
Draft — Submitted for Publication to Computing Surveys — Draft

This work was supported by ARPA Contract #DAAH04-94-G-0327, by NSF Contract #CISE9121887, by an
NSF Graduate Fellowship and by a European Research Consortium for Informatics and Mathematics
(ERCIM) Postgraduate Fellowship.

Trace-driven Memory Simulation: A Survey

RICHARD A. UHLIG

Institut de Recherche en Informatique et Systemes Aleatoires (IRISA / INRIA), Campus de Beaulieu
35042 Rennes Cedex, France

TREVOR N. MUDGE

Advanced Computer Architecture Lab (ACAL), Electrical Eng. and Computer Science Department
University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122

As the gap between processor and memory speeds continues to widen, methods for evaluating
memory-system designs before they are implemented in hardware are becoming increasingly
important. One such method, trace-driven memory simulation, has been the subject of intense
interest among researchers and has, as a result, enjoyed rapid development and substantial
improvements during the past decade. This paper surveys and analyzes these developments by
establishing criteria for evaluating trace-driven methods, and then applies these criteria to describe,
categorize and compare over 50 trace-driven simulation tools. We discuss the strengths and
weaknesses of different approaches and show that no single method is best when all criteria,
including accuracy, speed, memory, flexibility, portability, expense, and ease-of-use are considered.
In a concluding section, we examine fundamental limitations to trace-driven simulation, and survey
some recent developments in memory simulation that may overcome these bottlenecks.

Keywords: Trace-driven Simulation, Memory Simulation, Caches, TLBs, Memory Management

1 INTRODUCTION

It is well known that the increasing gap between processor and main-memory speeds is one of
the primary bottlenecks to good overall computer-system performance. The traditional solution to
this problem is to build small, fast memories (caches) to hold recently-used data and instructions
close to the processor for quicker access [Smith82]. During the past decade, microprocessor clock
rates have increased at a rate of 40% per year, while main-memory (DRAM) speeds have increased
at a rate of only about 11% per year [Upton94]. This trend has made modern computer systems
increasingly dependent on caches. A case in point: disabling the cache of the VAX 11/780, a
machine introduced in the late 1970’s, would have increased its workload run times by a factor of
only 1.6 [Jouppi90], while disabling the cache of the HP 9000/735, a more recent machine
introduced in the early 1990’s, would cause workloads to slow by a factor of 15 [Upton94].

It is clear that these trends are making overall system performance highly sensitive to even
minor adjustments in cache designs. As a result, memory-system designers are becoming
increasingly dependent on methods for evaluating design options before having to commit them to
actual implementation. One such method is to write a program that simulates the behavior of a
proposed memory-system design, and then to apply a sequence of memory references to the
simulation model to mimic the way that a real processor might exercise the design. The sequence of
memory references is called anaddress trace, and the method is calledtrace-driven memory

Draft — Submitted for Publication to Computing Surveys — Draft

2 • Uhlig et al.

simulation. Although conceptually simple, a number of factors make trace-driven simulation
difficult in practice. Collecting a complete and detailed address trace may be hard, especially if it is
to represent a complex workload consisting of multiple processes, the operating system, and
dynamically-linked or dynamically-compiled code. Another practical problem is that address traces
are typically very large, potentially consuming gigabytes of storage space. Finally, processing a
trace to simulate the performance of a hypothetical memory design is a time-consuming task.

During the past ten years, researchers working on these problems have made a number of
important advances intrace collection, trace reduction and trace processing. This survey
documents these developments by defining various criteria for judging and comparing these
different components of trace-driven simulation. We consider accuracy, speed, memory usage,
flexibility, portability, expense and ease-of-use in an analysis and comparison of over 50 actual
implementations of recent trace-driven simulation tools. We discuss which methods are best under
which circumstances, and comment on fundamental limitations to trace-driven simulation in
general. Finally, we conclude this survey with a description of recent developments in memory-
system simulation that may overcome fundamental bottlenecks to strict trace-driven simulation.

2 SCOPE, RELATED SURVEYS AND ORGANIZATION

Trace-driven simulation has been used to evaluate memory systems for decades. In his 1982
survey of cache memories, A. J. Smith gives examples of trace-driven memory-system studies that
date as far back as 1966 [Smith82], and several surveys of trace-driven techniques have been
written since then [Holliday91; Kaeli91; Stunkel91; Cmelik94]. Holliday examined the topic for
uniprocessor and multiprocessor memory-system design [Holliday91] and Stunkel et al. studied
trace-driven simulation in the specific context of multiprocessor design [Stunkel91]. Pierce et al.
surveyed one aspect of trace collection based on static code annotation techniques [Pierce95],
while Cmelik et al. surveyed trace collectors based on code emulation [Cmelik94].

This survey distinguishes itself from the others in that it is more up-to-date, and in its scope.
Numerous developments in trace-driven simulation during the past five years warrant a new survey
of tools and methods that have not been reviewed before. This survey is broader in scope than the
surveys by Pierce et al. and Cmelik et al., in that it considers all aspects of trace-driven simulation,
from trace collection and trace reduction to trace processing. On the other hand, its scope is more
limited, yet more detailed than the surveys by Holliday and Stunkel et al. in that it focuses mainly
on uniprocessor memory simulation, but pays greater attention to tools capable of tracing multi-
process workloads and the operating system.

We do not examine analytical methods for predicting memory-system performance. A good
starting point for study of these techniques is [Agarwal89b]. Although trace-driven methods have
been successfully applied to other domains of computer architecture, such as the simulation of
super-scalar processor architecture, or the design of I/O systems, this survey will focus on trace-
drivenmemory-system simulation only. Memory performance can also be measured with hardware-
based counters that keep track of events such as cache misses in a running system. While useful for
determining the memory performance of an existing machine, such counters are unable to predict
the performance of hypothetical memory designs. We do not study them here, but several examples
can be found in [Emer84; Clark85; IBM90; Nagle92; Digital92; Cvetanovic94].

We begin this survey by establishing several general criteria for evaluating trace-driven
simulation tools in Section 3. Sections 4 through 7 examine the different stages of trace-driven

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 3

simulation, and Section 8 studies some new methods for memory simulation that extend beyond the
traditional trace-driven paradigm. Section 9 concludes the survey with a summary.

This survey makes frequent use of tables to summarize the key features, performance
characteristics, and original references for each of the trace-driven simulation tools discussed in
main body of text. This organization enables a reader to approach the material at several levels of
detail. We suggest a reading of Section3, the opening paragraphs of Sections 4 through 7, and an
examination of each of the accompanying tables to obtain a good cursory introduction to the field.
A reader desiring further information can then read the remainder of the body text in greater detail.
The original papers themselves, of course, offer the greatest level of detail, and their references can
be found quickly in the summary tables and the bibliography at the end of the survey.

3 GENERAL EVALUATION CRITERIA AND METRICS

A trace-driven memory simulation is sometimes viewed as consisting of three main stages:
trace collection, trace reduction andtrace processing [Holliday91] (see Figure1). Trace collection
is the process of determining the exact sequence of memory references made by some workload of
interest. Because the resulting address traces can be very large,trace-reduction techniques are often
used to remove unneeded or redundant data from a full address trace. In the final stage,trace
processing, the trace is fed to a program that simulates the behavior of a hypothetical memory
system. To form a complete trace-driven simulation system, the individual stages of trace-driven
simulation must be connected throughtrace interfaces so that trace data can flow from one stage to
the next.

In Sections 3-7, we shall examine each of the above components in greater detail, but it is
helpful to define, at the outset, some general criteria for judging and comparing different trace-
driven simulation tools.1 Perhaps the most important criterion isaccuracy, which we loosely define
in terms of percent error in some performance metric such as miss ratio or misses per instruction:

(Eqn 1)

Error is often difficult to determine in practice because true performance many not be known,
or because it may vary from run to run of a given workload. Furthermore, accuracy is affected by
many factors, such as the “representativeness” of the chosen workload, the quality of the collected
address trace, the way that the trace is reduced, and the level of detail modeled by the trace-driven
memory simulator. Although it may be difficult to determine from which of these factors some
component of error originates, it is important to understand the nature of these errors, and how they
can be minimized:

Ideally, a workload suite should be selected in a way that represents the environment in which
the memory system is expected to perform. The memory system might be intended for commercial
applications (database, spreadsheet, etc.), for engineering applications (computer-aided design,
circuit simulation, etc.), for embedded applications (e.g., a postscript interpreter in a laser printer),
or for some other purpose. Studies have shown that the differences between these types of
workloads is substantial [Gee93; Maynard94; Uhlig95; Romer96], so good workload selection is

1. Some evaluation criteria apply to only a specific stage of trace-driven simulation, so we shall cover
them in future sections where the details are more relevant.

Error
TruePerformance Simulated Performance–()

TruePerformance()
-- 100%⋅=

Draft — Submitted for Publication to Computing Surveys — Draft

4 • Uhlig et al.

crucial — even the most perfect trace acquisition and simulation tools cannot overcome the bias in
predicted performance that results if this stage of the process is not executed with care.

We shall explore, in the next section, some reasons why a collected trace might differ from the
actual stream of memory references generated by a workload, but it is easy to see at this point in the
discussion why differences are important. Many trace-collection tools exclude, for example,
memory references made by the operating system. Excluding the OS, which may constitute a large
fraction of a workload’s activity, is bound to affect simulation results [Chen93b; Nagle93;
Nagle94].

When we look at trace reduction in Section5 we will see that some methods achieve higher
degrees of reduction at the expense of lost trace information. When this happens, we can use a
modified form of Eqn1 to measure the effects:

(Eqn 2)

Trace Collection

Trace Reduction

Trace Processing

Secondary
Storage

Context Switch

New Mapping

L Word 0x00f5a4f0Time

pava

tid

S Byte 0x00fb64f0Time

L Half 0x00164240Time

I Word 0x0057cde0Time

Figure 1. The Three Stages of Trace-driven Simulation

Trace quality defined by:
Completeness
Distortion
Detail

Ideal Trace Reduction:
10x to 100x Reduction Factor
No Resulting Simulation Error
High Speed

Simulation Parameters:

Metrics:

I-cache, D-cache, TLB
Split or Unified, Multi-level
Size, Line Size, Associativity
Random, FIFO, LRU ReplacementMiss ratios

Misses per instruction (MPI)
Cycles per instruction (CPI)

Workload

Host Workstation

Error
Measurements with Full Trace Measurementswith Reduced Trace–()

Measurements with Full Trace()
--- 100%⋅=

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 5

Errors can also come from the final, trace-processing stage, where a memory system’s
behavior is simulated. Such errors arise whenever the simulator fails to model the precise behavior
of the design under study, a task that is becoming increasingly difficult as processors move to
memory systems that support features such as prefetching and non-blocking caches.

A second criterion by which each of the stages of trace-driven simulation can be evaluated is
speed. The rate per second at which addresses are collected, reduced or processed is one natural
way to measure speed, but this metric makes it difficult to compare trace collectors or processors
that have been implemented on different hardware platforms. Because the number of addresses
processed per second by a particular trace processor is a function of the speed of the host hardware
on which it is implemented, it is not meaningful to compare this rate against a different trace-
processing method implemented on older or slower host hardware. To overcome this difficulty, we
report all speeds in terms ofslowdown relative to the host hardware from which traces are collected
from or processed on. Depending on the context, we compute slowdowns in a variety of ways:

(Eqn 3)

(Eqn 4)

(Eqn 5)

Because each of these definitions divide by the speed of the host hardware, they enable an
approximate comparison of two methods implemented on different hosts.

