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Automatic Generation of Self-Scheduling Programs

Jan Foster

Abstract— We describe techniq for the aut tic generation of
self-scheduling parallel programs. Both scheduling algorithms and the
concurrent components of applications are expressed in a high-level
concurrent language. Partitioning and data dependency information are
expressed by simple control statements, which may be generated ei-
ther automatically or manually. A self-scheduling compiler, implemented
as a source-to-source transformation, takes application code, control
statements, and scheduling routines and generates a new program that
can schedule its own execution on a parallel computer. The approach
has several advantages compared to previous proposals. It generates
programs that are portable over a wide range of parallel computers.
There is no need to embed special control structures in application
programs. Finally, the use of a high-level language to express applications
and scheduling algorithms facilitates the development, modification, and
reuse of parallel programs.

Index Terms—Algorithmic abstraction, concurrent programming, high-
level language, load balancing, portability, program transformation, self-
scheduling program.

I. INTRODUCTION

MAN Y interesting parallel algorithms require load-balancing
mechanisms that dynamically partition a problem into
suitably sized tasks and schedule these tasks on processors. Load
balancing is often viewed as the responsibility of the hardware,
operating system, or run-time system—that is, low-level system
components. For example, in the Rediflow system, processors
exchange load information and migrate processes to neighbors
with less load [13]. Sequent multiprocessors use a special bus to
communicate load information [17]. Parallel Prologs incorporate
specialized schedulers [14].

Unfortunately, low-level support for load balancing is in-
flexible. Automatic mechanisms cannot easily exploit particular
properties of an application, such as locality. Reliance on low-
level facilities also compromises portability. Hence, we prefer
an alternative approach that incorporates scheduling code in
applications to yield self-scheduling programs that require little
low-level support. This approach permits scheduling strategies
to be tailored to particular applications. Self-scheduling pro-
grams can be generated manually. However, bookkeeping and
synchronization issues provide many opportunities for error.
It is preferable if the programmer can invoke a compiler to
automatically generate a self-scheduling version of a source
program.

The automatic generation of self-scheduling programs has been
studied previously in the context of Fortran by Polychronopoulos
[15], among others. However, Polychronopoulos focuses on
the scheduling of fine-grained tasks (DO-loop iterations). Babb
[1], Boyle et al. [2], and Dongarra and Sorenson [6] describe
techniques for larger-grained tasks. However, their techniques
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require that the programmer restructure application code and
embed calls to control macros. Furthermore, the techniques are
based on a shared-memory model and hence are not directly
portable to local-memory machines.

We advocate an alternative approach. We assume that applica-
tions are expressed using a bilingual programming style in which
a high-level concurrent language such as Strand [9] or PCN
{4] is used to organize the concurrent execution of sequential
components implemented in low-level languages (Fortran and
C) [7]. We show how a self-scheduling version of a bilingual
program can be generated by an automatic source-to-source
transformation of the program’s concurrent component. The
transformation is directed by simple control information that
specifies partitioning and data dependency information. The self-
scheduling version of the program is linked with scheduling
routines contained in libraries, to provide a program that can
schedule its own execution on a parallel computer. We describe
transformations appropriate for an important class of programs,
and report on our experiences employing the techniques in
applications.

This approach has a number of advantages. The use of a
high-level notation makes it easy to express and modify both
application-specific algorithms and scheduling algorithms. Fur-
thermore, the separation of concerns achieved by separate speci-
fication of application, partitioning, and scheduler reduces overall
complexity. As the self-scheduling compiler is implemented
as a source-to-source transformation, the portable compilers
and run-time systems that have been developed for Strand
[10] ensure portability of self-scheduling programs across both
shared-memory and local-memory computers. Finally, as com-
putationally intensive components may be written in languages
such as Fortran or C, performance and existing software can be
preserved.

II. PRELIMINARIES

A. Strand

The high-level programming language Strand [9] is used
throughout this paper to express concurrent algorithms. Here we
summarize key features of the notation.

Strand is a member of the family of languages commonly
referred to as concurrent logic languages. Research in concurrent
logic programming originated with the Relational Language of
Clark and Gregory [S]. Subsequent proposals have included
Concurrent Prolog, Parlog, FCP, and Guarded Horn Clauses.
Strand captures the essential concepts of previous proposals in a
simple and practical parallel programming tool.

A Strand program is a collection of guarded rules with the
form

H:—G17G27"'~,GmlBlyBZ1"'7Bn manZO
where H is the rule head, “:—” is the implication operator, the

G’s are the rule guard, “|” is the commit operator, and the B’s are
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the rule body. Rules in which the heads have the same name and
number of arguments are grouped into a process definition. The
head and guard of a rule define conditions that must be satisfied
before a process can execute (reduce) using the rule; the body
specifies new processes to replace the process if these conditions
are satisfied. The program in Fig. 1 illustrates the notation.

The notation [Head|Tail] denotes a list structure with a Head
and a Tail. An alternative tuple notation can also be used to
denote structured data: A term {T'1,---,Tn} denotes a tuple
with subterms T'1,---,Tn. Strings beginning with uppercase
letters denote variables, while those with lowercase letters denote
constants. The assignment primitive “:=” is used to assign values
to variables, which have the single assignment property: the value
of a variable is initially undefined and, once provided, cannot be
modified. An attempt to assign to a variable that already has a
value is signaled as a run-time error.

The state of a Strand computation is represented by a pool of
extremely lightweight processes. Execution proceeds by repeat-
edly selecting and attempting to reduce processes in this pool.
For example, if an initial process pool contains the single process
go(4) (defined in Fig. 1), this can be immediately reduced with
rule 1 to create two new processes, producer and consumer.

Processes communicate by reading and writing shared vari-
ables. The example program illustrates a common communication
structure, in which a producer incrementally instantiates a shared
variable to a list structure (R2), hence communicating a stream
of values (the list elements) to a consumer (R4). In the example,
the values communicated are themselves variables (X, X',---).
The consumer process acknowledges these “communications”
by assigning each variable that it receives the value sync (R4).

