J. Bigelow, “Hypertext and case,” IEEE Soft-
ware, pp. 23-27, Mar. 1988.

[21] J. L. Cybulski and K. Reed, “A hypertext based
software engineering environment,” IEEE Soft-
ware, Mar. 1992.