Some of the trace-driven simulation techniques that we will examine can reduce overall
slowdowns. We report their effectiveness in terms ofspeedups, which divide slowdowns to obtain
overall slowdowns:

(Eqn 6)

A third general evaluation criterion is the amount of extra memory used by a tool. Depending
on the circumstances, memory can refer to secondary storage (disk or tape), as well as primary
storage (main memory). As with speed, it is often not meaningful to report memory usage in terms
of bytes because different workloads running on different hosts may have substantially different
memory requirements to begin with. Therefore, whenever possible, we report memory usage as an
expansion factor oroverhead based on the usual memory required by the workload running on the
host machine:

(Eqn 7)

Additional memory can be required at each stage. Some trace-collection methods annotate or
emulate workloads, causing them to expand in size, some trace-processors use complex data
structures that are memory intensive, and trace interfaces use additional memory to buffer trace
data as it passes from stage to stage. The purpose of the second stage, trace reduction, is to reduce
these memory requirements. We measure the effectiveness of trace reduction in terms of a memory
reduction factor:

(Eqn 8)

Slowdown AddressCollection Rate
Host System AddressGeneration Rate
---=

Slowdown AddressProcessing Rate
Host System AddressGeneration Rate
---=

Slowdown Total Simulation Time
Normal Host System Execution Time
--=

Overall Slowdown Slowdown
Speedup

-------------------------=

Memory Overhead Additional Memory Required
Normal Host Memory Required
--=

Reduction Factor Full AddressTraceSize
Reduced AddressTraceSize
---=

Draft — Submitted for Publication to Computing Surveys — Draft

6 • Uhlig et al.

In additional toaccuracy, speed andmemory, there are other general evaluation criteria that
recur throughout this survey. A tool has highportability if it is easy to re-implement it on different
host hardware. It hasflexibility if it is able to be used for the simulation of a wide range of memory
parameters (cache size, line size, associativity, replacement policy, etc.) and for collecting a broad
range of performance metrics (miss ratio, misses per instruction, cycles per instruction, etc.). By
expense we mean the cost of any hardware or special monitoring equipment required solely for the
purposes of conducting simulations. Finally, ease-of-use refers to the amount of effort required of
the end user to learn and to operate the trace-driven simulator once it has been developed.

4 TRACE COLLECTION

To ensure accurate simulations, collected address traces should be as close as possible to the
actual stream of memory references made by a workload when running on a real system. Trace
quality can be evaluated based on thecompletenessand detail in a trace, or on the degree of
distortion that it contains. Acomplete trace includes all memory references made by each
component of the system, including all user-level processes and the operating system kernel. User-
level processes include not only applications, but also OS server and daemon processes that
provide services such as a file system or network access. Complete traces should also include
dynamically-compiled or dynamically-linked code, which is becoming increasingly important in
applications such as processor or operating-system emulation [Nagle94; Cmelik94]. An ideal
detailed trace is one that is annotated with information beyond simple raw addresses. Useful
annotations include changes in VM page-table state for translating between physical and virtual
addresses, context switch points with identifiers specifying newly-activated processes, and tags that
mark each address with a reference type (read, write, execute), size (word, half word, byte) and a
timestamp. Traces should beundistorted so that they do not include any additional memory
references, or references that appear out of order relative to the actual reference stream of the
workload had it not been monitored. Common forms of distortion includetrace discontinuities,
which occurs when tracing must stop because a trace buffer is not large enough to continue
recording workload memory references, andtime dilationandmemory dilation, which occur when
the tracing method causes a monitored workload to run slower, or to consume more memory than it
normally would.

In addition to the three aspects of trace quality described above, a good trace collector exhibits
other characteristics as well. In particular, portability, both in moving to other machines of the same
type and to machines that are architecturally different is important. Finally, an ideal trace collector
should befast, inexpensive andeasy to operate.

Address traces have been extracted at virtually every system level, from the circuit and
microcode levels to the compiler and operating-system levels. (see Figure2). We organize the
remainder of this section accordingly, starting at the lower hardware levels.

4.1 External Hardware Probes

A straightforward method for collecting address traces is to record signals from electrical
probes physically connected to the address bus of a host computer while it runs a workload. The
address and control signals are fed into an external memory buffer at the full speed of the
monitored host system, and when the buffer fills, its contents are transferred to a standard storage
device, such as tape or disk, so that it can be processed at a later time. If a long, continuous address
trace is desired, then the buffer must either be very large or there must be some way to stall the host

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 7

whenever the buffer becomes full. It is usually only possible to stall the processor — external I/O
devices, such as disks or network controllers will must usually be permitted to continue operating.
If there is no way to stall the system, then several discontinuous address-trace samples can be
acquired and concatenated together. In either case, the resulting trace exhibits a form of distortion
that we calltrace discontinuity. Table1 summarizes several probe-based trace collectors recently
described in the literature. We discuss each in greater detail below.

Most commercial logic analyzers provide the necessary hardware to construct a probe-based
trace collector [Tektronix94; HP91]. Alexander et al. connected a logic analyzer to a National
Semiconductor 32016-based workstation running Genix to collect address traces for TLB and
cache simulation [Alexander85; Alexander86]. The small size of the trace buffer (4096 entries of
32 bits each) necessitated the design of circuitry to place the processor in a stalled state while the
buffer was unloaded to a secondary-storage device. A similar approach was used in theMonster
monitoring system by a group including the authors of this survey [Nagle92]. Monster consists of a
DAS 9200 logic analyzer connected to an R2000-based DECstation 3100. The operating-system
kernel was modified to stall the machine in a software loop, avoiding the need for any additional
stalling hardware. Some logic analyzers provide interchangeable probes to support multiple
architectures. The DAS 9200, for example, has probe modules for most popular microprocessors, a
flexibility that Fuentes exploited to collect addresses from both Alpha-based and Pentium-based
workstations [Fuentes93].

A problem with hardware monitors based on logic analyzers is that their trace-buffer sizes are
often relatively small (4 K-entries to 128 K-entries), resulting either in frequent processor stalls or
smaller trace samples, and thus greater trace distortion due to discontinuities. Special-purpose
hardware with very large, high-speed memories has been built to threat this problem. Biomation
Corporation builds a trace-collection system with 80 million trace buffer entries [Biomation91].
The trace collector described in [Happel92] has a 40 M-byte trace buffer, large enough to hold 8
million memory references at a time. TheMagellan Trace Machine(MTM) has a buffer that can

Figure 2. Levels of System Abstraction and Trace Collection Methods

Operating System

Compiler

Assembler

Linker

Loader

Emulation

Microcode

Circuits and GatesHardware

Software Single-stepping

Code Annotation

Instruction Emulation

Microcode Modification

External Hardware Probes

Draft — Submitted for Publication to Computing Surveys — Draft

8 • Uhlig et al.

R
ef

er
en

ce
N

am
e

P
ro

ce
ss

o
r

B
u

ff
er

 S
iz

e
S

ta
ll

M
et

h
o

d
C

o
m

p
le

te
n

es
s

D
o

w
n

lo
ad

C
h

an
n

el
E

n
tr

ie
s

E
n

tr
y

S
iz

e

[A
le

xa
nd

er
85

]
—

N
S

 3
20

16
4

K
32

 b
its

H
O

LD
 L

og
ic

A
ll

R
ef

er
en

ce
s

S
er

ia
l

[N
ag

le
92

]
M

on
st

er
R

20
00

51
2

K
96

 b
its

K
er

ne
l I

dl
e

Lo
op

A
ll

R
ef

er
en

ce
s

E
th

er
ne

t

[F
ue

nt
es

93
]

—
A

lp
ha

, P
en

tiu
m

51
2

K
15

6
bi

ts
N

on
e

C
ac

he
 M

is
se

s
E

th
er

ne
t

[H
ap

pe
l9

2]
—

R
20

00
8

M
40

 b
its

—
A

ll
R

ef
er

en
ce

s
—

[F
ue

nt
es

93
]

M
T

M
i4

86
33

 M
80

 b
its

N
on

e
B

us
 T

ra
ns

ac
tio

ns
E

th
er

ne
t

[F
la

na
ga

n9
2]

[F
la

na
ga

n9
4]

B
A

C
H

i4
86

, 6
80

30
, S

P
A

R
C

80
 M

96
 b

its
H

ig
h-

pr
io

rit
y

In
te

rr
up

t
A

ll
R

ef
er

en
ce

s
P

ar
al

le
l D

IO
B

oa
rd

[T
or

el
la

s9
2]

D
A

S
H

R
30

00
2

M
72

 b
its

M
as

te
r

P
ro

ce
ss

B
us

 T
ra

ns
ac

tio
ns

E
th

er
ne

t

[B
io

m
at

io
n9

1]
K

45
0M

—
80

 M
64

 b
its

—
—

12
 M

bi
ts

/s
ec

 D
M

A

Ta
bl

e
1.

E

xt
er

na
l P

ro
be

-b
as

ed
 T

ra
ce

 C
ol

le
ct

or
s

A
ll

of
 th

e
pr

ob
e-

ba
se

d
tr

ac
e

co
lle

ct
or

s
in

 th
is

 ta
bl

e
co

lle
ct

 c
om

pl
et

e
ad

dr
es

s
tr

ac
es

 w
ith

 m
ul

ti-
pr

oc
es

s
an

d
op

er
at

in
g-

sy
st

em
 r

ef
er

en
ce

s.
B

uf
fe

r
si

ze
 d

et
er

m
in

es
th

e
m

ax
im

um
 n

um
be

r
of

 u
ni

nt
er

ru
pt

ed
 m

em
or

y
re

fe
re

nc
es

 th
at

 c
an

 b
e

ca
pt

ur
ed

. M
os

t c
ol

le
ct

or
s

ca
n

st
al

l t
he

 m
on

ito
re

d
sy

st
em

 w
he

n
th

e
tr

ac
e

bu
ffe

r
be

co
m

es
fu

ll,
 b

ut
 s

om
e

ca
nn

ot
 (

se
e

S
ta

ll
M

et
ho

d)
. T

he
 s

pe
ed

 a
t w

hi
ch

 th
e

tr
ac

e
bu

ffe
r

ca
n

be
 u

nl
oa

de
d

is
 d

et
er

m
in

ed
 b

y
th

e
D

ow
nl

oa
d

C
ha

nn
el

, w
hi

ch
 ty

pi
ca

lly
 m

ov
es

da
ta

 a
t

m
uc

h
lo

w
er

 b
an

dw
id

th
s

th
an

 t
he

 r
at

e
at

 w
hi

ch
 t

ra
ce

s
ar

e
ac

qu
ire

d.
 S

om
e

pr
ob

e-
ba

se
d

tr
ac

e
co

lle
ct

or
s

ar
e

on
ly

 a
bl

e
to

 c
ol

le
ct

 c
ac

he
 m

is
se

s
or

 b
us

tr
an

sa
ct

io
ns

, n
ot

 c
om

pl
et

e
ad

dr
es

s
tr

ac
es

 (
se

e
C

om
pl

et
en

es
s)

. A
 d

as
h

m
ea

ns
 th

at
 in

fo
rm

at
io

n
w

as
 n

ot
 a

va
ila

bl
e

fo
r

th
is

 it
em

.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 9

hold 33 million bus transactions [Fuentes93], and recent versions of theBach system use similarly
large buffers [Flanagan94]. Bach offers the additional advantage that it supports monitoring of at
least three different microprocessor architectures (i486, 68030, and SPARC).

The trend towards higher levels of chip integration creates a problem for probe-based trace
collection. Most recent microprocessors implement at least their primary caches and TLBs on-chip,
making many of their important address and control signals inaccessible to external probes.
Examples of probe-based trace collectors that are limited in this way are described in [Torrellas92]
and [Fuentes93]. One solution to this problem is to deactivate on-chip caches to force all load and
store operations off chip where they can be detected by external probes. This solution can,
however, perturb the behavior of the system. Even if the resulting trace distortion is considered
acceptable, some processors do not support disabling of on-chip caches in a general way (i.e., in a
way that forcesall references off -chip) [Digital92; Fuentes93]. Although full address traces are
desirable, a trace of just cache misses is by no means worthless. As we will see in Section 5 on
trace reduction, such a trace can still be used to simulate other cache configurations, albeit subject
to certain restrictions.

