RAPID PROTOTYPING VIA AUTOMATIC SOFTWARE CODE GENERATION
FROM FORMAL SPECIFICATIONS: A CASE STUDY

Dr. S. Rahmani
A.G. Stone
W.S. Luk
S.M. Sweet

Rockwell International Corporation
12214 Lakewood Boulevard,
Downey, CA 90241
(213) 922-2478

Abstract

This paper describes an approach for defining system and software requirements and validating them through rapid
prototyping. It provides the results of a case study for generating prototype softwarc (representing the total system
hardware and software) directly and automatically from the requirements. The paper addresses system/software
definitions, which include the requirements and design (architecture). The approach consists of modeling and
prototyping. The case study described here applied this approach to selected systems of Boeing 747-400 aircraft. A
formal model of system specification was generated. The rapid prototyping task automatically generated thousands of
Ada source lines of code from the specification model. The ool used on the project was Statemate. The software was
executed successfully the first time. The functions and behavior of the system were demonstrated and validated by its
users. This study indicated that early execution and validation of system-requirements, through the use of formal
modeling and rapid prototyping with direct user involvement, can be accomplished.

In ion

The complexity of avionics isincreasing in step with the increased processor power available. The rend is to migrate
more decision making and intelligence into the avionics. For example, 10 years ago, commercial aircraft were
manufactured for a flight crew that consisted of three people: the pilot, the copilot, and the flight engineer. Today, aircraft
are manufactured for a two-person flight crew, the flight engincer has been replaced by an avionics system that performs:
those duties. In addition, today’s aircraft have systems that didn’t even exist 10 years ago: the onboard maintenance
systems (OMS), adistributed and integrated system for detection andisolation of the fauits throughout the sysxeml;salellite
communications system; traffic alert and collision avoidance system; and others.

Avionics systems interfaces are becoming much more complex as more data are being shared between them. Ten
years ago, communication between systems was all point to point or broadcast. This included digital, analog, and discrete
data. Today, there is an increasing use of high speed local area networks, and most sensor data is converted to digital

format at the sensor before being transmitted. This makes almost all data accessible to all avionics systems, resulting in
more complex integration.

Development methods that worked well for simplier, less complex systems have not scaled up well. Requirements
errors are finding their way into the final product. More emphasis is being put on generating the right requirements before
detailed design and development occur. There are several computer-based tools available that provide formal definition,
analysis, simulation, prototyping, and other capabilities that are utilized to define and evaluate requirements. They are
commonly referred to as computer-aided systems design (CASD) tools.

Given the above challenges, this paper describes the results of a case study on defining and applying a process for
specification and validation of the requirements. First, it identifies the objectives established for the study. Next, it
describes the approach for achieving the objectives including (1) an overall description of the case study, (2) the process
used for formal definition of the system requirements, (3) description of the formal model itself, (4) description of the

.7803-0225-7/92 $3.00 1992 IEEE
078 ’ © [o5

validation and rapid prototyping process, (5) rapid prototyping results, (6) description of the tools used throughout this

approach, and (7) some lessons learned from this case study. The last section of the paper includes the summary and
conclusions. -

ives of
The following objectives were identified for the case study.

1. SystemsEngineering Process—At the lime of the study there was no formal systems engineering process at Collins
Air Transport Division (CATD) of Rockwell International, and no clear path for downflow of systems requirements
to the software and hardware engineering disciplines existed. There was also skepticism about the viability of the
approach in the areas of modeling, simulation, and requirements validation.2:3:4 A primary objective was (0 assess
some of the basic concepts before they were incorporated into a process and applied to product development.

2. Tool Evaluation—A new class of CASD tools were available. An objective was to select one of the more capable
ones and evaluate it under simulated project conditions. The main areas of consideration were (1) effective use of
simulation and prototyping for system evaluation and validation, (2) integrated project data base organization and
interfaces, (3) configuration management and control, and (4) document generation.

3. Systems Engincering Expertise—This objective was to develop individuals with systems engineering skills. 'I_‘he
primary focus of the case study was to develop techniques for defining, evaluating and testing, and documenting

system requirements effectively before they are supplied to the build organizations like software and hardware
engincering.

4. FaultIsolation—An assessment was provided on how to improve fault isolation capability for air transport category
aircraft. :

5. Rapid Prototyping—A determination was made as to whether it was possible and reasonable to develop rapid
prototypes directly from a requirements model. Ways were identified to usc the rapid prototype.