The availability of data serves as the synchronization mecha-
nism. Conditions expressed by nonvariable terms in a rule head
define dataflow constraints: a rule can be used to reduce a process
only when the process’s arguments match its own. Synchronous
communication protocols can be constructed in terms of this
inherently asynchronous model. In the example, producer and
consumer use acknowledgment messages to communicate syn-
chronously. The consumer process waits for a communication
from producer; the recursive call to producer waits for the
variable it has communicated to be assigned the value sync. After
sending four messages, the two processes terminate.

Note that read and write operations on variables are clearly
distinguished. Read operations are performed when attempting
to reduce a process. They suspend if they encounter an unbound
variable. Write operations are performed by the assign primitive.

Strand is supported on a wide variety of MIMD parallel
computers including hypercubes, meshes, transputer surfaces, and
shared-memory machines. On a parallel computer, the processes
comprising a computation may be distributed over many pro-
cessors. A run-time system located at each processor ensures
that read and write operations complete successfully, wherever
shared variables are located.

B. Program Development Strategies

Strand encourages the following approach to the development
of parallel programs. A set of process definitions is constructed
that defines the operations that must be performed to solve a
problem and the data consumed and produced by each operation.
Individual operations may themselves be specified in Strand or
may invoke sequential code written in other languages. This
initial program specifies a parallel algorithm but not how opera-
tions are to be clustered or allocated to processors. Partitioning
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and mapping issues are addressed in a separate development
stage, typically by annotating the source program to indicate
processes that are to be executed on remote processors [9]. A
preprocessor translates the annotated program into a form suitable
for execution on a parallel computer.

An important advantage of this approach is that it is fre-
quently possible to experiment with alternative partitioning and
scheduling strategies simply by providing alternative annotations.
This form of experimentation is typically not supported by con-
ventional approaches to parallel execution, where an alternative
partitioning requires a complete restructuring of the application.

The separation of concerns between application and scheduling
issues has previously been supported by tools based on the
concept of virtual machines [16]. A virtual machine is an abstract
connection topology and an associated set of mapping annota-
tions. For example, ring connectivity with annotations @bak
and @fwd, and total connectivity with annotations @random
and @N. Although useful, these tools do not support load
balancing and hence are often ill suited for applications with
irregular or dynamic load. In this paper, we develop alternative
and complementary techniques that enable separate specification
of partitioning and mapping for applications that require load
balancing.

C. Directed Partitions

The techniques developed in this paper are applicable to an
important subset of Strand programs, namely, those programs for
which it is possible to define a directed partition. We introduce
this class of programs here.

By default, a process and its offspring execute on the same
processor. However, a partition of a Strand program identifies
certain processes in rule bodies as tasks. These processes (and
hence their offspring) are candidates for execution on other
processors. For example, one possible partition of the program
in Fig. 1 would identify the producer and consumer processes
in rule 1 as distinct tasks. Execution of a process go(4) with
this program would then generate two tasks. In general, the
recursive nature of Strand programs means that the number of
tasks generated by a program’s execution can be arbitrary and
dynamic.

The execution of a program can conveniently be represented
by a process tree, in which a node represents a process and a
node’s offspring represent processes in the body of the rule used
to reduce that process. For example, Fig. 2 represents the upper
levels of the tree corresponding to a computation initiated by the
process go(4) using the program in Fig. 1. A task in a program
corresponds to a subtree in a process tree. The two tasks specified
by the partition described previously are highlighted in Fig. 2.

A task (subtree) A is said to be data dependent on another task
(subtree) B if B is required to execute in order that data required
by A become available. In the example partition, the consumer
and producer tasks are data dependent on each other: consumer
processes in the consumer task require messages produced by
producer processes; producer processes in the producer task
require acknowledgments produced by consumer processes.

A partition is said to be directed if there are no cyclic data
dependencies between the tasks that it creates. Note that this
definition does not preclude data dependencies, but requires that
it be possible to define a sequential ordering of task executions
that will execute to completion without deadlock. Many, but
by no means all, parallel algorithms can be expressed with
directed partitions, which have the advantage of never requiring
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go{N) :— producer(N Xs,sync), consumer(Xs). % R1
producer(N,Xs,sync) :— % R2

N >0 |Xs:=[X]|Xs1], NlisN -1, producer(N1,Xs1,X).
producer(0,Xs,.) :— Xs :=[]. % R3
consumer({X | Xs]) :— X := sync, consumer(Xs). % R4
consumer([]) % R5

Fig. 1. Example Strand program.
go(®) We consider a view of program execution where a computation

producer (4,Xs,sync

producer consumer

Fig. 2. Producer/consumer process tree.

coscheduling. Note that the example partition is not directed; the
producer and consumer tasks are mutually data dependent and
must be scheduled concurrently to avoid deadlock.

Fig. 3 presents a program for which a useful directed partition
can be defined. This is the (somewhat simplified) top level
of a solution to the state-space search problem. This problem,
which occurs in areas as diverse as VLSI design and molecular
dynamics, may be stated as follows: Start from an initial state
and apply transition rules to obtain further states, until one or
more final states are reached. Alternatively, the problem may
be viewed as the exploration of a tree (rooted in the initial state)
looking for leaves that satisfy some criterion (i.e., are final states).

The three rules in this program can be read as follows. A
problem is reduced by invoking a process to explore a portion
of the corresponding tree, splitting any remaining problem into
subproblems, and proceeding to reduce these subproblems (R1).
Each subproblem is reduced independently (R2-3). Solutions
are collected using a programming technique called a difference
list [9]. This technique permits many processes to cooperate in
building a list. Each process is given the head and tail of a
part of the list and can either insert values into this sublist or
assign the list tail to the head, hence inserting nothing. Note
that the program does not provide an explicit specification of a
parallel execution strategy. Nevertheless, the potential for parallel
execution is clear and can be expressed in terms of a directed
partition. Each reduce process is made a task.

This is, of course, a very simple example. Nevertheless, it
allows us to point to some advantages of our approach. The
high-level specification is more concise than equivalent programs
written in Fortran or C. Opportunities for concurrent execution
are explicit and can be exploited (by mapping processes to
processors in a parallel computer) without changing the result
computed.