The main advantage of all of the probe-based trace collectors described above is their ability to
capture trace sequences complete with both user and kernel memory references, and free of most
forms of trace distortion, provided that the trace buffer is deep enough. Although the traces are
complete, this does not necessarily mean that they are easy to interpret. Hardware events such as
cache misses, integer- and floating-point-unit stalls, exceptions and interrupts all must be separated
from run cycles to determine the actual type (read, write, execute) and size (word, half word, byte)
of the memory references made by a monitored processor. In processors that implement hardware
prefetching or speculative execution, it may be difficult or impossible to separate “true” memory
references from those that occur due to a prefetch that might not actually be used. Some of these
problems can be overcome by implementing the inverse function of the processor sequencer, either
in the trace-collecting hardware, or in a trace post-processing tool [Flanagan94; Nagle92]. Because
the addresses captured by a probe-based monitor are usually physical addresses, special methods
that may require cooperation from the host OS must be used to reverse-translate addresses to their
matching virtual addresses [Grimsrud93]. For similar reasons, it is often difficult to relate a given
memory reference to the process that made it without assistance from a modified OS kernel that
emits trace markers or other annotations as clues [Torellas92; Nagle92; Fuentes93]. These
problems all follow from the fact that probe-based trace collectors are external to the monitored
system and therefore do not have easy access to operating-system data structures.

A common misconception regarding trace collection using hardware probes is that the
technique is very fast. While it is true that acquisition of the trace proceeds at the full speed of the
monitored system, it is important to account for the overhead of managing trace-buffer overflow as
well as the time required to empty the buffer. This overhead is typically not reported in published
papers, but because most systems can unload these buffers only through some form of relatively
low-bandwidth channel (see Table1), this overhead is necessarily high. For a system where
overhead data is available (Monster), approximately 12 hours are required to obtain 11 seconds of
real-time system activity. Fuentes has reported that a similar delay of 45 minutes is required to
download about one second of real-time activity captured by the MTM system [Fuentes93]. The
overhead from both these systems comes from moving trace-buffer data over an Ethernet to a
machine with SCSI-connected disks, and represents effective slowdowns of more than a thousand
times relative to the speed of the unmonitored host. Most of the other systems listed in Table1 use
similar or even lower-bandwidth interconnect to the trace buffer, so their overheads are comparable

Draft — Submitted for Publication to Computing Surveys — Draft

10 • Uhlig et al.

or higher. Although trace collection with hardware probes is time consuming, once the traces have
been captured and stored to a permanent file they require no special hardware to use,2 and can be
used repeatedly to achieve reproducible simulation results.

Hardware probe-based methods share other common disadvantages. The first is expense. Logic
analyzers with deep trace memories cost from $50,000 to $200,000 [Tektronix94; HP91]. These
amounts are probably low compared to the engineering costs associated with designing custom
hardware as in [Flanagan92] or [Torellas92]. A second problem is portability. Although logic
analyzers like the DAS 9200 support probes for most popular microprocessors, it is often necessary
to physically modify the motherboard or chassis of the monitored system to enable probe access to
the signals of interest [Nagle92; Fuentes94]. These systems also require an understanding of the
electrical issues concerning the connection of probes to running hardware, and are therefore
typically fragile, sensitive to their operating environment, and difficult to learn and operate.

As noted above, the advent of on-chip caches is making it increasingly difficult to build trace
collection hardware as an afterthought. The future of probe-based trace collection therefore
depends mainly on the level of supportdesigned into systems for this task. A small, on-chip trace
buffer that traps to the operating-system kernel whenever it becomes full is an example of the sort
of support that could be provided. However, even a very small buffer of 2048 entries with 32-bits
per entry (8 K-bytes) is about the size of on-chip caches in current microprocessors [Nagle94] and
thus would be relatively costly in terms of chip area. An alternative approach would be to send
certain key internal signals through the microprocessor package pins so that they can be monitored
externally. We are not aware of any existing microprocessor that includes documented monitoring
support of this type.

4.2 Microcode Modification

The high cost of circuit-level probing has motivated many researchers to develop methods for
collecting traces at higher levels of system abstraction. One such alternative is to collect traces at
the borderline between the hardware and software levels of a system in microcode (see Figure2).
From the beginnings of the IBM 360 series (1964) until the DEC VAX machines, the most common
method for implementing control logic was microcode [Wilkes69]. When implemented off-chip, a
microcode memory was often writable or could be modified through replacement, making it
possible to change the behavior of instructions, or to support multiple instruction sets. Agarwal
realized that this mechanism made it possible to collect address traces [Agarwal86; Agarwal88].
He modified the microcode on a VAX 8200 to cause all instructions to deposit the addresses of their
memory references into a reserved area of main memory as a side effect of their execution.

This method, which Agarwal calledaddress tracing using microcode (ATUM), offers a number
of advantages. The first is completeness. Because the microcode runs beneath the operating system,
all user and kernel references are captured, as well as those from dynamically-compiled and
dynamically-linked code. Because ATUM has access to internal system state, it is easily able to
annotate traces with access-type tags, context switch points, and page-map information. Another
advantage is speed. ATUM acquires address traces with a slowdown of only about 10 to 20, and
because the addresses can be processed directly out of the trace buffer in main memory, there is not

2. The Monster traces, complete with trace-interpreting tools, are available to the general research
community and can be obtained by contacting the authors of this survey.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 11

the overhead of buffer unloading as with external probe-based trace collection. Finally, no
additional hardware is required. The only cost associated with ATUM is the engineering effort
required to modify microcode to produce the desired results.

The ATUM method suffers a few minor disadvantages and one major one. First, ATUM traces
exhibit some discontinuity distortion because the processor is not stalled when the trace buffer
becomes full. Buffer size could be increased only up to a certain point because it took away from
the usable memory of the host system. Agarwal has developed a method, calledtrace stitching, to
counter this problem [Agarwal89]. Microcode modification also introduces another form of trace
distortion, commonly calledtime dilation. Because instructions take 10 to 20 times as long to
execute as they normally would, external devices such as disks and network controllers appear to
the workload to be faster than they actual are, and interrupts from the system clock occur more
frequently, thus changing the workload’s behavior.

The primary disadvantage of the microcode-modification technique is that the technique is
now effectively obsolete because most new microprocessors use hardwired control or have an on-
chip microcode memory that is not easily modified. The fundamental idea behind microcode
modification — augmenting the interpretation of instructions to generate trace addresses as a side
effect of their execution — can, however, be implemented at other levels in a system. This has been
made easier by some of the very trends that have made microcode modification obsolete.
Hardwired control, for example, has been made possible (or at least easier) with the advent of RISC
instruction sets [Hennessy90]. The relatively simple and uniform coding of RISC instruction sets
has also made it easier to develop fast instruction-set emulators and binary-rewriting tools for
annotating executables to produce traces as a side effect of their normal execution. We examine
these tools in the following sections on instruction-set emulation andcode annotation.

4.3 Instruction-set Emulation

An instruction-set architecture (ISA) is the collection of instructions that defines the interface
between hardware and software for a particular computer system. A microcode engine, as
described in the previous section, is an ISA interpreter that is implemented in hardware. It is also
possible to interpret an instruction set in software through the use of aninstruction-set emulator.
Emulators typically execute one instruction set (thetarget ISA) in terms of another instruction set
(thehost ISA) and are usually used to enable software development for a machine that has not yet
been built, or to ease the transition from an older ISA to a newer one [Sites92]. As with microcode,
an instruction-set emulator can be modified to cause an emulated program to generate address
traces as a side-effect of its execution.

Conventional wisdom holds that instruction-set emulation is very inefficient, with slowdowns
estimated to be in the range of 1,000 to 10,000 [Agarwal89; Wall89; Borg89; Stunkel91;
Flanagan92]. The degree of slowdown is clearly related to the level of emulation detail. For some
applications, such as the verification of a processor’s logic design, the simulation detail required is
very high and the corresponding slowdowns may agree with those cited above. In the context of
this review, however, we consider an instruction-set emulator to be sufficiently detailed for the
purposes of address-trace collection if it can produce an accessible trace of memory references
made by the instructions that it emulates. Given this minimal requirement, there are several recent
examples of instruction-set emulators that have achieved slowdowns much lower than 1,000 (see
Table2).

Draft — Submitted for Publication to Computing Surveys — Draft

12 • Uhlig et al.

M
et

h
o

d
R

ef
er

en
ce

N
am

e
Ta

rg
et

(s
)

H
o

st
(s

)

O
th

er
 C

h
ar

ac
te

ri
st

ic
s

S
lo

w
d

o
w

n
R

eg
is

te
r

S
ta

te
H

el
d

 in

P
re

d
ec

o
d

e
/

Tr
an

sl
at

io
n

P
o

lic
y

C
h

ai
n

,
T

h
re

ad
 o

r
B

lo
ck

Ite
ra

tiv
e

In
te

rp
re

ta
tio

n
[C

m
el

ik
93

]
S

pa
 (

S
py

)
S

P
A

R
C

S
P

A
R

C
H

os
t R

eg
is

te
rs

N
/A

N
o

40
 -

 6
00

[D
av

ie
s9

4]
M

ab
le

M
IP

S
-I

, M
IP

S
-I

II
M

IP
S

-I
M

em
or

y
N

/A
N

o
20

 -
 2

00

P
re

de
co

de
In

te
rp

re
ta

tio
n

[L
ar

us
91

]
S

P
IM

M
IP

S
-I

S
P

A
R

C
, 6

80
x0

,
M

IP
S

, x
86

, H
P

-P
A

M
em

or
y

A
ll-

at
-o

nc
e

N
o

25

[M
ag

nu
ss

on
93

]
gs

im
88

10
0

H
P

-P
A

, S
P

A
R

C
M

em
or

y
La

zy
T

hr
ea

di
ng

45
 -

 7
5

[B
ed

ic
he

ck
95

]
Ta

lis
m

an
88

10
0

S
P

A
R

C
M

em
or

y
La

zy
T

hr
ea

di
ng

10
0

-
15

0

[V
ee

ns
tr

a9
4]

M
IN

T
R

30
00

R
30

00
H

yb
rid

A
ll-

at
-o

nc
e

B
lo

ck
20

 -
 7

0

D
yn

am
ic

Tr
an

sl
at

io
n

[C
m

el
ik

94
]

S
ha

de
S

P
A

R
C

-V
8,

 S
P

A
R

C
-

V
9,

 M
IP

S
S

P
A

R
C

-V
8

M
em

or
y

La
zy

C
ha

in
in

g
9

-
14

Ta
bl

e
2.

In

st
ru

ct
io

n-
se

t E
m

ul
at

or
s

th
at

 S
up

po
rt

 T
ra

ce
 C

ol
le

ct
io

n

A
n

in
st

ru
ct

io
n-

se
t

em
ul

at
or

 is
 a

 p
ro

gr
am

 t
ha

t
di

re
ct

ly
 r

ea
ds

 e
xe

cu
ta

bl
e

im
ag

es
 w

rit
te

n
in

 o
ne

 I
S

A
 (

th
e

ta
rg

et
)

an
d

em
ul

at
es

 it
 u

si
ng

 a
no

th
er

 I
S

A
 (

th
e

ho
st

).
 I

n
ge

ne
ra

l,
th

e
ta

rg
et

 a
nd

 h
os

t
IS

A
s

ne
ed

 n
ot

 b
e

th
e

sa
m

e,
 a

lth
ou

gh
 t

he
y

m
ay

 b
e.

 W
e

on
ly

 c
on

si
de

r
in

st
ru

ct
io

n-
se

t
em

ul
at

or
s

th
at

 a
ls

o
ge

ne
ra

te
 a

dd
re

ss
 t

ra
ce

s
(f

or
 a

 m
or

e
co

m
pl

et
e

su
rv

ey
 o

f i
ns

tr
uc

tio
n-

se
t e

m
ul

at
or

s
in

 g
en

er
al

, s
ee

 [C
m

el
ik

93
; 9

4]
).