Case Study Descripti

While the objectives remained of a general ﬁalure, the task was specific: formally define the system and sofw{arc
requirements (for fault detection and isolation) of Boeing’s 747-400 OMS, then validate them through rapid prototyping.

At the time, several CASD tools were available on the market. Statemaicd, a CASD ool set, was selected on the basis
of its overall capabilities. '

Although primarily interested in developing System engineering expertise, the team was also interested in ‘Lhe
assessment and improvement of fault isolation capabilities for air transport category aircraft, which led w0 r:hc selection
of the existing Boeing 747-400 OMS as the target system. There were several other reason for this selection:

1. CATD had developed both the system hardware and software of the central maintenance computer (CMC), Lhe_ heart
of the OMS where fault logic equations are managed and executed; therefore, it was a known reference point.

2. Since the program was still active, expertise was accessible.

3. The OMS provided a centralized aircraft fault isolation capabilities, thus it interfaced with almost all aircraft
systems.

4. Theuserinterface to the CMC was through acontrol and display unit (CDU), which could be graphicaily prototyped
on a work station.

5. Development of this system was labor intensive, especially the part for the fault logic equations. Any automation
or improvement in fault logic creation would improve productivity.

6. Since the system already existed, reverse engineer techniques could be used 1o model the system (this was easier
than creating a model for a brand new product.)

included in the study. Thus, the definition process began with defining the scope of the target system.

1.

2.

The team itself consisted of four individuals, each bringing to ita unique background and a broad range of expertise.
Due to the limited amount of resources available, only a limited number of Boeing’s OMS interfacing systems could be

Model Definition Process

As outlined in the case study objectives, there was no formal systems engmecnng process at CATD, and no clear
path for the downflow of systems requirements to the software and hardware engineering disciplines; thus a formalized

process definition for the case study had not been established. The approach for the case study, as shown in Figure 1, was
as follows:

Determine the scope of the model to be constructed.

Develop modeling guidclines.

Develop a formal definition model using reverse engineering techniques.

Validate subsystems models using simulation.

Integrate the subsystems into the system model and validate the entire system using simulation.

Using Graphics Kemnel System (GKS) asa graphlcs engine, developa graphlc represcntation of the user interface.

Develop prototype Ada code of the system and link it 10 the graphic' modcl of lhe user interface.

Validate the system specifications using the prototype.

DEVELOP gl
4| GUIDELINES MODEL
2 3
DETERMINE SIMULATE
SCOPE SUBMODELS
1 + 4
VALIDATE SIMULATE/
PROTOTYPE INTEGRATE
MODEL
8 / 5
DEVELOP DEVELOP |/
| INTEGRATE USER
PROTOTYPE INTERFACE
7 6
MTD 911206-2637

Figure 1. Model Definition and Validation Process

The scope of the model was based on the limited amount of resources and personal expertise of the team members.
Previous to this assignment, the team had spent a considerable amount of time studying the fault detection and isolation
capabilities of various Boeing 767 aircraft systems. As a result of this analysis the following two systems were selected
for modeling: (1) the electrical power generation and distribution (EPGD) system, which is a complex system with
limited built-in-test-equipment (BITE) capability, and (2) the communication system (COMM), which is less complex
and has good BITE capability. In addition, formal models were developed for both the CMC, which executes the fault
logic equations, and CDU (for user interface).

Modeling guidclines were established to ensure that the work of each team member interfaced with those of the

others. Since the modeling tool primarily provided a formal modeling language, specific modeling techniques were left
1o the individual team members to define and use.

Testand evaluation of the details of the definition model was performed by means of simulation, a technique in which
the user can interactively or dynamically walk step-by-step through the model to ensure that it is indeed the correct

conceptual view of the system. In parallel 1o the modeling activity, a graphic engine was used to develop a graphic model
of the user interface, the CDU.

Specification Model

Although the developed specification model was only a subset of Boeing’s total fault detection and isolation system
for 747400, the model created was considered to be very large for aresearch and development project. Upon completion,
itcontained approximately 55 functional and data flow diagrams (activity charts) and 200 state transition diagrams (state
charts), and ook approximately 6 months (2 man years) to develop. Because of the model size, a major part of the above
time was spent on integration, test, and validation of the model. In fact, the completed target system was never prototyped
initsentirety because the model was too big for the DEC Ada compiler to compile. As aresult, prototypes were developed
per single interfacing systcm. For example, the communication system prototype included the CDU, the communication
fault logic cquations of the CMC, and the fault isolation characteristics of the communication system.