D. Formalization

We now provide a more formal description of directed par-
titions. This material is not essential to an understanding of
the paper; the reader who is happy with the preceding informal
presentation can safely skip the rest of this section.

consists of a sequence of states. Each state can be represented
by a process tree, and transitions between states are strictly
defined by transition rules [11], [9]. We use a function CMatch
to represent head matching and guard evaluation. This function
takes as arguments a process p and a rule of the form H : — G | B.
It executes the match algorithm (used to match a rule head with
a process) followed by guard execution and returns a substitution
© for variables in H if match(p, H) = © and GO = true; or
suspend otherwise.

States: The state of a computation is a process tree T whose
nodes are labeled by processes. The distinction between a node
(n) and the process that labels it ( p) is strictly necessary because
processes need not be unique. However, for brevity in exposition
we will speak simply of a node p in subsequent discussion. Every
process in T either is or is not an assignment process of the form
X : = t. We define a function open_leaves(T") which returns
the set containing the open leaves of a process tree 7. A node is
open if it has not taken part in a transition (see below).

The initial state of a computation with processes pi,-- -, Pk is
the tree with nodes p,- - -, px as offspring of the root.

Transitions: A transition rule specifies a mapping between
states. Execution of a program P proceeds according to the
following transitions:

Reduction: T — T’

If p; € open_leaves(T) Ap, # (X:= t) A CMatch
(piyH:—G|B) = © where H : —G|B is a fresh
copy (new variables) of some R € P, and T" is derived
from T by adding the processes BO as offspring to p;.

Assignment: T — T'

If p; € open_leaves(T) Ap, = (X := t) where X is a
variable that does not occur in ¢, and T’ is derived from
T by applying the substitution [X\¢#].

Suspension: T — <suspend>

If open_leaves(T) = ¢ AV p; € open_leaves(T)(p; #
(X :=t) A (Y R € P, CMatch(p;,R) = suspend)).

Note that in the reduction rule no nodes are added to the new
state if B is the empty body.

Computations: A computation is a sequence of states, each
derived from the prior state by application of a transition rule,
and ending in a terminal state (i.e., one in which no further
rules can be applied). A computation that ends in a state T is
called a successful computation, and 7 is its computation tree.
Note that a computation contains information not represented by
its tree: namely, the order in which independent reductions and
assignments are performed.

In the following, we will sometimes refer to the computation
tree for a computation C simply as “the tree C.” We restrict our
attention to successful computations. We write descc(n) to denote
the set of descendants of a node n in the tree C. We employ the
function p_mapcp, which maps nodes in C to processes in the
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n

reduce( Prob,Solns,Solns2) :—

% R1

process_prob(Prob,NewProb.Solns,SoInsl),

split_prob(NewProb, Probs),
reduce_all(Probs,Solns1,Solns2).

reduce _all([Prob | Probs],Solns,Solns2) : —

reduce(Prob,Solns,Selns1),
reduce _all(Probs,Solns1,Solns2).

reduce _all([],Solns,Solns1) :— Solns := Solnsl.

% R2

% R3

Fig. 3. State-space search example.

program P executed by C. This function is defined for all nodes
except the root node and its immediate offspring. It maps each
offspring of a node n to the corresponding process in the rule
in P used to reduce n.

Data Structures: A computation constructs a set of data
structures by instantiating variables in the computation tree.
Positions in these data structures can be referred to by data
positions with the form <n,u>, where n is a tree node and
u is a path to a position in n.

Each data position has one or more providers and zero or more
consumers. A process provides a data position if it produces
or propagates the value at the position. A process consumes a
data position if it reads the value at the position. We formalize
these notions by extending the transition rules to construct the
following functions:

Provides: Data-Position — P(Tree-Nodes)

Consumes: Data-Position — P(Tree-Nodes).

Reduction Rule (which reduces a node n; to B with substitution
©, using rule H : — G| B). Each data position d in r; that is read
by the application of CMatch is tagged as consumed by n; : n; €
Consumes(d). The data positions that are read by CMatch are
those that are matched against nonvariable terms in the rule head
H or to which guard tests in G are applied.

Application of the reduction rule also tags all data positions
d in B as provided by n; : n; € Provides(d’). Furthermore,
the substitution © produced by CMatch and applied to body
processes is assumed to propagate any tags on data positions in
n; to the corresponding data positions in B.

Assignment Rule (which executes a process n; = (X : =t)
and applies the substitution [X\¢] to tree T to derive T'). T’
is derived from T by placing an occurrence of ¢ at each data
position d containing X. All data positions d’ at and below each
such d are tagged as provided by n; : n; € Provides(d’). In
addition, any tags on data positions in ¢ at n; are propagated to
the corresponding positions at or below each d, and any tags
on d are propagated to nodes below d. The propagation steps
ensure that nodes provide entire subtrees, even if these subtrees
are incomplete at the time the node is executed.

Node Ordering: Let <. be the least partial order on the nodes
in a tree C that satisfies the following conditions. These state that
1) the provider of a data position executes before its consumers
and 2) a parent executes before its offspring.

1) V data position d, V p,q € Nodes(C),

p € Provides(d),q € Consumes(d) — p<c¢q.

2) V p,q € Nodes(C),q € desce(p) — p<cgq.

A subtree rooted at node p in a tree C is dependent
on the subtree rooted at node g if there exist nodes
a € descc(p),b € descc(g) such that b<c a.

Definition 1: A program P is directed if no computation

contains a pair of disjoint, mutually dependent subtrees. That
is, for any successful computation C of P:

V¥ p,q € Nodes(C),p ¢ descc(q), g ¢ desca(p) —
A (u,v € desco(p),z,y € descc(g)) : u<oc T Ay <cv.

O
Partition: A partition of a program tags certain processes in
rule bodies with task names. For simplicity, we consider only
partitions in which each task name tags a single process. Let the
function taskp, define a partition L of a program P: tasky.(p)
returns a task name if process p is tagged by L and ¢ otherwise.
Hence, the subtree rooted at a node n in a tree C of P is a task
iff tasky (p_mapcp(n)) # ¢.
Definition 2: A partition L of a program P is directed if no
computation contains a pair of mutually dependent tasks. That
is, for any successful computation C of P:

V p,q € Nodes(C), taskp (p_mapcp(p)) # ¢,
taskpr(p_map:p(q)) # ¢,p € descc(q),
q ¢ descc(p) —
3 (u,v € desce(p), 7,y € descc(q)) tu<cz Ay <cv.