T
he

 le
ftm

os
t c

ol
um

n
(M

et
ho

d)
 in

di
ca

te
s

th
e

ge
ne

ra
l m

et
ho

d
us

ed
 b

y
th

e
em

ul
at

or
 (

se
e

F
ig

ur
e

3)
, b

ut
 it

 s
ho

ul
d

be
 n

ot
ed

 th
at

 n
ot

 a
ll

em
ul

at
or

s
fit

 n
ea

tly
 in

to
 o

ne
ca

te
go

ry
 o

r
th

e
ot

he
r.

T
he

 t
ab

le
 in

cl
ud

es
 a

dd
iti

on
al

 c
ha

ra
ct

er
is

tic
s

th
at

 h
el

p
to

 d
efi

ne
 t

he
 m

et
ho

ds
 u

se
d

by
 t

he
se

 e
m

ul
at

or
s.

R
eg

is
te

r
S

ta
te

,
fo

r
ex

am
pl

e,
 c

an
be

 h
el

d
ei

th
er

 b
y

th
e

re
gi

st
er

s
of

 t
he

 h
os

t
m

ac
hi

ne
,

in
 m

em
or

y
(a

s
pa

rt
 o

f
th

e
em

ul
at

or
’s

 d
at

a
st

ru
ct

ur
es

),
 o

r
in

 b
ot

h
pl

ac
es

 v
ia

 a
hy

br
id

 s
ch

em
e.

 W
he

n
em

ul
at

or
s

pr
ed

ec
od

e
or

 tr
an

sl
at

e
ta

rg
et

 in
st

ru
ct

io
ns

, s
om

e
do

 s
o

al
l-a

t-
on

ce
, w

he
n

th
e

w
or

kl
oa

d
be

gi
ns

 e
xe

cu
tin

g,
 w

hi
le

 o
th

er
s

us
e

a
la

zy
 p

ol
ic

y,
 p

re
de

co
di

ng
or

 t
ra

ns
la

tin
g

w
he

n
an

 i
ns

tr
uc

tio
n

is
 fi

rs
t

ex
ec

ut
ed

.
F

in
al

ly
,

so
m

e
em

ul
at

or
s

at
te

m
pt

 t
o

re
du

ce
 t

he
 o

ve
rh

ea
d

of
 t

he
 d

is
pa

tc
h

lo
op

 b
y

cl
us

te
rin

g
gr

ou
ps

 o
f

in
st

ru
ct

io
ns

 to
ge

th
er

 b
y

ch
ai

ni
ng

 o
r

th
re

ad
in

g
in

di
vi

du
al

 in
st

ru
ct

io
ns

 to
ge

th
er

. T
he

 s
am

e
ef

fe
ct

 c
an

 b
e

ac
hi

ev
ed

 b
y

tr
an

sl
at

in
g

en
tir

e
bl

oc
ks

 o
f i

ns
tr

uc
tio

ns
 a

t a
tim

e.

N
ot

e:
 s

lo
w

do
w

ns
 m

ay
 in

cl
ud

e
ad

di
tio

na
l o

ve
rh

ea
d

th
at

 is
 n

ot
 s

tr
ic

tly
 r

eq
ui

re
d

fo
r

co
lle

ct
in

g
ad

dr
es

s
tr

ac
es

.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 13

Spa [Cmelik93] andMable [Davies94] are examples of emulators that use straightforward
iterative interpretation (see top of Figure3); they work by fetching, decoding and then dispatching
instructions one at a time in an iterative emulation loop, re-interpreting instructions each time they
are encountered. Instructions are fetched by reading the contents of the emulated program’s text
segment, and are decoded through a series of mask and shift operations to extract the various fields
of the instruction (opcode, register specifiers, etc.). Once an instruction has been decoded, it is
emulated (dispatched) by updating machine state, such as the emulated register set, which can be
stored in memory as avirtual register data structure (as in Mable), or which may be held in the
actual hardware registers of the host machine (as is done for part of the register set in Spa). An
iterative interpreter may use some special features of the host machine to speed instruction
dispatch,3 but this final step is more commonly preformed by simply jumping to a small subroutine
or handler that updates machine state as dictated by the instruction’s semantics (e.g., updating a
register with the results of an add or load operation). The reported slowdowns for iterative
emulators such as Spa and Mable range from 20 to about 600, but these figures should be
interpreted carefully because larger slowdowns may represent the time required to emulate
processor activity that is not strictly required to generate address traces. The range of Mable
slowdowns, for example, includes the additional time to simulate the pipeline of a dual-issue
superscalar processor.

Some interpreters avoid the cost of repeatedly decoding instructions by savingpredecoded
instructions in a special table or cache (see middle of Figure3). A predecoded instruction typically
includes a pointer to the handler for the instruction, as well as pointers to the memory locations that
represent the registers on which the instruction operates. The register pointers save both decoding
time as well as time in the instruction handler, because fewer instructions are required to compute
the memory address of a virtual register. An example of such an emulator isSPIM, which reads and
translates a MIPS-I executable, in its entirety, to an intermediate representation understood by the
emulation engine [Larus91]. After translation, SPIM can lookup and emulate predecoded
instructions with a slowdown factor of approximately 25.Talisman [Bedichek95] andgsim
[Magnusson93] also use a form of instruction predecoding, but instead of decoding all instructions
of a workload before it begins running, these emulators predecode instructions lazily, as they are
executed for the first time. By caching the results, these emulators can benefit from predecoding
without the initial start-up delay exhibited by SPIM. Both Talisman and gsim implement a further
optimization, calledcode threading, in which the handler for one instruction directly invokes the
handler for the subsequent instruction, without having to pass through the dispatch loop. The
slowdowns of Talisman and gsim are higher than those of SPIM, but it should be noted that they are
complete system simulators that model caches, memory-management units, as well as I/O devices.
MINT, a trace generator for shared-memory multiprocessor simulation, also uses a form of
predecoded interpretation in which a handlers for sequential blocks of code that do not contain
memory references or branches are formed in native host code, which can then be quickly
dispatched via a function pointer [Veenstra94]. Veenstra reports slowdowns for MINT in the range
of 20 - 70 for emulation of a single processor, which is comparable to the slowdowns of SPIM.

3. Spa, for example, exploits an artifact of the SPARC architecture called delayed branching. Spa
issues two branch instructions immediately next to each other, with the second falling in the delay
slot of the first. The first branch is to the instruction to be emulated, while the second branch is back
to the interpreter. This technique enables Spa to “emulate” the instructions from a program’s text
segment via direct execution, while at the same time allowing the interpreter loop to maintain
control of execution.

Draft — Submitted for Publication to Computing Surveys — Draft

14 • Uhlig et al.

Figure 3. Some Emulation Methods

Traditional emulators fetch, decode and interpret each instruction from a workload’s text segment in an
iterative loop (top figure). To avoid the cost of re-decoding instructions each time they are
encountered, some faster emulators pre-decode instructions and store them in a table for rapid lookup
and dispatch (middle figure). A further optimization is to translate target instructions from the emulated
workload into equivalent sequences of host instructions that can be executed directly (bottom figure).
In all three cases, code can be added to emit addresses into a trace buffer as the workload is
emulated.

Text
Interpret

Registers

1

3

2

Decode

1

3

Predecode
Table / Cache

Handler
.
.
.

OpcodeRa Rb Offset

2

Trace
Buffer

Interpretation with

Traditional Iterative Interpretation

1Translation
Table / Cache

Dynamic

When Lookup Fails

chaining

addr = reg[Rb]+offset;
trace[i++] = addr;
reg[Ra] = *addr;

addr = *Rb+offset;
trace[i++] = addr;
*Ra = *addr;

ld r2,4(r1)
.
.
.

Text

ld r2,4(r1)
.
.
.

Lookup

Dispatch

Fetch

Decode

4

2 3

Lookup

Dispatch

Translate

When Lookup Fails

Text

ld r2,4(r1)
.
.
.

Translation

Instruction Predecoding

0

0

reg[1]
reg[2]

reg[31]

...

Registers

Trace
Buffer

reg[1]
reg[2]

reg[31]

...

Trace
Buffer

add t1,r1,4
st t1,trace(t2)
add t2,t2,4
ld r2,4(r1)

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 15

Shade takes instruction decoding a step further by dynamically compiling target instructions
into equivalent sequences of host instructions [Cmelik94]. As each instruction is referenced for the
first time, Shade compiles it into an efficient sequence of native instructions that run directly on the
host machine (see bottom of Figure3). Shade records compiled sequences of native code in a
lookup table, which is checked by its core emulation loop each time it dispatches a new instruction.
If a compiled translation already exists, it is found through the lookup mechanism and the code
sequence need not be recompiled. Like gsim and Talisman, Shade’s compile-and-cache method
enables it to translate source instructions lazily, only as needed. Shade implements an optimization
similar to code threading, in which two consecutive translations arechained together so that the
end of one translation can directly invoke the beginning of the next translation, without having to
return to the core emulation loop. Shade supports address-trace processing by calling user-supplied
analyzer code after each instruction is emulated. The analyzer code is given access to the emulation
state, such as addresses generated by the previous instruction, so that memory simulations are
possible. The slowdowns reported in Table2 are for Shade emulations that generate a trace of both
instruction and data addresses, which are then passed to anull analyzer that does not add overhead
to the emulation process. The resulting slowdowns (9 to 14) are therefore a good estimate of the
minimal slowdown for emulator-generated address traces and demonstrate that fast emulators can,
in indeed, be effectively used for this task.

All of these emulators collect references from only a single process and exclude kernel
references, so they are limited with respect to trace completeness. Some of these tools claim to
support multi-threaded applications and emulation of operating system code, but this statement
should be interpreted carefully. All of these emulators run in their own user-level process and
require the full support of a host operating system. Within this process, they may emulate certain
operating-system functions by intercepting system calls and passing them on to the host OS, but
this does not mean that they are able to monitor the address references made by the actual host OS,
nor are they able to see any references made by any other user-level processes in the host system.
An important advantage of dynamic emulation is that it can be made to handle dynamically-
compiled and dynamically-linked code (Shade is an example). With respect to trace detail,
instruction-set emulation naturally produces virtual addresses, and is generally unable to determine
the actual physical addresses to which these virtual addresses correspond.

Instruction-set emulators generally share the advantages of high portability, flexibility and ease
of use. Several of the emulators, such as SPIM, are written entirely in C, making ports to hosts of
several different ISAs possible [Larus91]. Tools that only predecode target instructions are likely to
be more portable than those that actually compile code that executes directly on the host. Shade has
been used to simulate several target architectures, one of which (SPARC-V9) had yet to be
implemented at the time the paper was written [Cmelik93; Cmelik94]. In other words, instruction-
set emulators like Shade can collect address traces from machines that have not yet been realized in
hardware. Some of these emulators are very flexible in the sense that the analyzer code can specify
the level of trace detail required. Shade analyzers, for example, can specify that only load data
addresses in a specific address range should be traced [Cmelik94]. Ease-of-use is enhanced by the
ability of these emulators to run directly on executable images created for the target architecture,
with no prior preparation or annotation of workloads required.

A major disadvantage of instruction-set emulators is that they build up a large amount of state.
Instructions that have been translated to an intermediate representation, or to equivalent host
instructions, can use an order of magnitude more memory than equivalent native code [Cmelik94].
Other auxiliary data structures, such as tables that accelerate the lookup of translated instructions,

Draft — Submitted for Publication to Computing Surveys — Draft

16 • Uhlig et al.

boost memory usage even higher. Actual measurements of memory usage are unavailable for most
of the emulators in Table2, but for Shade they are reported to be in the range of 4 to 40 times the
usual memory required by normal, native execution [Cmelik93; Cmelik94]. Increased memory
usage means that these systems must be equipped with additional physical memory to handle large
workloads.