The EPGD modcl was the largest of the four subsystems modeled. By itself it contained approximalcly 15 activity
charts and 55 state charts. In terms of computer memory, the electrical system was about 8 MBytes in size. The EPGD
model, as shown in Figure 2, included 37 line replaceable units (LRU), data and power interfaces (e.g., buses) and the
associated internal BITE capabilities of several LRUs. LRUs included in the EPGD system model were four generator
control units (GCU), four generator circuit breakers (GCBs), four bus tie breakers (BTBs), four ac power buses, four
power distribution units (PDUs), two auxiliary power units (APUs), two APU generator control units (AGCUs), two bus
control units (BCUs), two external power connectors (XPC), two synchronous buses (SYNC Bus) and one split system
breaker (SSB). An example of an activity chart, showing the functionality and flows (both electrical power and
information) for an intcgrated drive generator system, is shown in Figure 3. The block with rounded comers represents
the behavior of these functions (modeled separatety as a state transition diagram).

The COMM model, on the other hand, was quite smaller. It included 16 LRUs, including two HF receivers, three
VHF receivers, the associated couplers and antenna, and three radio control panels (RCPs). Data and power interfaces
were also included in the system model along with the associated intemal BITE capabilities of specific LRUs.

In developing the conceptual model, each interfacing system was modeled from two distinct viewpoints: functional
and behavioral. In Statemate, this model was described through the use of activity charts and state charts. While activity
charts described the associated system functions, state charts addressed the corresponding behavioral aspects of these
functions. In the system model, for example, activity charts were used to identify the BITE capabilities of “smart” LRUs
(those LRUs that were capable of detecting and reporting their intemal faults) while the intemnal behavior (fault
processing) was described through state charts.

While the distinction between function and behavior remained constant throughout the model, each subsysiem
employed different modeling techniques. The COMM, for example, developed a technique for fauit propagation, astep-
by-step process of visually observing fault traveling throughout the COMM 1o the CMC. The electrical system, on the
other hand, developed techniques for modeling bidirectional data as seen within the power buses. Timing effectsof faults,
such as delays and status history, were also incorporated in the electrical system model.

XPC 1 forene | SYNC BUS 1]"‘“‘"L ssB] -------- { . SYNCBUS?2 } ----- -l XPC 2 }—
aTe 1 @_ ‘ P fpez T

APU 1 APU2
SYSTEM SYSTEM
act || act acz |, I ac2 ac3 || aca ac4 | | acs
DIST BUS DisT BUS DIST BUS , BUS DIST

.................. L DC POWER GENERATOR]

LINE LEGEND:
DOTTED = POWER
SOLID = ANALOG/DISCRETE
DASHED = ARINC 429 BUS MTD911028-2461

Figure 2. Block Diagram of EPGD (AC Portion)

4 ' r ——————
|

15, 17

3 L IDG_SYS1
SYNC11 8TB1

10 GCut

RJ_GCU1_M
AC_DIST1_PWR
SYNC_BUS1_PWR
BTB1_SYNC1_PWR
AC_DIST1_PWR
AC_DIST1_PWR
IDG1_S
IDG1_GCB1_PWR
IDG1_GC81_PWR
6 Y 10 | AC_DISTI_PWR

18 114 1 7 1 | acBt s
12 | BTBI_S
GCB1 13 | GCB1_AC_BUS1_PWR
F———— - 14 | GCBI_AC_BUS1_PWR
! acy sys | ’[9 15 | BTB1_SYNC1_PWR
! - I aa— 16 | BTB1_AC_BUS1_PWR
L 17 | SYNC_BUS1_PWR

]
SS—
19 20 8 18 | AC_DIST1_PWR
t——-EDG_svm_cun@loe_svm_cun_za].— IDG1 19 | GUt_BCO1_TS

T ' 20 | GCU1_BCU2_TS
1

y
() (m) MTD 911104-2481

Figure 3. Example of an Activity Chart, Showing the Functionality of the Integrated Drive Generator System

AC1_P O AC_DIST1

e
Ge—=

WO ONDO LN~

Rapid Prototyping Process

Along with the overall project objectives, a number of more specific objectives were established for validation of
the system. First, the validation was to involve both the customer and developer (contractor). Since the customer might
not be familiar with the tools and modeling details, the system model was 1o be validated in an operational and user-
friendly environment. Second, validation was to be done early and at low cost. This would eliminate any options dealing
with exiensive development and test of software or hardware. Rapid prototyping through the use of automatic code
generalion was key to achieve this objective. Third, it was to be done thoroughly to allow both white-box and black-box
testing of the system model. Finally, the validation procedures were to be reusable during both the early validation and
postbuild validation of the system.