O
Observation 1: All partitions of a directed program are di-
rected. (Note, however, that this is not the case if partitions are
permitted to define tasks containing two or more processes.)
Observation 2: Directed partitions can be defined for some
programs that are not themselves directed.

III. THE APPROACH

We now introduce the techniques used to generate self-
scheduling programs. A compiler transforms an application into
a form suitable for linking with scheduling routines provided
in a library. Both the compiler and the scheduling library are
application independent. Furthermore, the application/scheduler
interface is designed to facilitate the substitution of alternative
schedulers.

We introduce these ideas by presenting a simple scheduler,
defining its interface, and showing how a compiler transforms an
application program to fit this interface. Initially, we consider the
problem of scheduling tasks in the absence of data dependencies.

A. Scheduler

We use a simple manager/worker scheduler to illustrate issues
in scheduler implementation and scheduler/application interfaces.
This scheduling algorithm employs a central manager which
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maintains a pool of pending tasks and allocates tasks to idle work-
ers. Clearly, the use of a central manager renders this particular
algorithm inappropriate for large parallel machines. In practice,
we frequently use alternative hierarchical or random scheduling
algorithms. However, we choose to present the manager/worker
algorithm here as its simplicity permits a complete exposition
within the confines of this paper. The essential techniques apply
directly to the more sophisticated, scalable schedulers.

The process structure employed by the manager/worker sched-
uler is illustrated in Fig. 4. Six worker processes are shown
(W1,---,W6); these are responsible for both processing tasks
and generating new tasks. A single manager (M) allocates tasks
to idle workers. Each worker has two streams to the manager,
which it uses to communicate requests for work and task pool
contributions, respectively. The manager returns tasks to workers
by assigning values to variables included in request messages.

The complete scheduler program is presented in Fig. 5. It
consists of three distinct parts. Rules 1-3 create the process
network illustrated in Fig. 4. A call to scheduler (R1) has the
general form scheduler(¥, FirstTask) where N is the number of
workers to create and FirstTask is a term representing an initial
process to be placed in the task pool. The scheduler process
creates a manager and two mergers (R1), plus a workers
process which recursively creates N worker processes (R2-3).
The low-level process mapping annotation @N is used to place
the worker processes on processors 1—N; other processes are
created on processor 0 by default. The purpose of the two
primitive merger processes associated with the manager (R1)
is to combine the multiple streams from the workers into single
request and task streams (Rs, T5). The merge messages generated
for each worker register request and task streams with the
mergers, establishing connectivity (R2) [9].

The second part of the program, rule 4, implements the man-
ager logic. This repeatedly matches requests for work (req(R))
with tasks (7). Tasks are returned to requesting workers by
assigning to the variable included in a request message (R).

The third part of the program, rules 5-6, implements the
worker logic. This repeatedly requests a new task from the
manager and calls execute to execute this task to completion. The
execute process provides the interface to the application code. It
assigns the constant [] to the variable Proceed when execution
of its task is complete. This permits a worker to sequence the
execution of tasks. Sequencing is achieved with the head match
[1 (R6). A new task is requested each time a task is started; this
permits overlapping of communication and computation.

The more subtle details of this program may not be immedi-
ately intelligible to the reader unfamiliar with Strand. However, it
should be clear that the use of a high-level notation has permitted
a succinct and elegant specification of a relatively complex paral-
lel algorithm. It is emphasized that Fig. 5 constitutes a complete
implementation of the manager/worker scheduler. Clearly, 16
lines of code cannot be too difficult to understand or modify.

B. Interface

A worker invokes an execute process to execute application-
specific code. This process constitutes the scheduler/application
interface. We consider the nature of this interface here.

An application process invoked by execute must return two
data objects: a list of offspring tasks to be passed to the manager,
and a variable that will be bound (assigned a value) when all off-
spring processes not dispatched as tasks complete execution. The
latter information permits a worker to sequence task execution.

@)

@x

®‘/@
=

S

®
®

@®

Fig. 4. Scheduler process structure.

The compiler extends the application program with code
to construct these data objects. This code utilizes two related
programming techniques, both of which involve threading vari-
ables through application code: the difference list, presented in
Section II-C, and the short circuit. The latter technique permits
termination detection in a set of concurrent processes. A process
requiring termination detection is augmented with two additional
variables representing the left and right sides of a circuit. This
circuit is split among offspring processes and closed if a process
terminates. A value placed on the left side will become available
on the right only when the computation initiated by the original
process has terminated [9].

The form of the scheduler/application interface is determined
by the techniques used in the compiler to construct the task list
and termination variable. A call to execute has the general form

execute(Task, Ts, Ts1,[], Proceed)

where Task identifies the application process to be executed by
the worker, Ts and Ts1 are the head and tail of the difference list
used to collect additional tasks, and [], Proceed are a short circuit
used to detect termination of the task. The variable Proceed is
assigned the value [] when all nondispatched processes generated
by execution of Task have completed.

C. Compiler

The scheduler/application interface requires that the appli-
cation program be partitioned into tasks to be invoked by an
execute process. Each task must 1) generate a (possibly empty)
set of new tasks and 2) set a variable to signal completion. These
requirements can be satisfied by transformation of the program,
using three basic techniques.

1) Dispatch tasks: Each process in the original program that
is to be dispatched as a task is translated into a message
to the scheduler. The message comprises the process name
and process arguments.

2) Detect termination: Process definitions invoked by tasks
are augmented with termination detection code.

3) Construct interface: An execute rule is generated for each
type of task dispatched by the program.

