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capability is a key source of competitive advantage.! Competition forces sup-

pliers to improve processes to meet the conflicting demands of higher quality,
lower costs, and compressed schedules. Moreover, software purchasers are beginning
to require certification that suppliers are applying development processes capable of
delivering products within quality, cost, and schedule constraints. Measures of prod-
uct complexity and of process activity provide for quantitative analyses of existing pro-
cesses. Such analyses lay the foundation for continuous process improvement.

Software products yield measures related to their complexity. For example, a
source file will have values for the Halstead and McCabe measures. Melton et al.
noted that these product measures — they called them document measures — are
distinct from the more elusive psychological complexity measures quantifying no-
tions such as understandability.” Zage and Zage applied an aggregate of several prod-
uct measures to isolate fault-prone program modules in a large industrial software
product.? The predictive quality of the aggregate measure was superior to that of
any of the constituent product measures taken alone. This result strongly supports the
assertion that software complexity has more than one component. Other results also
support this assertion.* While it is unlikely that a single product measure can serve as
an adequate measure of complexity, a set of product measures can serve as indicators
of complexity.

Software processes yield measures that quantify the activity they produce. For ex-
ample, testing will encounter failures, troubleshooting will isolate faults, and fault cor-
rection will create source code changes. The counts of failures, fauits, and changes are
process measures. Schneidewind noted that software quality measures, which quan-
tify notions such as maintainability, are distinct from process measures.’ Several pro-
cess measures may indicate a single aspect of quality. For example, the number of ad-
ditions and the number of deletions that a programming team makes to a source file
to remove faults indicate the difficulty the team experienced in maintaining the file.
While a single process measure most likely cannot serve as an adequate measure of
maintenance difficulty, a set of process measures can serve as indicators of difficulty.

Curtis noted that a measure of psychological complexity must consider aspects of

l ncreasingly, software suppliers recognize that software development process
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both a product and the people interacting
with the product; that is, the complexity
of, say, a source file is related to both the
nature of the file and the difficulty expe-
rienced by those working with the file.b
Complexity and difficulty are not directly
observable but are indicated by observ-
able phenomena. This suggests a model
involving the relationship between two
sets of measures: a set indicating com-
plexity and a set indicating difficulty. The
study of such a relationship is known as
canonical correlation analysis.”

In this article, we apply canonical cor-
relation analysis to investigate the rela-
tionship between source code complexity
and maintenance difficulty. This approach
acknowledges that complexity and diffi-
culty are abstract concepts that are not di-
rectly observable. Rather, these concepts
are indirectly observable through mea-
sures serving as indicators of software
product and process characteristics.

Canonical correla-
tion analysis

Canonical correlation analysis gener-
alizes linear regression analysis.8 It also
restricts the soft-modeling methodology
introduced by Wold.’ Since the more gen-
eral methodology offers modeling exten-
sions useful to software engineers, we pre-
sent the soft-modeling methodology and
the restrictions of this methodology that
define canonical correlation analysis.

A soft model involves both manifest
and latent variables — respectively, vari-
ables that are directly observed and those
that are indirectly observed. A weighted
aggregate of manifest variables quantifies
each latent variable. For example, a so-
cial model might quantify “population
change” in terms of the observable vari-
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ables “natality,” “mortality,” and “mi-
gration.” The weighted aggregates quan-
tifying the latent variables give the outer
relations of the model. Inner relations
specify a causal relationship among the
latent variables. Latent variables ex-
plained by an inner relation are endoge-
nous; those that are not so explained are
exogenous. Correspondingly, the mani-
fest variables are either endogenous or
exogenous. Canonical correlation analy-
sis applies a soft model restricted to one
latent exogenous variable, one latent en-
dogenous variable, one inner relation, and
linear relationships among variables.