The validation approach, shown in Figure 4, met the above objectives. Use of the Statemate tool set provided the
capability to generate executable version of the system model in Ada for validation (directly from the specification). This
prototype code represented the total and integrated system. It included software simulating the hardware components and
software for the anticipated software components. White-box testing was done through simulation and black-box testing
of the system was provided by prototyping. Both simulation and prototyping represented real-time execution of the
requirements model within a simulated time environment. Once the system model was available, its validation could be
done very cost effectively within a few hours through the use of automatic Ada code generation capability (i.c., without
any design or implementation of software or hardware.)

Through the use of a cockpit type user interface, represented as a CDU panel, the prototype code was executed in
auser-friendly and operational type environment. System architecture diagrams, along with fault menus associated with
each LRU, were used for sclecting various operational scenarios. The model allowed as many simultaneous system
environment inputs as desirable. Upon execution of each set of input scenarios, the system prototype functioned
accordingly and displayed the results on the CDU panel.

i ‘\
SYSTEM MODEL DATA BASE)

AUTO CODE . :

+| GENERATOR)

(PROTOTYPER)
3

=+ SIMULATED
HARDWARE
COMPONENTS
K» « EXPECTED
SOFTWARE
COMPONENTS
A
Ada COMPILER/
LINKER
EXECUTABLE
PROTOTYPE
USER INTERFACE
MTD911210-2650

Figure 4. Validation Approach Using the Statemate Prototype

100

Certain modifications to the generated prototype code were necessary for integration with the GKS graphics. Since
the prototype code was very structured and cryptic, the prototyping tool created two source files specially for integrating
custom routines. These files provided “hooks” to detect and set changes in the model, and places to insert developer’s
source code to be executed at different stages (such as the beginning and at the end) of the prototype.

Much of the debugging of the integrated prototype was done to resolve GKS execution ambiguities. The
automatically generated source code, even though large, was “bug-free™. The biggest debugging effort was to “dis-
synchronize” execution of GKS routines and Statemate prototype. To realistically reflect the operating environment, the
GKS input function and the prototype functions were created as separate processes. That is, the system operator’ s actions
were independent of the prototype miodel. However, the GKS input function used a polling mechanism and stopped
executing the other programs (the prototype) during any input request. Separate system level processes were created at
the simulation platform (VAX VMS). One process was used for running the prototype and another for GKS graphics.

Communications between these two process were done through system level interprocess mail functions (VAX VMS
Mailbox).

Tools

Automation was a key element of this approach. The goal was to maximize use of tools available from vendors and
minimize those developed in house. Special consideration was given o integrating the tools and their data bases.

Several candidate systems engineering and design tools were investigated for this approach including ADAS,
Foresight, RDD-100, and Statemate. Several criteria were identified and used for evaluation of these tools such as (1)
capability to model system functional, behavioral, architectural, and information viewpoints, (2) capability 0 perform
static (syntax) tests and simulation, (3) automatic generation of software code from model, executable on host platform
for requirements validation by the user, (4) capability to generate, test and, execute models for large systems with
adequate performance, and (5) support of multiple simultaneous users potentially located in geographicaily dispersed
facilitics. Computer-aided software cngincering (CASE) tools such as Teamwork and Software Through Picturcs were
not included since they did not mcet the main selection criteria. '

The above evaluation identificd Statemale as the preferred tool among the available choices. It is a systems
engineering tool mainly used during the “front-end” part of system development. Bascd on the traditional “water fall”
model, this tool covers formal definition of the system requirements and design (including allocation of functions to
hardware and software), and validation of the requirements and design through execution of the formal requirementsand .
design models using simulation and rapid prototyping (through automatic code generation).

Asan example, Figure 5 illustrates how the project data base was used to capture the systems requirements. The data
base included three views of the system requirements modeled during this study (functional, behavioral, and information/
data), test procedure and report files, GKS graphics and text panels, and templates for automatic document generation.
The requirements were validated through performing the activities shown on the right side of the figure.