Consider the program in Fig. 3. Assume that each reduce
process is to be a task. Application of the three techniques
yields the program in Fig. 6. Note the additional arguments
used to implement the difference list (TS, etc.) and short cir-
cuit (D, etc.). Note also the replacement of the process re-
duce( Prob, Solns, Solns1) by a message representing this process
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scheduler(N‘FivstTask) ‘-
manager([FirstTask | Ts),Rs),

merger(Rs1,Rs), merger(Ts1,Ts),

workers(N, Ts1,Rs1).

workers(N,Ts,Rs) :—
N>0 |

% R1

% R2

Ts := [merge(W) | Ts1], Rs := [merge(R) | Rsl],

worker(W,R)@N, N1is N -1,
workers(N1,Ts1,Rsl).

workers(0,Ts,Rs) :— Ts:= [], Rs :=[].
manager([T | Ts].[req(R) | Rs]) :— R := T, manager(Ts.Rs).

worker(Ts,Rs) :— Rs := [req(Task) | Rs1], worker1(Ts,Rs1,[], Task).

worker1(Ts,Rs,[] Task) :—
Rs := [req(Next) | Rs1],

execute(Task, Ts, Ts1,[],Proceed),
workevl(Tsl.Rsl,Proceed,Next).

% R3
% R4
% RH

% R6

Fig. 5. Simple manager/worker scheduler.

and its arguments (R2). The head and tail of the new task stream
(Ts, Ts1) are not passed to process_prob or split_prob, as these
processes cannot generate new tasks (R1). The single execute
rule implements the scheduler/application interface: receipt of
a reduce message causes the worker to start execution of the
application’s reduce process definition.

The reader is encouraged to study Figs. 5 and 6 carefully.
Together, these constitute a self-scheduling state-space search
program. A call to scheduler (Fig. 5) with an initial reduce mes-
sage leads to the invocation of the reduce process (Fig. 6) with
appropriate arguments. This in turn may lead to the generation of
further reduce messages and hence additional invocations of the
reduce process. The scheduler ensures that each call to reduce
occurs on an idle processor.

D. Discussion

The program developed in this section (Figs. 5 and 6) need
be augmented only with definitions for process_prob and
split_prob to obtain a self-scheduling program that can be
executed on a parallel computer. This program employs a
load-balancing strategy to allocate tasks to idle processors and
executes only a single task at a time on each processor. These
techniques enhance processor utilization and reduce memory
consumption.

We have used the self-scheduling program to good effect
to parallelize two state-space search problems: a molecular
dynamics code (5000 lines of Fortran) and a bin-packing problem
(1500 lines of C). Both codes have been ported to shared-memory
and local-memory parallel computers without modification. Good
speedups were achieved on both classes of machine. On hy-
percubes, a hierarchical scheduler was substituted to reduce the
bottleneck inherent in a central manager. This substitution was
achieved without modification to the application code or to the
compiler used to transform the application code.

IV. DerINING TASKS

We now present a notation for specifying the partitioning
and data dependency information required by self-scheduling
compilers. Statements in the notation can be generated either
automatically or manually; each approach has its advantages. In

the rest of this paper, we assume that appropriate statements have
been provided and do not concern ourselves with how they are
generated.

The notation comprises two types of control statement. The
first, —initial, specifies the name of a process to be provided as
an initial task. The second, —task, has the general form

—task(Rule, TaskProcess, DependentProcesses)

and specifies that, in a named Rule, the specified TaskProcess
forms a task that can be safely scheduled after processes in the
task’s dependency set (those named in the list DependentPro-
cesses) have completed execution. Both rules and processes are
specified by “name/index” terms. The index can be omitted if the
omission does not introduce ambiguity. For example, the partition
developed in Section III-C for the state-space search example can
be expressed using the following two control statements.

—initial(reduce).
—task(reduce _all/1, reduce,[]).

V. Dara DEPENDENCIES

We now show how the scheduler and compiler techniques
introduced in Section Il can be extended to deal with data
dependencies. We once again illustrate the discussion by pre-
senting a simple scheduler library, describing the associated
scheduler/application interface, and showing the results of ap-
plying the transformation required to support this interface to an
example program.

A. Example Program

The program in Fig. 7 will be used to illustrate the discussion
of scheduling in the presence of data dependencies. This is the
(greatly simplified) top level of a program developed by Over-
beek et al. to generate alignments (which identify similarities
and differences) of related sequences of genetic material (RNA)
[3]- Briefly, the rules state that one aligns a set of sequences
by partitioning the set into chunks using structural information,
aligning each chunk, and gluing the aligned chunks together
(R1). Each chunk is aligned separately (R2). To align a single
chunk, an attempt is made to find a pin, a unique subsequence
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reduce(Prob,Solns,Solns2,Ts, Ts1,D,D03) :—

% R1

process_prob(Prob,NewProb,Solns,Solns1,D,D1),

split_prob(NewProb,Probs,D1,D2),

reduce_all(Probs,Solns1,5o0lns2,Ts, Ts1,02,D3).

reduce all([Prob | Probs],Solns,Solns2,Ts, Ts2,D,D1) : —

% R2

Ts := [reduce(Prob,Solns,Solns1) | Ts1],
reduce_all(Probs,Solns1,Solns2,Ts1,Ts2,D,D1).

reduce all([],Solns,Solns1,Ts,Ts1,D,D1) : —

% R3

Solns := Solnsl, Ts := Tsl, D1 := D.

execute(reduce(P,5,51),Ts, Ts1,D,D1)

reduce(P,5,51,Ts, Ts1,D,D1). % R4

Fig. 6.

Transformed state-space search example.

alignment(Sequences, Alignment) : —
partition(Sequences, Partitions),

align_chunks(Partitions,SubAligns),

glue(SubAligns,Alignment).

align_chunks([Chunk | Tseqs] AlignedChunks) :—

% R1

% R2

AlignedChunks := [AlignedChunk | Tchunks],

align_chunk(Chunk,AlignedChunk),

align_chunks(Tseqs, Tchunks).

align_chunks([ ] AlignedChunks) : — AlignedChunks := {].

align_chunk(Chunk, AlignedChunk) :—

pins(Chunk, BestPin),

% R3

% R4

divide(Chunk,BestPin, AlignedChunk).

divide(Seqs,BestPin Alignment) : —
BestPin # [] |

% R5

split(Segs,BestPin, Left,Right,UnPinned),
align_chunk(Left,LAligned), align_chunk(Right,RAligned),
align_chunk(UnPinned,UnPinnedAligned),

combine(LAligned, BestPin,RAligned, UnPinnedAligned, Alignment).

divide(Seqgs,[],Alignment) :— dynamic_prog(Seqs,Alignment).