A path diagram gives a visual soft-
model specification. In a path diagram,
manifest variables appear as blocks, la-
tent variables appear as circles, and rela-
tions appear as directed paths. The path
diagram in Figure 1 gives the model for
the first canonical correlation. In this
model, & and { are latent variables indi-
cated by blocks of manifest variables —
respectively, X =[x, x5,...,x,]andy =[y;,
¥2:++ - ¥m]. The path from & to { gives the
inner relation. The direction of this path
specifies that & explains & Thus, {is en-
dogenous. A weight associated with the
inner relation is a model parameter giving
the influence of £ on {. Having no paths in
from other latent variables, £ is exoge-
nous; its cause is outside of the model.
The paths from x to £ and from y to { rep-
resent the outer relations. Weights asso-
ciated with each of these paths are model
parameters giving the coefficient of each
manifest variable in the aggregate quan-
tifying the related latent variable. For the
first canonical correlation, the weights
defining the outer relations are evaluated
such that the latent variables are maxi-
mally correlated. The resulting correla-
tion is the canonical correlation between
the two latent variables.

As explained above, Figure 1 gives the

model for the first canonical correlation.
Where there are n manifest exogenous
variables and m manifest endogenous
variables, a canonical correlation analysis
yields d = min(n, m) dimensions of canon-
ical correlation. Figure 2 shows this graph-
ically. Superscripts identify the dimensions
of the latent variables. For example, & is
d-dimensional, having dimensions £ (),
ED), ... ED, Similarly, {is d-dimensional,
having dimensions {1, {®@), ..., (@, The
directed paths from £® to {®), 1<k <d,
give a d-dimensional inner relation. The
weights defining the outer relations.are
evaluated such that the d dimensions of
endogenous latent variables are mutually
orthogonal, the d dimensions of exoge-
nous latent variables are mutually or-
thogonal, and the pairs of latent variables
at each dimension are maximally corre-
lated. The correlations between each of
these pairs give the d canonical correla-
tions of the canonical model.

A parameter estimation technique
yields the weights of the inner and outer
relations of the canonical model. There
are two approaches to estimating these
model parameters: One generalizes lin-
ear regression estimation techniques®; the
other, the partial least-squares estimation
technique, treats a canonical model as a
restricted soft model.® Details of these
techniques are beyond the scope of this
article. However, it is important to note
that both techniques have tractable im-
plementations.

Canonical correlation analysis is help-
ful in understanding the relationships be-
tween two sets of variables, the manifest
exogenous set and the manifest endoge-
nous set. The corresponding latent vari-
ables capture the structure between these
sets. Since latent variables are not directly
observable, they are best interpreted in
terms of the manifest variables most
closely related to them. Each manifest
variable reflected through the outer re-
lation defining a latent variable will have
a correlation, or loading, with this latent
variable. The pattern of loadings for a la-
tent variable can suggest its nature.

While there are d dimensions of canon-
ical correlation, it is often reasonable to in-
terpret just a few. First, there is no reason
to interpret relationships that are below a
reasonable statistical significance. Second,
dimensions having low canonical correla-
tions can be ignored. Third, each dimen-
sion accounts for some percentage of the
total variance explained by the analysis.
Those accounting for a small percentage
of this variance can be ignored.
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Canonical correla-
tion applied to
software engineering
measures

With the general background provided
in the previous section, we can now dis-
cuss the specific model of interest in this
article. We apply canonical correlation
analysis to investigate the relationship
between source code complexity and
maintenance difficulty during the system
test phase for a commercial real-time
product (RTP). RTP provides a stable in-
terface for software products written to a
varying hardware base. The developers
implemented RTP in assembly language
to satisfy space and time constraints. The
RTP source code consists of 222,740 lincs
divided among 152 files. The 152 RTP
files provide a cross section of data for
the canonical model.

We hypothesize that the complexity of
the source code defining RTP causes the
difficulty experienced by thosc main-
taining this code during system testing.
We do not model a cause of source code
complexity. and we have no direct mea-
sures of either complexity or difficulty.
Thus, we model complexity as a latent
exogenous variable having some aftect
upon difficulty, which we model as a la-
tent endogenous variable.