As represented in Figure 5, Statemate consists of a number of integrated software tools: (1) Kemel, which includes
graphics editors (used for generating the definition model), static (basic) tests tool, data base query utility, and standard
report generator; (2) Analyzer that handles dynamic execution and simulation of the models; (3) Prototyper that allows
rapid prototyping of the formal models in Ada or C; and (4) Documentor that can be used to generate user-defined
templates for documentation (e.g., DOD-STD-2167A). This tool set creates and uses an integrated data base.

Akey and rather unique feature of Statemate is its capability to perform dynamic testing and simulation of the model.
It focuses on the sequence of the occurrence and execution of various elements in the model including (1) external events
(e.g.. control commands, timing events, interrupts, etc.), (2) internal conditions (failures, time-outs, reconfiguration
conditions, etc.), and (3) functional elements. This capability is especially important for specification of systems with
large and complex control characteristics (e.g., modes, evenis, and time-critical functions). The simulation (and
prototyping) capability of the tool provides real-time execution of the system model within a simulated time environment.

101

DATA BASE REQUIREMENTS AND

STRUCTURE DESIGN VALIDATION
DEFINITIONS b . l
MOOEL | I OBJECTLIST |
| 11 GENERATCR |
AND DATAPCRT
ACTIVITY CHARTS | | DBOUERY/ ¢ |
CROSS-LAYER
| [| TESTS |
K [| | | ™aeseLm™ proToTYPER | |
UseR STATECHARTS - ADAORC
(SYSTEMS : ! 1 source cooe | |
ENGINEER) | 1 »| GENERATOR) |
MODULE CHARTS | (. BASTg&EST |
| PROUECT(S) 1 || wconsistency P I I
| DATA BASE - ANO r‘ vy
OICTIONARY I" 1] compreteness) _
FORMS 1 |]
DATA DB MANAGEMENT/ | D
TEXTUAL | conrcuramon | | YT
RECUIREMENT | MANAGEMENT | | | ,nppovname AR
NONFUNCTIONAL | et TESTING |
: ICF eAsLITY (BATCH OR I
| | | | WreRscTVE) USER
t o Sl | customen
’ | SYsTEMs
o | T ————= ENGINEER)
r——=-—-—=- -1 |_| __________ 7
| e b DATAPORT 1
I R s
g 1 |
| | PROGRAM MANAGEMENT | | | ARCHITECTURE DESIGN AND I
| SUPPORT —> ASSESSMENT SUPPORT |

______________________ MTD911028-24680

Figure 5. Elements of System Modeling and Prototyping Method/Tool (Statemate-Based)

The tool has built-in support functions for configuration management and traceability. Its relational data base (in
ASCII format) represents an integrated project data base that can be partitioned into a number or local data bases for
muitiple users, who may be located remotely from each other, each working on a section of the problem under study.
The tool provides adequate control for file access and security considerations.

Capabilities of Statemate were complemented by using another ool to provide user interface for rapid prototyping.
. The GKS graphics library package was used for this purpose. It provided the graphics engine that linked the user and
operational interface capability to the system model.

The ool can generate either Ada or C prototypes. The prototype was compiled and linked with predefined libraries
of routines (provided by the tooi vendor, i-Logix, as part of the prototyping tool set) 1o create an executable image for
the host computer. Since Ada or C code was generated and i-Logix provided a number of platform dependent software
packages, the prototype could be executed on most of the major work stations (such as DEC, Sun, Apollo, and IBM).

The user interface to simulate the operating environment and interact with the prototype could be created either
through the Statemate’s Panel Graphics Editor (PGE) or other commercial user interface packages such as GKS.

The PGE could define simple graphic representations (buttons, knobs, dials, etc.) of the operational environment.
However, the capabilities provided by PGE were inadequate, and the CDU display panel and the system architecture
diagrams were created using DEC GKS. These graphic panels provided realistic operational interfaces that were familiar

to the customers. All GKS graphics were placed in Ada packages and incorporated into the prototype code generated by
Statemate.

102

Each graphic button on the GKS CDU panel represented a signal (or event). When GKS detected a button was
selected or “pressed” the GKS routines set a corresponding event and triggered certain behavior in the model. Faults
injected into the model through the system architectural diagrams were represented as conditions. GKS routines were
also added at the beginning and at the end of prototype execution to start and stop the GKS graphic kemel.