4.4 Static Code Annotation

The fastest instruction-set emulatorsdynamically translate instructions in the target ISA to
instructions in the host ISA, and optionally annotate the host code to produce address traces.
Because these emulators perform translation at run time they gain some additional functionality,
such as the ability to trace dynamically-linked or dynamically-compiled code. This additional
flexibility comes at some cost, both in overall execution slowdown and in memory usage. For the
purposes of trace collection, it is often acceptable to trade some flexibility for increased speed. If
the target and host ISAs are the same and if dynamically-changing code is not of interest, then a
workload can be annotatedstatically, before run time. With this technique, instructions are inserted
around memory operations in a workload to create a new executable file that deposits a stream of
memory references into a trace buffer as the workload executes (see Figure4). Static code
annotation can be performed at the source (assembly) level, the object-module level, or the
executable (binary) level (see Figure2 and Table3), with different consequences for both the
implementation and the end user [Stunkel91; Wall92; Pierce94].

Figure 4. Static Code Annotation

In this example, memory references made by a workload are traced by inserting instructions ahead of
each load and store operation in the annotated executable file. The inserted code computes the load
or store address in register t1, saves it in a trace buffer, and then increments the trace buffer index,
which is held in register t2. Notice that registers t1 and t2 are assumed to be not live during this
fragment of code. If the code annotator is unable to determine, via static analysis, if this assumption is
true, then it may be forced to temporarily save and restore these registers to memory, thus increasing
the size of the annotation code.

Annotations can also be inserted at the beginnings of basic blocks to trace instruction-memory
references.

ld r2,4(r1)

.

.

.

add r5,r6,r2

add r1,r6,r8

sub r6,r3,r9

st r5,8(r1)

bne r5,loop

.

.

.

.

.

.

add r1,r6,r8

sub r6,r3,r9

st r5,8(r1)

bne r5,loop

add r5,r6,r2

.

.

.

Original
Annotated
Executable

Assembly Code,
Object Module or

File
add t1,r1,8
st t1,trace(t2)
add t2,t2,4

add t1,r1,4
st t1,trace(t2)
add t2,t2,4

ld r2,4(r1)

Executable File

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 17

M
et

h
o

d
R

ef
er

en
ce

N
am

e
S

lo
w

d
o

w
n

Ti
m

e
D

ila
ti

o
n

M
em

o
ry

D
ila

ti
o

n

C
o

m
p

le
te

n
es

s

P
ro

ce
ss

o
r

A
n

al
yz

er
 In

te
rf

ac
e

M
u

lt
i-

p
ro

ce
ss

O
S

K
er

n
el

S
ou

rc
e

[S
tu

nk
el

89
]

T
R

A
P

E
D

S
20

 -
 3

0
20

 -
 3

0
8

-
10

N
o

N
o

iP
S

C
/2

Li
nk

ed
 in

to
 P

ro
ce

ss

[E
gg

er
s9

0]
M

P
tr

ac
e

1,
00

0
+

2
-

3
4

-
6

N
o

N
o

i3
86

F
ile

 +
 P

os
t P

ro
ce

ss

[L
ar

us
90

]
A

E
20

 -
 6

5
2

-
5

—
N

o
N

o
M

IP
S

, S
P

A
R

C
F

ile
 +

 P
os

t P
ro

ce
ss

[G
ol

ds
ch

m
id

t9
3]

Ta
ng

oL
ite

45
45

4
N

o
N

o
M

IP
S

M
em

or
y

B
uf

fe
rs

O
bj

ec
t

[B
or

g8
9]

E
po

xi
e

8
-

12
8

-
12

5
Ye

s
N

o1
Ti

ta
n

G
lo

ba
l B

uf
fe

r

[C
he

n9
3]

E
po

xi
e2

15
15

2
Ye

s
Ye

s
R

30
00

G
lo

ba
l B

uf
fe

r

[S
riv

as
ta

va
94

]
[E

us
ta

ce
94

]
A

T
O

M
6

-1
3

6
-

13
—

N
o

Ye
s

A
lp

ha
Li

nk
ed

 in
to

 P
ro

ce
ss

B
in

ar
y

[S
m

ith
91

]
P

ix
ie

10
10

4
-

6
N

o
N

o
M

IP
S

F
ile

 /
P

ip
e

[S
te

ph
en

s9
1]

G
ob

lin
20

20
10

N
o

N
o

R
S

/6
00

0
Li

nk
ed

 in
to

 P
ro

ce
ss

[P
ie

rc
e9

4]
ID

tr
ac

e
12

12
12

N
o

N
o

i4
86

F
ile

 /
P

ip
e

[L
ar

us
93

]
Q

pt
10

 -
 6

0
2-

5
3

N
o

N
o

M
IP

S
, S

P
A

R
C

F
ile

 +
 P

os
t P

ro
ce

ss

[L
ar

us
95

]
E

E
L

—
—

—
N

o
N

o
M

IP
S

, S
P

A
R

C
—

Ta
bl

e
3.

S

ta
tic

 C
od

e
A

nn
ot

at
or

s

C
od

e-
an

no
ta

tio
n

to
ol

s
ad

d
in

st
ru

ct
io

ns
 to

 a
 p

ro
gr

am
 a

t t
he

S
ou

rc
e,

O
bj

ec
t o

r
B

in
ar

y
le

ve
l t

o
cr

ea
te

 a
n

an
no

ta
te

d
pr

og
ra

m
 e

xe
cu

ta
bl

e
fil

e
th

at
 o

ut
pu

ts
 a

dd
re

ss
tr

ac
es

 a
s

a
si

de
 e

ffe
ct

 o
f

its
 e

xe
cu

tio
n.

 I
n

th
e

ab
ov

e
ta

bl
e,

S
lo

w
do

w
n

re
fe

rs
 t

o
th

e
tim

e
it

ta
ke

s
bo

th
 t

o
ru

n
th

e
an

no
ta

te
d

pr
og

ra
m

 a
nd

 t
o

pr
od

uc
e

th
e

fu
ll

ad
dr

es
s

tr
ac

e,
 w

hi
le

T
im

e
D

ila
tio

n
re

fe
rs

 o
nl

y
to

 t
he

 t
im

e
it

ta
ke

s
to

 r
un

 t
he

 a
nn

ot
at

ed
 p

ro
gr

am
.

U
su

al
ly

 t
he

se
 a

re
 t

he
 s

am
e,

 b
ut

 s
om

e
an

no
ta

te
d

pr
og

ra
m

s
ge

ne
ra

te
 o

nl
y

a
m

in
im

al
 t

ra
ce

 o
f

si
gn

ifi
ca

nt
 e

ve
nt

s
w

hi
ch

 m
us

t
be

 p
os

t-
pr

oc
es

se
d

to
 r

ec
on

st
ru

ct
 t

he
 f

ul
l t

ra
ce

.
M

em
or

y
di

la
tio

n
re

fe
rs

 t
o

th
e

ad
di

tio
na

l s
pa

ce
us

ed
 b

y
th

e
an

no
ta

te
d

pr
og

ra
m

 r
el

at
iv

e
to

 a
n

un
-a

nn
ot

at
ed

 p
ro

gr
am

.

1
K

er
ne

l t
ra

ci
ng

 w
as

 im
pl

em
en

te
d,

 b
ut

 w
as

 n
ot

 fu
lly

 d
eb

ug
ge

d.

Draft — Submitted for Publication to Computing Surveys — Draft

18 • Uhlig et al.

The main advantage of annotating code at the source level is ease of implementation. At this
level, the task of relocating the code and data of the annotated program can be handled by the usual
assembly and link phases of a compiler, and more detailed information about program structure can
be used to optimize code-annotation points. Unfortunately, annotation at this level may render the
tool unusable in many situations because the complete source code for a workload of interest is
often not available. An early example of code annotation performed at the source level is the
TRAPEDS system [Stunkel89]. TRAPEDS adds trace-collecting code and a call to an analyzer
routine at the end of each basic block in an assembly source file. The resulting program expands in
size by a factor of about 8 to 10, and its execution is slowed by about 20 to 30. Some other tools
take greater advantage of the additional information about program structure available at the source
level. BothMPtrace [Eggers90] andAE [Larus90] use control-flow analysis to annotate programs
in a minimal way so that they produce a trace of only significant dynamic events. AE, for example,
analyzes a program to find those instructions that contribute to address calculations. It then
determines which addresses are easy to reconstruct, and which addresses depend on values that are
difficult or impossible to determine through static analysis. Larus gives an example annotation of a
simple subroutine that initializes 100 elements in an array structure starting from a location
specified as a parameter to the procedure. The starting address is a value that cannot be known
statically, so it is considered to be asignificant event, and the program is annotated to emit this
value to a trace file. The remaining addresses, however, can easily be reconstructed later, given the
starting address and a description of the striding pattern through the array, which AE specifies in a
program schema. Given a trace of significant events, along with the program schema, Larus
describes how to construct a post-processing program that reconstructs the full trace. Tracing only
significant events reduces both the size and execution time of the annotated program. Programs
annotated by MPtrace, for example, are only about 4 to 6 times larger than usual, and exhibit
slowdowns of only 2 to 3, not including the time to regenerate the full trace. Eggers et al. argue that
it is useful to postpone full-trace reconstruction until after the workload runs because this
minimizes trace distortion due to time dilation, a source of error that can be substantial in the case
of multi-processor memory simulation.TangoLite [Goldschmidt93], a successor toTango
[Davis91], minimizes the effects of time dilation in a different way by determining event order
through event-driven simulation. It is important to include the time to regenerate the full address
trace when considering the speed of these methods. In the case of AE, trace regeneration increases
overall slowdowns to about 20 to 60. Unfortunately, the trace-regeneration time is not given in
terms of slowdowns for MPtrace, although Eggers et al. do report that trace regeneration is the most
time-consuming step in their system, producing only 6,000 addresses per second. Assuming a
processor that generates 6 million memory references per second (a conservative estimate for
machine speeds at the time the paper was written), 6,000 addresses per second corresponds to a
slowdown of approximately 1,000.

Performing annotation at the object-module level can help to simplify the preparation of a
workload. In particular, source code for library object modules is no longer needed. Wall argues
that annotating code at this level is only slightly more difficult because data-relocation tables and
symbol tables are still available [Wall92]. An early example of this form of code annotation is
Epoxie, implemented for the DEC Titan [Borg89; Borg90; Mogul91], and later ported to MIPS-
based DECstations [Chen93]. In both of these systems, slowdowns for the annotated programs
ranged from about 8 to 15 and code expansion ranges from 2 to 5.

Code annotation at the executable level is the most convenient to the end user because it is not
necessary to annotate a collection of source and/or object files to produce the final program.
Instead, a single command applied to one executable file image generates the desired annotated

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 19

program. Unfortunately annotation at this level is also the most difficult to implement because
executable files are often stripped of symbol-table information. A significant amount of analysis
may be required to properly relocate code and data after trace-generating instructions have been
added to the program [Pierce94]. Despite these difficulties, there exist several program-annotation
tools that operate at the executable level. An early example isPixie, which operates on MIPS
executables [MIPS88; Smith91]. The popularity of Pixie has prompted the development of several
similar programs that work on other instruction-set architectures. These includeGoblin
[Stephens91] andIDtrace [Pierce94], which operate on RS/6000 and i486 binaries, respectively. A
second generation of the AE tool, calledQpt, can operate on both MIPS and SPARC binaries
[Larus93]. The slowdowns and memory overheads for each of these static annotators compares
favorably with the best dynamic emulators discussed in the previous section.