Before defining the measures we use
as indicators of complexity and difficuity.
we note that other measures could be se-
lected for these purposes. Our goal here
is to apply canonical correlation analysis
to investigate the relationship between
source code complexity and maintenance
difficulty, not to justify the use of any par-
ticular selection of measures. For details
regarding the selection and validation
of software engineering measures. see
Schneidewind!” and Fenton.!!

We consider the following product mea-
sures as indicators of source code complexity:

(1) nyis the number of unique operators.

(2) mis the number of unique operands.

(3) N, is the total number of operators.

(4) N, is the total number of operands.

(5) XOT is the number of executable
statements.

(6) V(G). McCabe's cyclomatic num-
ber. is given by

VG)y=e¢e—-n+2
where e is the number of edges and
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n is the number of nodes in the con-
trol flow graph.

(7) Knots is the number of times the
control flow crosses itself. Programs
constructed exclusively from the ba-
sic structures for sequence, selec-
tion. and iteration typical of high-
level languages will have no knots.
These structures have both a single
entry and a single exit through
which control always flows. Se-
quence. selection, and iteration are
encapsulated between these points.
Using a GOTO statement within
such a structure to transfer control
to an instruction within another
structure will produce at least one
knot.

In assembly language. structures
for selection and iteration are con-
structed using test and jump instruc-
tions. While these constructions are
often clearer when they emulate the
high-level-language structures, the
smallest or fastest coding will often
require control-flow structures with
multiple entry and exit points. Since
size and speed are typically impor-
tant in assembly language imple-
mentations. knots are common in as-
sembly language code.

(8) FFOT is the number of calls out.

(9) FFIN is the number of calls in.

(10) AICC. the average information con-
tent classification. is given by
W . .
AICC=-F e jog, Lo
o N N,

where 1, and N, are defined above,
and f; is the number of occurrences
of the ith operator.'? This measure
applies information theory to soft-
ware complexity.

These 10 product measures, evaluated for
each of the 152 RTP files on entry to the
system test phase, are the manifest ex-
ogenous variables of the canonical model.

We consider the following process
measures as indicators of maintenance
difficulty:

(1) A is the number of noncomment
source lines added.
(2) D is the number of noncomment
source lines deleted.
(3) M is the number of noncomment
source lines moved.
(4) Fis the number of program faults.
A system test case failure generates
a problem-tracking report. Trou-
bleshooting resolves the problem-
tracking report by isolating the cause
of the failure to defective statements
in one or more files. Correction of
these defective statements requires
source code changes. All changes to
a file associated with a single prob-
lem-tracking report are changes re-
quired to remove one fault.
DC is the number of design changes.
These changes modify the design ei-
ther to correct design defects or to
add function to the product. Design-
change reports track changes to the
approved design. All changes to a
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Table 1. Correlations between the manifest variables of distinct blocks.

Manifest Endogenous Variables

Manifest
Exogenous A D M F DC
Variables
m 0.2127 0.2133 0.1718 0.3549 0.2158
7 0.7991 0.8003 0.6956 0.5570 0.7686
N, 0.1453 0.1445 0.0962 0.2641 0.1304
N, 0.1682 0.1674 0.1251 0.1746 0.1368
XQorT 0.3596 0.3594 0.2728 0.4614 0.3511
V(G) 0.0305 0.0305 -0.0166 0.3355 0.0387
Knots 0.1508 0.1510 0.0663 0.1671 0.2205
FFOT 0.2304 0.2396 0.1371 0.3112 0.2403
FFIN 0.2145 0.2210 0.2028 0.2528 0.2146
AICC 0.0160 0.0133 -0.0036 0.2718 0.0463
Process W
measures
Figure 3. A model

of source code
complexity and
maintenance diffi-
culty, with the first
two dimensions

J differentiated by

solid lines.

file associated with a single design-
change report are changes required
to implement one design change.