Rapid Pr ing Resuyl

The major accomplishment in this study was that the prototype of the specification model in Ada, generated
automatically and executed without errors the first time after it was successfuily compiled and linked. The behavior of
the prototype truly reflected that of the model. That is, every facetof the model behaved as expected. In fact, the prototype
behaved so realistically that it even illustrated certain unexpected behavior of the actual OMS system. Every time an
aircraft is powered up, the electrical power transient causes the OMS to record “nuisance” faults from various aircraft
systems. When the electrical power (as a condition) was put into the model, the CMC portion of the model actually
exhibited behavior similar to the real OMS and detected nuisance faults from the COMM.

Although a major part of this accomplishment was a result of the modeling, validation, and automatic code
generation capabilities provided by the tool set, several other factors played important roles throughout this effort.
Among these factors were (1) partitioning of the specification model in modular elements such that each member of the
systems engineering team could work on a separate portion of the model, (2) extensive use of state transition diagrams
for modeling the fault logic equations graphically, (3) definition of relatively consistent terminologies and notations for
representing various components of each system (e.g., buses and power lines), (4) selection and proper use of the GKS
for implementation of the system user interface and integration with the Statemate model, and (5) use of a “tool
independent” systems engineering process that employed Statemate (or potentially other similar CASD tools) for its
activitics as opposed to using a process that was entirely based on the tool.

The prototype was shown to Rockwell’s engineers who worked on thé actual OMS system. The only complaint that
they had was that minor details weren’t put into the model. The prototype was then demonstrated to the OMS group at
Boeing. The reception was both astonishment and excitement. Boeing engineers were very surprised that the code
automatically generated from a requirement model could behave so close to the real system..

Both Béeing and Rockwell recognized that potential impacts of such a rapid prototype. First, requirements could
be validated by the true end user—someone who might not have the engineering background to understand a formal
requirements model. This could eliminate many ambiguitics between developers and end users. Second, the prototype
was generated with no software development effort other than the GKS user interface development. All requirement
changes were done on the model, and a new prototype could be generated in a matter of hours.

The primary control mechanism of the prototype was a clock counter. Thisallowed real-time execution of the model
within a simulated time environment. For each internal clock tick, the prototype executed all transitions (regardless of
the number) within that clock period. This could be a misrepresentation of a real-time system. For instance, the processor
in a real-time system has definite constraint on the number of instructions it could execute within a given time period.
The prototype could not handle this detailed requirement, and the system engineer building the model had 10 ensure that
the number of instructions (low level) or state transitions within a clock cycle were realistically comparable to the
processors speed in the final system.

For me model of the Boeing 747-400, including the CMC, COMM, and EPGD, the prototype code was extremely
large (about 140,000 source lines of Ada code for COMM, and the associated portion of CMC and CDU systems only).

It was estimated that the size (in terms of number of source lines of code) was roughly 20 to 25 times that of the hand-
crafted code.

The sizing problem was principally caused by the large symbol table created by the tool. A symbol table was
generated to define all elements within the model. However, the tool generated 5 to 10 Ada (or C) variables for each
element of the model (state, activity, data, event, condition, etc.). The model included between4 t0 5 thousands of such
elements. Together with other internal control elements generated by the Prototyper tool, the symbol table fjle itself was

103

close to 40 thousand lines of Ada code! However, the tool vendor has indicated that the next release of the tool would
include a much more optimized code translator, and the symbol table would be eliminated.

The size had caused problems in compiling and referencing the symbol table (for hooking up the user interface
routines). The upper limit of the DEC Ada compiler was reached during this effort, and it became necessary to manually
break up the symbol table file into multiple files for compilation. Eventuaily, the internal limits of the DEC Ada compiler
were encountered. Atthat point, the team was unable to integrate the full electrical system as part of our overall prototype.

The problem associated with the size of the model and prototype was resolved by creating submodels for each major
part of the system (COMM and EPGD). Each submodel included simulated interfaces representing the others. The
current optimization effort by the tool vendor is expected to provided a more complete resolution for this problem.

Lessons Leamed

The basic concepts for modeling, simulation, and prototyping applied to the case study were sound. They could
provide the basis of a formal systems engineering process. There are several ways to provide requirements 10 downstream
users (such as hardware and software), which include requirements documents, models, prototypes, and direct porting
of requirements from the CASD tool to CASE tools (this requirement was not actually attempted). Requirements
validation was not only possible, but proved to be an extremely powerful approach to assessing whether the requirements

were correct. Requirements prototypes were developed in a relatively straight forward fashion and provided significant
insight.