A common problem with many code annotators is that they produce traces with an inflexible
level of detail, requiring a user to select the monitoring of either data or instruction references (or
both) with an all-or-nothing switch. Many tools are similarly rigid in the mechanism that they use
to communicate addresses, typically forcing the trace through a file or pipe interface to another
process containing the trace processor. Some more recent tools, such asATOM [Srivastava94;
Eustace94] andEEL [Larus95] overcome these limitations. ATOM offers a flexible interface that
enables a user to specify how to annotate each individual instruction, basic block and procedure of
an executable file; at each possible annotation point the user can specify the machine state to
extract, such as register values or addresses, as well as an analysis routine to process the extracted
data. If no annotation is desired at a given location, ATOM does not add it, thus enabling a minimal
degree of annotation to be specified for a given application. For I-cache simulation, for example, a
simulator writer can specify that only instruction references be annotated, and that a specific I-
cache analysis routine be called at these points. Eustace and Srivastava report that addresses for
cache simulation can be collected from ATOM-annotated SPEC92 benchmarks with a slowdowns
of between 6 and 13 [Eustace94]. EEL is a similarly-flexible executable editor that is the basis of a
new version of qpt as well a high-speed cache simulator named Fast-cache [Lebeck95], which we
will discuss in Section8.

In general, code annotators are not capable of monitoring multi-process4 workloads or the
operating system kernel, but there are some exceptions. Borg and Mogul describe modifications to
the Titan operating system, Tunix, that support tracing of multiple workload processes byEpoxie
[Borg89; Borg90; Mogul91]. Tunix interleaves the traces generated by multiple processes into a
global trace buffer that is periodically emptied by a trace-processing program. These researchers
also experimented with annotating the Tunix kernel itself, although they do not report any results
obtained from these traces [Mogul91]. Chen continued this work by porting a version of Epoxie to
a MIPS-based DECstation running both Ultrix and Mach 3.0 to produce traces from single-process
workloads including the user-level X and BSD servers, and the kernel itself [Chen93; Chen94].
Recent version of ATOM can annotate OSF/1 kernels, but because ATOM analyzer routines are
linked into each annotated executable, there is no straightforward way to capture system-wide,
multi-process activity. For example, ATOM cannot easily simulate a cache that is shared among

4. Many of the tracing tools discussed in this section were designed to monitor multi-threaded
workloads running on a multi-processor memory system (e.g., MPtrace, TRAPEDS, TangoLite).
However, the multiple threads in these workloads run in the same protection domain (process), so
we consider them to be single-process workloads.

Draft — Submitted for Publication to Computing Surveys — Draft

20 • Uhlig et al.

several processes and the kernel because the analyzer routines for each executable have no
knowledge of the memory references made in other executables.

By definition, static code annotation does not handle code that is dynamically compiled at run
time. Dynamically-linked code also poses a problem although some systems, such as Chen’s, treat
this problem in special cases (he modified the BSD server to cause it to dynamically map a special
annotated version of the BSD emulation library into user-level processes that require a BSD API).

With respect to trace detail, these methods naturally produce virtual addresses tagged by access
type and size, and some of the systems that can annotate multi-process workloads are also able to
tag references with a process identifier [Borg89]. Associating a true physical address with each
virtual address is, however, very difficult because an annotated program is expanded in size and
therefore utilizes virtual memory very differently than an unannotated workload would.

The tools that include multi-process and kernel references are subject to several forms of trace
distortion. Trace discontinuities occur when the trace buffer is processed or saved to disk and time-
dilation distortion occurs because the annotated programs run 10 to 30 times slower than they
normally would. Chen and Borg et al. note that the effects of these distortions on clock-interrupt
frequency and the CPU scheduler can be countered by reprogramming the clock-generation chip
[Borg89; Chen93]. However, a solution to the problem of apparent I/O device speedup is not
discussed. Borg et al. discuss a third form of trace distortion due to annotated-code expansion
called memory dilation. This effect can lead to increased TLB misses and paging activity. The
impact of these effects can be minimized by adding additional memory to the system (to avoid
paging), and to emulate, rather than annotate, the TLB miss handlers (to account for increased TLB
misses) [Borg89; Chen93].

These tools share a number of common characteristics. First, they are on average about twice
as fast as instruction-set emulation techniques, although some of these tools are outperformed by
very efficient emulators, like Shade. Second, all of these tools suffer from the disadvantage that all
workload components must be prepared prior to being run. Usually this is not a major concern, but
it can be a time consuming and tedious process if a workload consists of several source or object
files. Even for the tools that avoid source or object-file annotation, it can be difficult to locate all of
the executables that make up a complex multi-process workload. Portability is generally high for
the source-level tools, such as AE, but decreases as code modification is postponed until later
stages of the compilation process. Portability is hampered somewhat in the case of Chen’s system,
where several workload components in the kernel must be annotated by hand in assembly code.
Note that static annotation must annotate all the code in a program, whether it actually executes or
not. This is not the case with the instruction-set emulators, which only need to translate code that is
actually used. This is an important consideration for very large executables, such as X applications,
which are often larger than a megabyte, but only touch a fraction of their text segment [Chen94].

4.5 Single-step Execution

Figure2 shows that the highest level of system abstraction for collecting address traces is the
operating system. Most operating systems support some form of debugging utility that enables a
programmer to step through a program one instruction at a time to expose errors. This form of
debugging is usually supported in hardware through a single-step execution mode, where the
processor traps into the OS kernel after the execution of each instruction or basic block [Digital86;
AMD91; AMD93; Motorola93; HP90; Motorola90] or by breakpoint instructions that cause kernel
traps whenever they are executed [Kane92; Intel90]. A debugger that supports single-step

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 21

execution and examination of processor state, such as registers, can be modified to generate both
instruction-address and data-address traces. Instruction-address traces are produced by simply
recording the value of the program counter at each execution step. Data-address traces require
instruction emulation to determine if the current instruction generates a memory reference and, if
so, the value of that reference. Examples of studies that describe the use of traces obtained through
single-stepping include [Wiecek82; Clark85; Winsor89].

The main advantages of this method are low expense, high portability, and ease of use. With
the exception of debugger data structures, little additional host memory is used. Unfortunately,
slowdowns for this technique are high, with estimates varying widely from 100 [Agarwal88] to
1,000 [Flanagan92] to 10,000 [Holliday91]. High slowdowns are usually due to debugger
implementations that rely on the UNIXptrace() facility which, in turn, is implemented using
UNIX exception-signal handlers. Recent work on tuning the exception-delivery path in UNIX-
based systems suggests that these slowdowns could be cut dramatically [Thekkath94].

Although there is nothing inherent in this approach that limits traces to a single process, or to
user-only references, debuggers typically do impose these limitations. Similarly, dynamically-
compiled and dynamically-linked code is usually not supported by debuggers. Because only
address-trace information is desired, a single-step trace-collection tool could, in principle, be
written from scratch to avoid the overheads and single-process limitations of program debuggers.
We are not aware of any existing trace-collection system that uses this approach.

Although once very popular [Holliday91], single-step execution as a method for trace
collection has essentially been abandoned in recent years because of the greater efficiency of other
software-based methods. Recently, however, some new tools that trap only after certain events
(such as a simulated cache miss) have lead to a resurgence of trap-based monitoring. We shall
examine some of these tools near the end of this survey in Section8.

4.6 Summary of Trace Collection

Table4 summarizes the general characteristics of each of the trace-collection methods
examined in this section. Because of the range of capabilities of tools within each category, and
because of the subjective nature of some of the characteristics (e.g., ease-of-use), it is difficult to
accurately and fairly summarize all considerations in a single table. It is nevertheless worthwhile to
attempt to do so, so that some general conclusions can be drawn. We begin by describing how to
interpret the table:

For descriptions of trace quality (completeness, detail anddistortion), a Yes entry means that
most existing implementations of the method naturally provide trace data with the given
characteristics. AMaybe entry means that the method does not easily provide this form of trace
data, but there are nevertheless a few existing tools that overcome these limitations. ANo entry
means that there are no existing examples of a tool in the given category that provide trace data of
the type in question, usually because the method makes it difficult to do so. To make the
comparisons fair, trace-collection slowdowns include any additional overhead required to produce
a complete, usable address trace. This may include the time required to unload an external trace
buffer (in the case of the probe-based methods), or to regenerate a complete address trace from a
significant-events file (in the case of certain code-annotation methods). Slowdowns do not include
the time required to process the trace, nor the time to save it to a secondary storage device. We give
a range of slowdowns for each method, removing any excessively bad implementations in any
category. Additional Memory requirements include external trace buffers and memory from the

Draft — Submitted for Publication to Computing Surveys — Draft

22 • Uhlig et al.

C
ha

ra
ct

er
is

tic
s

E
xt

er
na

l
P

ro
be

-b
as

ed
M

ic
ro

co
de

M
od

ifi
ca

tio
n

In
st

ru
ct

io
n-

se
t

E
m

ul
at

io
n

S
ta

tic
 C

od
e

A
nn

ot
at

io
n

S
in

gl
e-

st
ep

E
xe

cu
tio

n

C
om

pl
et

en
es

s
M

ul
ti-

pr
oc

es
s

W
or

kl
oa

ds
Ye

s
Ye

s
M

ay
be

M
ay

be
N

o

O
S

 K
er

ne
l C

od
e

Ye
s

Ye
s

M
ay

be
M

ay
be

N
o

D
yn

am
ic

al
ly

-c
om

pi
le

d
C

od
e

Ye
s

Ye
s

Ye
s

N
o

N
o

D
yn

am
ic

al
ly

-li
nk

ed
 C

od
e

Ye
s

Ye
s

Ye
s

M
ay

be
N

o

D
et

ai
l

Ta
gs

 (
R

 /
W

 /
X

 /
S

iz
e)

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

V
irt

ua
l A

dd
re

ss
es

M
ay

be
Ye

s
Ye

s
Ye

s
Ye

s

P
hy

si
ca

l A
dd

re
ss

es
Ye

s
Ye

s
E

m
ul

at
ed

N
o

Ye
s

P
ro

ce
ss

 Id
en

tifi
er

s
M

ay
be

Ye
s

E
m

ul
at

ed
M

ay
be

N
/A

Ti
m

e
S

ta
m

ps
Ye

s
N

o
M

ay
be

N
o

N
o

D
is

to
rt

io
ns

D
is

co
nt

in
ui

tie
s

Ye
s

Ye
s

N
o

M
ay

be
N

/A

Ti
m

e
D

ila
tio

n
N

o
10

 -
 2

0
N

o
2

-
30

N
/A

M
em

or
y

D
ila

tio
n

N
o

N
o

N
o

4
-

10
N

/A

S
pe

ed
 (

S
lo

w
do

w
n)

1,
00

0
+

10
 -

 2
0

15
 -

 7
0

10
 -

 3
0

10
0

-
10

,0
00

M
em

or
y

(W
or

kl
oa

d
E

xp
an

si
on

 +
 B

uf
fe

rs
)

E
xt

er
na

l B
uf

fe
r

B
uf

fe
r

4
-

40
10

 -
 3

0
+

 B
uf

fe
r

B
uf

fe
r

P
or

ta
bi

lit
y

Lo
w

V
er

y
Lo

w
H

ig
h-

M
ed

iu
m

M
ed

iu
m

H
ig

h

E
xp

en
se

H
ig

h
M

ed
iu

m
M

ed
iu

m
-L

ow
M

ed
iu

m
-L

ow
Lo

w

E
as

e-
of

-U
se

Lo
w

H
ig

h
H

ig
h

H
ig

h-
Lo

w
H

ig
h

Ta
bl

e
4.