These five process measures, evaluated
for each of the 152 RTP files on exit from
the system test phase, are the manifest
endogenous variables of the canonical
model. Table 1 gives the correlations be-
tween the source code and the process
measures.

Figure 3 gives the path diagram for the
canonical model. This figure shows the
10 product and five process measures that
indicate, respectively, source code com-
plexity and maintenance difficulty. Both
source code complexity and maintenance
difficulty have five dimensions. The di-
rected paths from each dimension of
source code complexity to the corre-
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sponding dimension of maintenance dif-
ficulty represent the causal influence of
source code complexity on maintenance
difficulty.

Table 2 gives the canonical correla-
tions for the canonical model. We select
the first two dimensions for interpreta-
tion; thus, Figure 3 differentiates these
dimensions with solid lines. Several con-
siderations lead to this selection. First, di-
mensions greater than two are not statis-
tically significant. This narrows the
selection to the first two dimensions. Sec-
ond, both of these dimensions have
strong canonical correlations: 88.9 per-
cent for the first and 54.4 percent for the
second. And finally, each of the first two
dimensions accounts for a reasonable
proportion of the total explained vari-
ance: 84.8 percent for the first and 9.4

percent for the second. By retaining the
first two dimensions, we retain about 94
percent of the overall variance explained
by the model.

In interpreting the latent variables
forming the first two dimensions of
canonical correlation, we consider their
loadings on the manifest variables. Table
3 gives these loadings, along with the
weights that form the inner relations. For
example,

(M =-1.0442A + 1.8112D - 0.1285M
+0.1902F + 0.2495DC .

evaluates the first dimension of mainte-
nance difficulty, and this latent variable
has a loading of 97.23 percent on A. As
Table 3 shows, the first dimension of
source code complexity loads strongly on
1, and moderately on XQT, both mea-
sures of size. The first dimension of main-
tenance difficulty loads strongly on A, D,
M, and DC. It also loads moderately on
F. Thus, the first dimension of canonical
correlation relates source code size to a
general notion of change. The correla-
tion at this dimension is excellent at 89
percent. Note that this correlation be-
tween the latent variables exceeds that
of any pair of manifest variables given in
Table 1, the closest simple correlation in
this table being about 80 percent between
1, and D.

The second dimension of source code
complexity loads moderately on n;, Ny,
XQT, V(G),and AICC. Note that 1, and
N, are used to derive AICC. These three
loadings are directly related to informa-
tion content. The second dimension of
maintenance difficulty loads strongly on
F alone. This dimension of canonical cor-
relation relates source code information
content and control flow to program
faults. The correlation at this dimension
is about 54 percent.

Differences in loadings across dimen-
sions are also important in interpreting
the latent variables. The first dimension of
source code complexity has a loading of
92.61 percent with 1. In the second di-
mension, this loading is 7.45 percent,
about as close to 0 percent as 92.61 per-
centis to 100 percent. Thus, 1, is useful in
distinguishing the two dimensions of
source code complexity. While their load-
ing differences are not as extreme, similar
observations hold for V(G) and AICC.
However, both dimensions load about
equally on XQT; thus, this measure does
not help in distinguishing the two dimen-
sions of source code complexity.

COMPUTER



The two dimensions of maintenance
difficulty have large differences in load-
ingson A, D, M, and DC. The difference
in loading on F is not as extreme. How-
ever, the loading on Fis the lowest load-
ing of the first dimension and the highest
of the second. While F contributes to
both dimensions of maintenance diffi-
culty, its relation to the other difficulty
indicators differentiates its contribution
across these dimensions. Its appearance
in the first dimension of difficulty sug-
gests that both the number of program
faults and the number of modifications
required to remove faults varied directly
with program size. Its appearance in the
second dimension of difficulty suggests
that the number of program faults varied
directly with control flow and informa-
tion content, but the number of modifi-
cations required to remove the faults was
independent of these program attributes.