% R6

Fig. 7. Top level of alignment program.

that occurs only once in each of a subset of all sequences
(R4). A pin can be used to partition a chunk into left, right,
and unpinned subchunks. If a pin is found, each subchunk is
aligned separately and the resulting aligned chunks are combined
(RS). Otherwise the entire chunk is aligned with a dynamic
programming algorithm (R6).

The alignment program has considerable potential for parallel
evaluation. For example, each align_chunk process created by
align_chunks can be executed in parallel (R2), as can the
align_chunk processes created by divide (RS). However, data
dependencies constrain the order in which processes can be
executed. For example, in RS the align_chunk processes cannot
be executed until the split process has completed execution,
and the combine process cannot execute until the align_chunk
processes have completed. This partition and associated data
dependencies can be represented by the control statements pre-
sented in Fig. 8. These data dependencies must be taken into
account when scheduling tasks. As each worker executes tasks
serially and to completion, the scheduling of a task for which
data dependencies have not been resolved can cause busy waiting
and/or deadlock.

Note that the core of this program is a prototypical divide-
and-conquer algorithm: rules 5 and 6 recursively partition a task
into subtasks, solve the subtasks independently, and combine

—initial(alignment).

—task(alignment glue,align_chunks).
—task(align_chunks/1,align_chunk,[]).
~task(divide/1,align_chunk/2,split).
~task(divide/1,align_chunk/3,split).
~task(divide/1,combine,[align_chunk/1,align_chunk/2,align_chunk/3]).

Fig. 8. Control statements for alignment program.

results to construct a final solution. We cannot solve this problem
efficiently using the static mappings sometimes proposed for
divide-and-conquer problems (e.g., [12]), as the number and size
of tasks are data dependent and variable.

B. Enhanced Scheduler

We illustrate the treatment of data dependencies in sched-
ulers by presenting a variant of the manager/worker scheduler
of Fig. 5 that deals with dependencies. As before, the choice
of a simple example is motivated by a desire to present a
complete algorithm. The new scheduler extends the program
of Fig. 5 in two ways. First, a task is represented by a more
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complex data structure, a tuple of the form
{Process, Done, Dependent Vars}

where Process is a representation of a task and its arguments;
Done is the task’s termination variable, a unique variable to be
assigned a value after the task has completed; and Dependent-
Vars is a (possibly empty) list of termination variables of the
processes on which this task is dependent.

The second extension to Fig. 5 is the introduction of a filter
process, placed between the workers and the manager. This
process delays each new task generated by workers until the
termination variables of any tasks on which the task is dependent
have been assigned a value. This ensures that the manager
receives only those tasks that are ready for immediate execution.

The enhanced scheduler is presented in Fig. 9. Rules 2-5 are
omitted as they are the same as in Fig. 5. Note the creation of
the additional filter process (R1), and observe how this process
creates an await process each time it receives a new task from
a worker (R7). An await process delays until each termination
variable in a task’s dependency list has been assigned a value,
and then passes the task to the manager (R8-9).

It is interesting to compare Figs. 5 and 9. Note that only a
small extension to Fig. 5 was required to obtain the enhanced
functionality of Fig. 9. This emphasizes an important advantage
of a high-level notation: scheduling algorithms can be modified
easily.

C. Interface

The new scheduler, like the old, is completely application
independent. It can be used to execute any program that obeys
its scheduler/application interface. This interface is expressed in
terms of an execute process with seven arguments. The first five
arguments fulfill the same functions as in the first scheduler. The
last two arguments implement an additional short circuit, used
to bind a task termination variable when execution of the whole
task, including subtasks, has completed. The task termination
variable is used to signal when dependent tasks can be passed to
the scheduler. The execute process has the general form

execute(Task, Ts, Tsl, [], Proceed, {], Done).

As before, Task and Ts, Tsl represent the application process
to be executed and the task difference list, respectively. The
remaining terms represent a local short circuit and a task short
circuit, used to bind the local and task termination variable
(Proceed and Done, respectively).
A process invoked by execute either
1) executes Task to completion and then closes the difference
list and the two short circuits; or
2) executes part of the task, closes the local short circuit,
generates new tasks corresponding to the rest of the task,
and links the termination variables of these tasks into the
task short circuit.
A new task is represented by a term of the form
{Task, Done, DependentVars}, as explained previously.

D. Enhanced Compiler

We present in Fig. 10 rules that can be applied to transform
a program, under the direction of a set of control statements
defining a directed partition, to yield a program that satisfies
the enhanced scheduler/application interface requirements. The
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scheduler(N,FirstTask) :— % R1
manager([{FirstTask,_} | Ts].Rs),

filter(DTs, Ts1), merger(Ts1,Ts),

merger(Rs1,Rs), merger(DTs1,DTs),

workers(N,DTs1,Rs1)@fwd.

worker1(Ts,Rs,[].{Task,Done}) :— % R6
Rs := [req(Next) | Rs1],
execute(Task, Ts, Ts1,[],Proceed,[].Done),
workevl(Tsl,Rsl,Proceed,Next).

filter([{ Process, Done, DepVars} | In], Ts) :— % R7

Ts := [merge(W) | Ts1],

await(DepVars,{ Process, Done} W),

f'\lter(ln,Tsl).

await([[] | Vs], Task, W) :— await(Vs, Task,W).
await([], Task W) :— W := [Task].

% R8
% R9

Fig. 9. Enhanced manager/worker scheduler.

-

. Generate interface. Generate an execute rule for each unique process
p named in an —initial statement ot in the second argument of a —task
statement:

—

execute(p(...),Ts,Tsl,L.Ll,D,Dl) = p(.. ,Ts,Ts1,L,L1,D,D1).

N

. For each control statement ~task(R,P,Ps):

(a) Insert P in task list. Replace P in rule R by an assignment Tsi
:= [{P, Done, Vs} | Tsj], where Done is P’s termination variable,
Vs lists termination variables for the processes named in Ps, and
Tsi and Tsj are new variables.

(b) Link task into task short circuit. Add a process link(Done,Di,Dj)
to R, where Di and Dj are new variables. This process is defined
as follows. The guard test data suspends until its argument is
available, and then succeeds.

link(Done, Di,Dj) :— data(Done) | Dj := Di.

w

. Thread additional arguments through the head and non-assignment
body processes of every program rule to implement:

(a) A task difference list. This includes variables Tsi, Tsj associated
with any assignment Tsi := [P| Tsj] introduced by rule 2(a).
(b) A local short circuit.