S

um
m

ar
y

of
 T

ra
ce

-c
ol

le
ct

io
n

M
et

ho
ds

T
hi

s
ta

bl
e

su
m

m
ar

iz
es

 th
e

ch
ar

ac
te

ris
tic

s
of

 fi
ve

 c
om

m
on

 m
et

ho
ds

 fo
r

co
lle

ct
in

g
ad

dr
es

s
tr

ac
es

. F
or

 th
e

de
sc

rip
tio

ns
 o

f t
ra

ce
 q

ua
lit

y
(c

om
pl

et
en

es
s,

 d
et

ai
la

nd
di

st
or

tio
ns

)
a

M
ay

be
en

tr
y

m
ea

ns
 t

ha
t

th
e

m
et

ho
d

ha
s

in
he

re
nt

 d
iffi

cu
lty

 p
ro

vi
di

ng
 d

at
a

w
ith

 t
he

 g
iv

en
 c

ha
ra

ct
er

is
tic

s,
 b

ut
 t

he
re

 a
re

 e
xa

m
pl

es
 o

f
to

ol
s

in
 t

he
gi

ve
n

ca
te

go
ry

 th
at

 o
ve

rc
om

e
th

es
e

lim
ita

tio
ns

. T
he

 r
an

ge
s

gi
ve

n
in

 th
e

sl
ow

do
w

n
ro

w
 e

xc
lu

de
 ti

m
es

 fo
r

ex
ce

ss
iv

el
y

ba
d

im
pl

em
en

ta
tio

ns
.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 23

simulator host machine that is consumed either by trace data or by a workload expanded in size due
to annotation. Factors that determine theExpense of the method include the purchase of special
monitoring hardware, or any necessary modifications to the host hardware, such as changes to the
motherboard to make CPU pins accessible by external probes, or the purchase of extra physical
memory for the host to satisfy the memory requirements of the method.Portability is determined
both by the ease with which the tool can be moved to other machines of the same type, and to
machines that are architecturally different. Finally, Ease-of-Use describes the amount of effort
required of the end user to operate the tool once it has been developed. These last few
characteristics require a somewhat subjective evaluation which we provide with a roughHigh,
Medium, orLow ranking.

Despite these qualifications, it is possible to draw some general conclusions about how the
different trace-collection methods compare. A first observation is that high-quality traces are still
quite difficult to obtain. Methods that by their nature produce complete, detailed and undistorted
traces (e.g., the probe-based or microcode-based techniques) are either very expensive, hard to
port, hard to use or outdated. On the other hand, the techniques that are less expensive and easier to
use and port (e.g., instruction-set emulation and code annotation) generally have to fight inherent
limitations in the quality of traces that they can collect, particularly with respect to completeness
(multi-process and kernel references). Second, none of the methods are able to collect complete
traces with a slowdown of less than about 10. Finally, when all the factors are considered, no single
method for trace collection is a clear winner, although some, such as single-step execution, have
clearly dropped from favor. The probe-based and microcode-based methods probably produce the
highest quality traces as measured by completeness, detail and distortion, but their applicability
could be limited if designers fail to provide certain types of hardware support or greater
accessibility in future machines. Code annotation is probably the most popular form of trace
collection because of its low cost, relatively high speed, and because of recent developments that
enable it to collect multi-process and kernel references. However, advances in instruction-set
emulation speeds and the greater flexibility of this method may lead to the increased use of this
alternative to static code annotation in the future.

5 TRACE REDUCTION

Once an address trace has been collected, it is input to a trace-processing simulator or stored on
disk or tape for processing at a later time. Considering that a modern uniprocessor operating at 100
MHz can easily produce half a gigabyte of address-trace data every second, there has been
considerable interest in finding ways to reduce the enormous size of traces to minimize both
processing and storage requirements. Fortunately address traces exhibit high spatial and temporal
locality, so there are many opportunities for achieving high factors of trace reduction. Several
studies have, in fact, shown that the information content of address traces tends to be very low,
suggesting that trace compaction or compression techniques could be quite effective
[Hammerstrom77; Becker93; Pleszkun94].

There are several criteria for evaluating and comparing different methods of trace reduction
(see Table5). The first, of course, is the tracereduction factor. The time required to reconstruct or
decompress a trace is also important because it directly affects simulation times. Ideally, trace
reduction achieves high factors of compression without reducing the accuracy of simulations
performed by the reduced traces. It may, however, be acceptable to relax the constraint of exact
trace reduction if higher factors of compression can be attained and if the resulting simulation error
is low. If results are not exact, Table5 shows the amount of error and its relationship to the

Draft — Submitted for Publication to Computing Surveys — Draft

24 • Uhlig et al.

M
et

h
o

d
R

ef
er

en
ce

R
ed

u
ct

io
n

F
ac

to
r

D
ec

o
m

p
re

ss
io

n
S

lo
w

d
o

w
n

S
im

u
la

ti
o

n
S

p
ee

d
u

p
E

xa
ct

?
E

rr
o

r
R

es
tr

ic
ti

o
n

s

Tr
ac

e
C

om
pr

es
si

on
[S

am
pl

es
89

]
10

 -
 1

00
10

0
-

20
0

1
Ye

s
N

/A
N

on
e

S
ig

ni
fic

an
t-

ev
en

t
Tr

ac
es

[L
ar

us
90

; 9
3]

10
 -

 4
0

20
 -

 6
0

1
Ye

s
N

/A
N

on
e

[E
gg

er
s9

0]
—

1,
00

0
+

1
Ye

s
N

/A
N

on
e

S
ta

ck
 D

el
et

io
n

F
ilt

er
[S

m
ith

77
]

5
-

10
0

0
4

-
50

N
o

<
 4

 -
 5

%
F

ul
ly

-a
ss

oc
ia

tiv
e

M
em

or
ie

s

S
na

ps
ho

t F
ilt

er
[S

m
ith

77
]

5
-

10
0

0
4

-
50

N
o

<
 4

 -
 5

%
F

ul
ly

-a
ss

oc
ia

tiv
e

M
em

or
ie

s

C
ac

he
 F

ilt
er

[P
uz

ak
85

]
10

 -
 2

0
0

—
Ye

s
N

/A
F

ix
ed

-li
ne

-s
iz

e
C

ac
he

s

[W
an

g9
0]

10
 -

 2
0

0
7

-
15

Ye
s

N
/A

F
ix

ed
-li

ne
-s

iz
e

C
ac

he
s

B
lo

ck
 F

ilt
er

[A
ga

rw
al

90
]

50
 -

 1
00

0
—

N
o

<
 1

2%
F

ix
ed

-li
ne

-s
iz

e
C

ac
he

s

Ti
m

e
S

am
pl

in
g

[L
ah

a8
8]

5
-

20
0

<
 5

 -
 2

0
N

o
<

 5
%

S
m

al
l C

ac
he

s
(<

 1
28

 K
-b

yt
e)

[K
es

sl
er

91
]

10
0

<
 1

0
N

o
<

 1
0%

S
m

al
l C

ac
he

s
(<

 1
 M

-b
yt

e)

S
et

 S
am

pl
in

g
[P

uz
ak

85
]

5
-

10
0

<
 1

0
N

o
<

 2
%

S
et

 S
am

pl
e

N
ot

 G
en

er
al

[K
es

sl
er

91
]

10
0

<
 1

0
N

o
<

 1
0%

C
on

st
an

t-
bi

ts
 S

et
 S

am
pl

e

Ta
bl

e
5.

M

et
ho

ds
 fo

r
A

dd
re

ss
 T

ra
ce

 R
ed

uc
tio

n

T
he

 tr
ac

e
re

du
ct

io
n

fa
ct

or
 is

 th
e

ra
tio

 o
f t

he
 s

iz
es

 o
f t

he
 r

ed
uc

ed
 tr

ac
e

an
d

th
e

fu
ll

tr
ac

e.
D

ec
om

pr
es

si
on

 S
lo

w
do

w
n

is
 o

nl
y

re
le

va
nt

 to
 m

et
ho

ds
 th

at
 r

ec
on

st
ru

ct
th

e
fu

ll
tr

ac
e

be
fo

re
 it

 is
 p

ro
ce

ss
ed

. M
os

t o
f t

he
se

 m
et

ho
ds

 p
as

s
th

e
re

du
ce

d
tr

ac
e

di
re

ct
ly

 to
 th

e
tr

ac
e

pr
oc

es
so

r
w

hi
ch

 is
 a

bl
e

to
 p

ro
ce

ss
 th

is
 d

at
a

m
uc

h
fa

st
er

th
an

 th
e

fu
ll

tr
ac

e
(s

ee
S

im
ul

at
io

n
S

pe
ed

up
).

 S
im

ul
at

io
ns

 w
ith

 a
 r

ed
uc

ed
 tr

ac
e

us
ua

lly
 r

es
ul

t i
n

so
m

e
si

m
ul

at
io

n
er

ro
r

an
d

ca
n

be
 p

er
fo

rm
ed

 o
nl

y
in

 a
 r

es
tr

ic
te

d
de

si
gn

 s
pa

ce
 (

se
e

E
xa

ct
,E

rr
or

 a
nd

R
es

tr
ic

tio
ns

).

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 25

parameters of the memory structure being simulated. Many trace reduction methods make
assumptions about the type of memory simulation that will be performed using the reduced trace.
Table5 shows when and how these assumptions imply restrictions on the use of the reduced trace.

5.1 Trace Compression

One approach to trace reduction is to apply standard data-compression algorithms. As an
example, the UNIX compress utility, which implements the Lempel-Ziv algorithm [Ziv76],
achieves a compression factor of about 3 to 5 on typical address traces [Agarwal90]. Samples
showed that much higher degrees of compression can be attained if a full address trace is first pre-
processed to produce adifference trace, as is done inMache [Samples89]. Mache computes a
difference trace by dividing a full address trace into substreams according to some separation rule
(see Figure5). A simple separation rule is to create one substream from all instruction references,
one from all data reads, and one from all data writes. Since the full trace will often havelabels
attached to each address to identify their type (instruction fetch, load, store, etc.), it is a simple
matter to determine to which substream a given address corresponds. As they are encountered, the
first (base) addresses from each substream are emitted, along with their identifying substream
labels, to the output difference trace. The arithmetic difference between subsequent addresses and
their immediate predecessors within each substream is then computed, and the absolute value of
this difference is compared against some predetermined threshold. When the difference is less than
the threshold, only the difference and the substream label are emitted to the output. If the difference
is greater than the threshold, then the entire address value and label are emitted. The original, full
address trace can be reconstructed from the difference trace by starting with the base address in
each substream, and then adding the sequence of difference values, step-by-step, to obtain a
sequence of full address values.

A difference trace improves trace reduction factors for two reasons. First, the number of bytes
required to encode difference values is less than that required for full addresses. Only 16 bits are
required to encode a difference value with a threshold of 8192 and three label types (13 bits for the
absolute value of the difference, 1 sign bit, and 2 bits for the label), which is one half or one quarter
the amount of data required to specify a full 32-bit or 64-bit address. Second, a difference trace

Figure 5. Computing a Difference Trace

I 40010
I 40014
L A0000
I 40018
L A0100
I 4001C
I 40020
I 40024
S A0200
I 40028
I 40010

Substream: I
Last = 40014

Substream: L
Last = A0004

Substream: S
Last = NoneI 40014

L A0004
I 40018
L A0104

..

.

..

.

I 40010
I +4
L A0000
I +4
L +100
I +4
I +4
I +4
S A0200
I +4
I -18
I +4
L -FC
I +4
L +100

..

.

I 40018

L A0104

S A0200

I +4

L +100

S A0200

..

.Original
Trace

Difference
Trace

Draft — Submitted for Publication to Computing Surveys — Draft

26 • Uhlig et al.

exposes regularity and striding patterns in a trace that can be better exploited by the Lempel-Ziv
algorithm. When Samples applied Lempel-Ziv compression to his difference traces, overall
compression factors increased to 10 to 20 for traces with mixed instruction and data references, and
to as high as 100 for traces with instruction references only. Mache retains the full information
content of traces, so simulations using Mache are unrestricted and exact. However, because the full
address trace must be reconstructed before simulation, there is a space, but not a simulation-time
savings. In fact, times reported by Samples imply that decompression can add a slowdown factor of
as much as 200 to trace-driven simulations.