Note that the interaction between DC,
A, D, and M is likely to be more pro-
nounced than the interaction between F,
A, D, and M. That is, design changes ei-
ther introduce functional enhancements
or correct design defects, so it is reason-
able to expect that design changes will
typically result in more file changes than
fault removals will. It is also reasonable
to expect that design changes will intro-
duce faults. If this explains the loadings of

Table 2. Canonical correlations.

Statistically Proportion

Canonical Canonical Significant of Cumulative
Dimension Correlation (p <0.05) Variance Proportion

1 0.889 yes 0.848 0.848

2 0.544 yes 0.094 0.942

3 0.337 no 0.029 0.971

4 0.289 no 0.021 0.992

5 0.187 no 0.008 1.000

Fand DC on the first dimension of main-
tenance difficulty, then the model sug-
gests two subsets of product measures,
one related to design-change activity that
results in faults and another related di-
rectly to faults. However, the model does
not distinguish, at the abstract level, be-
tween F and DC. To make this distinc-
tion requires a model of the relationships
between three sets of variables: a set of
product measures indicating source code
complexity, a set of process measures in-
dicating fault activity, and a set of pro-
cess measures indicating design-change
activity. This suggests that soft models of
greater generality than canonical corre-
lation will provide more insight into the

Table 3. Weights and loadings of the canonical model.

relationships among software engineer-
ing measures.

¢ emphasize two aspects of
our presentation. First, we re-
strict our findings to the de-

velopment effort that we studied. We do
not imply that either the weights or the
loadings of the relations generalize to all
software development efforts. Such gen-
eralization is untenable, since the model
omitted many important influences on
maintenance difficulty, for example,
schedule pressure, product domain, and
level of engineering expertise. We
demonstrated canonical correlation anal-

Dimension 1 Dimension 2
Weights Loadings Weights Loadings

Source Code Complexity (&)

i (x) -0.4744 0.2964 —-0.9999 0.4530
N (x2) 0.3500 0.9261 -1.0338 0.0745
N, (x5) -3.6774 0.2028 -1.0062 0.4070
N, (x2) 1.6920 0.2011 -1.3722 0.2018
XQr (%) 2.5449 0.4677 4.0669 0.5108
V(G) (x5) -0.2069 0.1114 -0.2655 0.6935
Knots (x) -0.0244 0.2186 -0.8136 0.0711
FFOT (%) 0.1126 0.3316 0.0396 0.3097
FFIN (x5) ~-0.0004 0.2834 -0.1110 0.1795
AlCC (xw) 0.2865 0.0798 0.7208 0.5392
Maintenance Difficulty ({)

A ) -1.0442 0.9723 3.6177 —0.1609
D ) 1.8112 0.9743 -3.1652 —0.1664
M o) —0.1285 0.8215 -0.4030 -0.2190
F ) 0.1902 0.6349 1.1657 0.7278
DC (ys) 0.2495 0.9437 —-0.8930 -0.1327
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ysis as a useful exploratory tool for software engineers inter-
ested in understanding influences affecting past development
efforts. These influences could also affect current development
efforts. However, much work remains to specify subsets of in-
dicators and development efforts for which the technique be-
comes useful as a predictive tool.

Second, we explained canonical correlation analysis as a re-
stricted form of soft modeling. We chose this approach not only
because the terminology and graphical devices of soft modeling
allow straightforward high-level explanations, but also because
we are interested in the general method. The general method
allows models involving many latent variables having interde-
pendencies. It is intended for modeling complex interdisci-
plinary systems having many variables and little established
theory. Further, it incorporates parameter estimation tech-
niques relying on no distributional assumptions. Our future re-
search will focus on developing general soft models of the soft-
ware development process for both exploratory analysis and
prediction of future performance. I
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