(c) A task short circuit. This includes variables Di, Dj associated
with any process link(Done,Di,Dj) introduced by rule 2(b).

-~

. Link non-task processes. Replace the task short circuit variables (say
Di, Dj) of any non-dispatched process named in a task’s dependency
set with the constant [] and the process’s termination variable (say
Dk), respectively. Add a process link(Dk,Di,Dj) to the rule containing
the process.

o

Close difference lists, short circuits. Add assignment processes Ts =
Tsl, D1 := D, L1 := L to any program rule with no non-assignment
processes in the body.

Fig. 10. Enhanced compiler rules.

result of applying this transformation to Fig. 7 using the control
statements in Fig. 8 is illustrated in Fig. 11.

The transformed application program and the definitions for
execute and link constitute the output of the transformation.
Note that variables introduced by the transformation (D, L, etc.)
must not occur in the original program; the names “link” and
“execute” must also be unique.

The implementation of a preprocessor that applies this trans-
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alignment(Sequences,Alignment,Ts,Ts3,1,1.2,D,D3) :— % R1
partition(Sequences, Partitions, Ts, Ts1,L,L1,D0,D1),
align_chunks(Partitions,SubAligns, Ts1,Ts2,L1,L2,[],.DV),
Ts2 := [{glue(SubAligns,Alignment),DV1,[DV]} | Ts3],
link(DV,D1,D2), link(DV1,D2,D3).

align_chunks([Chunk | Tseqs] AlignedChunks,Ts,Ts2,1,L1,D,D2) :— % R2
AlignedChunks := [AlignedChunk | Tchunks],
Ts := [{align_chunk(Chunk,AlignedChunk),DV,[]} | Ts1],
link(DV,D,D1),
align_chunks(Tseqs, Tchunks, Ts1,Ts2,L,L1,D01,D2).

align_chunks([],AlignedChunks,Ts,Ts1,L,L1,D,D1) : —
AlignedChunks = [], Ts := Tsl, L1 :=L, D1 := D.

% R3

align_chunk(Chunk,AlignedChunk,Ts, Ts2,1,02,D0,D2) : — % R4
pins(Chunk,BestPin, Ts,Ts1,L,L1,D,D1),
divide(Chunk,BestPin,AlignedChunk, Ts1,Ts2,L1,L2,D1,02).
divide(Seqs,BestPin,Alignment, Ts, Ts5,L,1.2,D,D5) : — % R5
BestPin £ [] |
split(Seqs, BestPin Left,Right,UnPinned, Ts, Ts1,L,L1,[].DV),
align_chunk(Left,LAligned, Ts1,Ts2,L1,12,[],DV1),
Ts2 := [{align_chunk(Right,RAligned),DV2,[DV]} | Ts3],
Ts3 := [{align_chunk(UnPinned, UPAligned),DV3,[DV]} | Ts4},
Ts4 := [{combine(LAligned,BestPin,RAligned, UPAligned, Alignment),
DV4,[DV1,DV2,DV3]} | Ts5],
link(DV,D,D1), link(DV1,D1,D2), link(DV2,02,D3),
link(DV3,D3,D4), link(DV4,D4,D5).
divide(Segs,[].Alignment, Ts Ts1,L,L1,D,D1) : —
dynamic_prog(Seqs,Alignment, Ts, Ts1,L,L1,D,D1).

% R6

Fig. 11.

formation is straightforward. A number of obvious optimizations
can be employed to reduce the number of additional arguments
and assignment processes, without significantly complicating the
transformation. Our implementation totals about 50 lines of
scheduler-specific code; these lines invoke library routines to
perform common functions such as adding short circuits to sets
of process definitions.

VI. ComparisoN To OTHER APPROACHES

A comprehensive comparison to other approaches to self-
scheduling parallel programs is beyond the scope of this pa-
per. However, we provide a comparison to one particularly
well-known system, Schedule [6]. This system permits a self-
scheduling version of a Fortran program to be developed by
first identifying subroutines that can be executed as independent
tasks (processes) and data dependencies between these tasks.
Then, calls to the Schedule run-time system are embedded in
the existing code to define tasks and data dependencies.

Dongarra and Sorenson present a Schedule solution to a
problem that is in some respects similar to the divide-and-conquer
algorithms used as examples in this paper [6]. This is a parallel
vector multiplication program that decomposes matrix A and B
into n subvectors and computes and sums the n inner products.
The essential aspects of the original program are summarized
in Fig. 12, using a Fortran-like pseudocode in which indentation
is used to represent the extent of DO-loops and blank lines to
separate procedures. The unlisted inprod procedure computes
the inner product of two vectors. For simplicity, we assume that
the vector length (nvec) is an integer multiple of the number of
subvectors (nslices): nvec = nslices*nelems.

Dongarra and Sorenson present two self-scheduling versions
of this code. The first assumes a static allocation of processes and

Transformed alignment program.

program main
real a(nvec), b(nvec), temp(nslices), sigma
call vecprod(nelems,nslices,a,b,temp,sigma)

subroutine vecprod(nelems,nslices,a,b,temp,sigma)
indx =1
do j = 1, nslices
call inprod(nelems,a(indx),b(indx),temp(j))
indx = indx + nelems
call addup(nslices,temp,sigma)

subroutine addup(nslices,temp,sigma)
sigma = 0.0
do j = 1, nslices

sigma = sigma + temp(j)

Fig. 12. Original vector multiplication program.

is constructed by replacing calls to vecprod, inprod, and addup
with calls that define data dependencies and invoke the Schedule
run-time system. The second assumes a dynamic allocation of
processes and uses a Schedule call SPAWN to create processes.
We present key components of the second version in Fig. 13.

Vector multiplication is of course an extremely simple problem
that would normally not be parallelized in this way. Nevertheless,
we see that implementation of even this simple process structure
requires a significant restructuring of the original program. Code
is moved between procedures, and additional subroutine calls
and variables are introduced. These changes introduce many
opportunities for error and produce a program that is difficult
to understand and modify.