The tools used for this case study provided many capabilities useful to systemsengineers that were not available from
CASE tools. The main tool, Statemate, was one of the most capable tools of its kind, but was still relatively immature
(the CASD industry is relatively young). It was observed which formal specification languages were large and
syntactically rich; however, they took a while to learn. The simulation and prototype capabilities provided opportunity
to evaluate behavioral aspects of the system. An integrated project data base, that worked well on multiple types of
platforms, accommodated multiple simultaneous users. It also allowed geographicaily remote users to have access (o the
data base. Configuration management capability was provided s partof the tool and found tobe very crucial. Automatic
document generation from the requirements data base could be provided 10 save document generation time and ensure
compatibility of the document with the validated model.

Individuals working on the case study developed some of the fundamental systems engineering skills for defining
and evaluating system requirements. Experience from the case study was leveraged to form the basis of a formal systcms
engineering process.

As stated previously, a working rapid prototype was created from the requirements model on the first attempt. It
proved to be extremely useful for demonstrating realistic system opexauons and functions without burdening the user
with the formal language of the tool.

The size of the model and prototype, combined with the limitation of the tools in handling very large models, created
a major issue during this case study. An important lesson learned was that a separate model should be created for each
system being modeled (CMC, COMM, and EPGD). In fact, the DEC work station (VAXStation 3100 with 24 Mbytes
of memory) performance suffered when the model became very large. There were several i unponam reasons for breaking
up the complex systems into multiple models:

1. The load would be eased on the computer(s) running the simulation. As the model got more complex, the size of

the prototype grew in orders of magnitude. Eventually, the system was overloaded, unable to compile the prototype
code generated.

2. Each prototype of a system (or subsystems) could be run on separate computers. This would make the user interface
easier to manage.

104

3. The most important benefit of breaking up the model was modularity. In reality, not all avicnics systems inside an
aircraft are packaged into one system, but are integrated through well-defined interfaces. By breaking up the model,
the systems engineer would confine the domain of a system (through a model). This would make debugging and
modification of the model much simpler.

lusion

This case study demonstrated that through the use of formal specification methods and tools, rapid prototyping
(through automatic code generation) can be used for validation of system requirements and design by the system users.
This early validation would identify the emrors associated with system requirements and design, and prevent their
propagation. The study indicated that while automatic code generation could be very effective in generating a system
prototype, the front-end formal modeling effort and its attributes (such as capturing and integrating multiple views of

the system) play an important role in adequate validation of the system requirements and design prior to the system
implementation.

The study demonstrated that Statemate is a useful tool for formal system modeling and validation through
prototyping and automatics code generation. In fact, the survey of the available tools indicated that this tool was one of
the few that provided automatic code generation capabilities. However, several features of the tool (Release 3.0) should
be improved. One such feature was the size of the automaticaily generated code, about 20-25 times larger (and less
efficient) than the hand-generated code. Another desired feature was the reuse of the components of the formal model
(inamore object-oriented fashion). The future release of the tool is expected to improve these features. Some preliminary
benchmarks have indicated that the automatically generated code is now about 5 times larger than the hand-crafted one
and the code is more readable.

The approach described in this paper is suitable for control-oriented applications where the behavior of the system,
based on a set of events and conditions, is to be defined and analyzed. On the other hand, the approach is not very strong
in handling data-driven applications. This deficiency can be overcome by adding more object-oriented capabilities to the
methods and tools used under the approach. A potential area of future research related to this work includes improvement
and validation of the automatic code generators for producin production-quality software directly from formal
requirements and design specifications. This would significantly reduce the cost of software engineering process.

Acknowledgment

The authors would like to express their acknowledgment to Jim Curren, Scott Sweet, and Tycho Hayashibara for
their support and contributions.

References
1. Onboard Maintenance System, Aeronautical Radio Inc., ARINC 624 (1988).
2. Page-Jones, M. The Practical Guide to Structured Systems Design. Yourdon Press (1980).
3. Structured Analysis for Real-Time Systems. Yourdon Inc. (1984).

4. Hadey, DJ. The Use of Structured Methods in the Development of Large Software-Based Avionics Systems.
Proceedings of Structured Analysis Workshop (1985).

5. The Language of Statemate, i-Logix Inc. Burlington, Massachusetts (1990).

105