In contrast, a Strand solution to the vector multiplication
problem comprises just eight lines of code. The recursive process
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subroutine vecprod(nelems,nslices,a,b,temp,sigma)

indx =1

JOBTAG =1
ICANGO =0
NCHEKS =1

call DEP(jobtag,icango,ncheks,mychkn)
call PUTQ(jobtag, ADDUP jobtag,a,b,temp)

subroutine addup(myid,nslices,a,b,temp,sigma)
go to (11,22) IENTRY(myid)
11 m = nvec/nslices
do j = 1, nslices
call SPAWN(myid.jdummy,INPROD, nelems,a(indx),b(indx),temp(j))
indx = indx + nelems
if (WAIT(myid,nslices,2)) return
22 continue
sigma = 0.0
do j = 1, nslices
sigma = sigma + temp(j)

Fig. 13. Transformed vector multiplication program.

definition spawns one inprod process for each subvector. The
inprod process executes a Fortran procedure similar to that used
in the Schedule program.

vecprod(Slices, Nelems, From, A, B, SoFar, Sigma) : —

Slices > 0|

inprod(From, Nelems, A, B, Tmp),

SoFarl is SoFar + Tmp,

Froml is From + Nelems,

Slicesl is Slices — 1,

vecprod(Slicesl, Nelems, From1, A, B, SoFarl, Sigma).

vecprod(0, _, ,_,_,SoFar, Sigma) : — Sigma: = SoFar.

A self-scheduling version of this code is generated by providing
two control statements, —initial(vm) and —task(vm, 1, inprod,
[1), and invoking our self-scheduling compiler. No manual
rewrite of the Strand/Fortran program is required. The resulting
program can be executed on a variety of MIMD computers. In
contrast, the Schedule program is portable only between shared-
memory computers.

We would like to emphasize that the intention of this compar-
ison is not to single out Schedule for particular criticism. On the
contrary, Schedule seems a well-conceived and useful solution
to issues of portability and reuse of existing software. However,
as its authors themselves admit [6], systems of this sort are in
the long term no substitute for high-level notational support for
the expression of concurrent algorithms.

VII. EXPERIENCES

The techniques described in this paper have been used to
develop parallel implementations of a variety of codes. One
of these, a state-space search code, has already been described.
Although simple, this serves to illustrate the portability of the pro-
grams developed using our techniques. The same self-scheduling
program has been executed on hypercube computers, shared-
memory computers, and nonuniform memory access computers
without modification.

We also have experience with more complex applications. For
example, a genetic sequence alignment program provided to us
by Overbeek and his colleagues at Argonne National Laboratory
comprises 1200 lines of Strand code and 3000 lines of C [3].
A simplification of the top-level structure of this program has
been presented in Fig. 7. A partitioning similar to that specified
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in Fig. 8 gave a speedup of 8.5 times on an 11-processor Encore
Multimax, with a moderate-sized problem. Another application, a
secondary structure prediction code which invokes the alignment
code with a Monte Carlo algorithm, was parallelized with four
control statements and achieved speedups of over 18 on a 20-
processor Sequent Symmetry. In both cases, one processor was
dedicated to the scheduler. Experimentation with these applica-
tions has been confined to shared-memory machines because C
procedures called by the concurrent component create temporary
data structures that are too large for the distributed-memory
machines to which we have access. This problem is being
addressed in a rewrite currently in progress.

Our experience with these and other applications motivates
the following observations. First, self-scheduling programs can
often be generated with little effort. In the computational biology
codes, effective parallel programs were obtained by the addition
of 4—6 control statements and the application of our preprocessor.
As the original sources comprised over 4000 lines, this represents
an insignificant incremental effort.

Second, automatic development of self-scheduling versions of
programs represents a considerable saving in time. A comparison
of Figs. 7 and 11 shows that the self-scheduling version of even a
simple program can be complex. Manual development of a self-
scheduling version of the complete alignment code (1200 lines)
takes several hours and is a tedious and error-prone activity. This
would be serious enough if our concern was simply to develop a
single self-scheduling version. Yet our experience suggests that
it is frequently useful to be able to explore several alternative
partitioning strategies. Furthermore, programs are typically not
static entities but evolve over time. It is much more convenient
to modify a program in its nonself-scheduling form.

VIII. CoNCLUSIONS

We have described techniques to support automatic generation
of self-scheduling parallel programs. A high-level programming
notation (e.g., Strand) is used to organize the concurrent exe-
cution of sequential components expressed in languages such
as Fortran and C. Simple compilation techniques translate an
application program into a form suitable for linking with a
scheduler library. The resulting program is capable of scheduling
its own execution on a parallel computer. The compiler is directed
by control statements that specify a partition and data dependen-
cies between tasks in the partition. Control statements may be
generated automatically or manually. Programs generated by the
preprocessor do not require access to any low-level mechanisms,
beyond simple mechanisms used by Strand implementations, and
hence are portable in principle to any MIMD computer.

Experience shows that the approach can greatly simplify the
task of developing parallel programs. The incremental effort
required to specify partitioning and data dependency informa-
tion required for parallel execution is generally small. In two
moderate-sized programs discussed in the paper, control state-
ments totaled less than 0.2% of total code lines. The separation of
concerns that is achieved between concurrent algorithm and load-
balancing strategy reduces program complexity and encourages
exploration of alternative scheduling strategies.

Program analysis tools can usefully complement our tech-
niques by automatically generating the control statements re-
quired by our system. For example, we have used granularity
analysis techniques to generate partitions. However, we are not
convinced that automatic generation of control statements is
either necessary or advantageous. Manual generation of control
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statements is rarely difficult. Furthermore, we believe that a
programmer will frequently be able to exploit domain-specific
knowledge and specify a better partition than could be achieved
by purely automatic means.

The compilation techniques described in this paper constitute
what is termed in [8] an algorithmic motif: a library program
and associated compiler that together define a useful parallel
programming abstraction. The scheduler motif applies only to the
class of programs for which it is possible and useful to define
directed partitions. Other motifs are required for programs that
do not fit in this class: for example, those based on software
pipelines. The design and evaluation of alternative motifs are
topics of current research.
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