5.2 Significant-event Traces

Tools such as MPtrace [Eggers90], AE [Larus90], and qpt [Larus93], which we first described
in Section4.4, produce significant-event traces that are typically much smaller than full address
traces. AE traces, for example, are 10 to 40 times smaller than full traces, while those from MPtrace
are reported to be as much as 1,000 times smaller. Because these systems provide a method for
reconstructing the full address trace, they can be viewed as trace-reduction systems that annotate a
workload to produce a reduced trace directly. As with Mache, the complete trace is regenerated in
these systems, so simulations using these traces are unrestricted and exact, but there is no
simulation-time savings. As noted previously, AE and qpt can slow overall simulations by 20 - 60,
while MPtrace can make overall simulation times as much as three orders of magnitude slower.

5.3 Trace Filtering

A designer often has a specific purpose in mind for a given set of address traces. The traces
might only be used for cache simulations where the cache size is larger than some specific
minimum size and where the line size is fixed. In such a situation, a full address trace can be
reduced in size substantially, provided that the resulting reduced trace is used only for simulations
in an appropriately-constrained design space. Smith has suggested two examples of this form of
trace reduction [Smith77]. He constrained his simulation design space to fully-associative memory
structures (for main-memory page-replacement or TLB simulations), and then devised two
methods for trace reduction:stack deletion andthe snapshot method. With the first method, stack
deletion, a full memory trace is used to simulate an LRU stack memory. Addresses that hit in the
top D entries of the stack are discarded, while addresses that miss are concatenated to form a
reduced trace. The rationale behind this procedure is that references that hit the LRU stack are also
likely to hit in any fully-associative main memory or TLB that is larger in size. Smith’s second
technique, the snapshot method, constructs a reduced trace by concatenating snapshots of memory
contents taken at periodic intervals separated byT, the snapshot parameter. Smith points out that
such a trace could be acquired at the full speed of a real machine by periodically interrupting
execution and recording the contents of page reference bits [Prieve74]. The rationale for this
method is similar to that of the stack-deletion method; the memory snapshots capture the most
important references, while filtering repeated references to the same location. Depending on the
values of the deletion parameter, D, or the snapshot interval,T, Smith reports that trace-size
reductions range from a factor of 5 to 100. When Smith used these reduced traces for the simulation
of various page-replacement algorithms and compared the results against simulations with full
traces, he found the relative error to be less than 5%. An advantage of these methods over those
previously discussed is that the reduced trace can be used directly by the simulator. This means that
there is no decompression overhead and the resulting simulations are much faster than they would
be on a complete address trace. Note, however, that the simulation speedups (4 to 50) are not

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 27

directly proportional to the compression factors (5 to 100). This is because simulations with
reduced traces result in more misses per trace event than with simulations on the full trace. Because
processing misses usually requires more time than processing hits, simulations on the reduced trace
take more time, per trace event, than they do on the full trace.

Trace stripping, first suggested by Puzak in his dissertation [Puzak85], also produces reduced
traces that can be used only in a restricted design space. A full address trace is used to simulate a
small, direct-mapped cache with a given line size, and only the references that miss thisfilter cache
are saved to form the reduced trace. Puzak proved that the trace of misses can be used to perform
exact simulations of any cache with greater size or associativity than that of the filter cache,
provided that the line size is held constant. When simulating line sizes different than that of the
filter cache, Puzak showed that some simulation error results, but it is generally less than 10% and
decreases with increasing cache associativity. Wang and Baer extended the cache filter concept to
enable the simulation of write-back caches [Wang90]. Their cache filter is the same as Puzak’s, but
in addition to recording all read misses, their reduced trace also includes the first write to any clean
cache line. With both of these methods, the trace reduction factor is equal to the inverse of the
cache miss ratio. Assuming miss ratios of 0.05 to 0.10 for small direct-mapped caches, reduction
factors are in the range of 10 to 20, but as with Smith’s methods, the simulation speedups may not
be directly proportional to the trace-reduction factor.

Agarwal and Huffman noted that cache filters exploit only temporal, but not spatial locality in
address traces [Agarwal90]. They devised another form of trace filter, called ablock filter, which
provides an additional order-of-magnitude reduction in the size of a trace that has already been
cache-filtered. A block filter takes as input a cache-filtered trace and two other parameters called
the window size,W, and the block size,B. The filter reads a group ofW references at a time and
emits only one reference from eachspatial locality in the window. Two addresses are defined to
belong to the same spatial locality if they refer to the same block ofB addresses. The rationale for
constructing the reduced trace in this way is based on the theory of stratified sampling [Hodges64],
where the strata correspond to spatial localities. Agarwal and Huffman show that application of the
block filter can increase overall trace reduction factors to as high as 100, while keeping the error in
simulation results under 10% to 12%.

5.4 Trace Sampling

When faced with a very large (or infinite) set of data to analyze, it is often helpful to resort to
statistical methods to select a subset, orsample, of the complete data population. When properly
constructed, a sample can be used to derive estimates for some statistic of interest without having to
process the entire data set. A full address trace can be viewed as a large data set, and traditional
methods for statistical sampling can therefore be used as another method for reduction of trace
data. Two basic approaches to trace sampling have been proposed in the literature:time sampling
[Laha88] andset sampling, which is also known ascongruence-class sampling [Puzak85] (see
Figure6). We discuss the pros and cons of each method in greater detail below.

Laha et al. constructed trace samples by extracting from a full trace contiguous segments of
memory references over certain windows of time [Laha88]. Each trace segment (or trace sample)
was driven into a memory simulator to obtain an estimate of some performance metric, such as a
miss ratio. The miss-ratio estimators from each trace segment were then averaged to form an
estimate of the true performance for the entire trace. This method, calledtime sampling, must be
conducted with care to avoid errors. First, a sufficient number of trace segments must be collected

Draft — Submitted for Publication to Computing Surveys — Draft

28 • Uhlig et al.

(Laha et al. suggest 35) to ensure that different phases of execution along the full trace are
adequately represented. A second source of error is due to not knowing the state of a simulated
cache at the beginning of a trace sample. This form of error, commonly known ascold-start bias,
occurs because it is not possible to know whether the initial references to each cache set hit or miss.
For the simulation of relatively small caches (< 128 K-bytes), where errors due to cold-start bias
are small, Laha’s study showed that time samples representing 5% to 20% of the full trace can be
used to simulate caches with less than about 5% relative error.

As simulated cache sizes increase, cold-start bias becomes an increasingly significant source of
error. Several ad-hoc methods have been proposed to remove or reduce this effect. One technique is
to begin measuring miss ratios only in cache sets that have been primed (i.e., sets that have become
filled with references from the beginning of the trace sample) [Laha88; Stone93]. Another method
is to concatenate, or “stitch” together the individual trace samples under the assumption that the
state of the cache at the end of one sample approximates the true cache state at the beginning of the
subsequent sample [Agarwal88]. Still another method is to use the first half the references in a trace
sample to partially prime the cache, and then to simulate the remaining references to estimate the
miss ratio [Kessler91]. Wood et al. proposed a more theoretically-sound method for estimating the
miss ratio of unknown references by using renewal theory [Wood91]. A key observation of Wood’s
model is that the miss ratio ofunknown references (i.e., references to cache sets that have not yet
been filled) is typically substantially higher than the miss ratio of the remaining references in the
time sample. Kessler compared and evaluated the effectiveness of several bias-reducing techniques
when simulating large (multi-megabyte) caches, and concluded that Wood’s method generally
performed best, although even it was unable to compensate for trace samples that where too short
relative to the simulated cache size [Kessler91]. Kessler suggested two rules of thumb for deciding
when the trace-sample length is sufficiently large to avoid errors when using Wood’s method: (1)

Cache
Sets

Figure 6. Time and Set Sampling

The memory references in an address trace can be viewed as being distributed both temporally and
spatially. In the figure above (adopted from [Kessler91]), each of the dots represents a memory
reference that is positioned according to the time that the reference occurs and the cache set into
which it maps.

When a complete address trace is viewed in this way, two different sampling approaches become
apparent: (1) an interval of time can be selected and only those memory references that occur during
the interval are retained (a time sample), or (2) a subset of cache sets can be selected and exactly
those memory references that map to the selected cache sets are retained (a set sample).

Notice that a set sample for a cache of a given configuration is not necessarily a valid set sample for a
different cache (other cache configurations result in a different mappings of memory references to
cache sets, and thus a different spatial distributions of the trace addresses).

...

Time

Time Sample

Set
SampleSpace

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 29

the trace sample must fill at least half of the cache, and (2) there must be at least as many misses to
full sets as cold-start misses [Kessler91].

An alternative sampling method is to select memory references from a full trace on the basis of
the cache set or sets that they map to. This method is commonly calledset sampling or congruence-
class sampling [Puzak85; Kessler91]. With set sampling, the reduced trace is constructed by
defining the parameters (size, associativity, line size) of some cache, and then keeping exactly those
addresses that reference a certain collection of cache sets, while discarding references to the other
sets. Cache simulations are performed on each sampled set individually to obtain several estimates
of some performance metric. Then, as with time sampling, the estimators are combined to form an
overall estimate of cache performance. Because each set in the sample sees all of the references
made to it by the full trace, this method does not suffer from cold-start bias as does time sampling.
Set sampling does, however, introduce some complications of its own.

The first issue to resolve is the method for selecting the cache sets to sample. One approach is
to select the sampled sets randomly (given a cache of a specific size, associativity and line size).
Though simple, this approach suffers from the disadvantage that an entirely different set sample
might be need to be obtained to simulate caches with a different set of parameters. This is so
because randomly-selected set samples for two caches may be incompatible whenever the set-
indexing bits for the two caches differ. To overcome this problem, Kessler proposedconstant-bits
selection, which includes in the trace sample all addresses with the same constant value in certain
address bits [Kessler91]. A simple example, drawn from Kessler’s explanation, helps to illustrate
the technique. Assume, first, that cache sets are selected (indexed) by the lowest-order address bits
immediately to the left of the address bits that specify the offset within a line (where bit 0 is the
least-significant address bit). Kessler shows that if all references to memory addresses with some
specific constant value (e.g., 0000, 0010, etc.) in address bits 11-8 are retained, then approximately
1/16-th of the total trace will be sampled, assuming that the probability of accessing different
addresses is uniformly distributed. Kessler proved that trace samples obtained in this way can be
used to simulate any cache whose address index bits include the constant bits. In other words, any
cache whose line size is 256 bytes or less, and whose size divided by its associativity is greater than
2 kilobytes can use the sampled trace.

Puzak showed that set samples representing 10% to 20% of the full trace produce simulation
results with less than 2% error with 90% confidence. He also showed that error decreases with
increasing cache associativity [Puzak85]. Kessler compared the effectiveness of set sampling with
time sampling in his simulations of multi-megabyte secondary caches [Kessler91]. He showed that
set sampling is generally able to satisfy a goal of 10% sampling with less than 10% error for large
caches (greater than one megabyte), but time sampling breaks down in this range, mainly due to
error from cold-start bias.

An important disadvantage of set sampling is that it cannot be used for simulations of memory
systems that must model time-dependent behavior or that must take into account interactions
between sets. For example, write buffers, which handle write access to all cache sets, cannot be
simulated accurately if only a subset of cache sets are represented by the trace. Similarly, many
cache prefetch algorithms depend on accesses to other cache sets. Sequential prefetch, for example,
fetches the cache line following the current line. Because a set sample may not include one of two
adjacent cache lines, it is impossible to simulate the initiation of a sequential prefetch, or to
determine if the prefetch results in any benefit.

Draft — Submitted for Publication to Computing Surveys — Draft

30 • Uhlig et al.

5.5 Summary of Trace Reduction

The most appropriate trace reduction method often depends on the questions to be answered by
the simulation study, and because many of the methods restrict the way that a reduced trace may be
used, no single method is always best. A designer must first decide on the memory design space to
be explored and then select a method depending on the simulation speed and accuracy required. If
fastand exact simulation results are required, the best trace-reduction methods are limited to size-
reduction factors of about 10. If speed is not a concern, but exact results are necessary, then
methods based on standard data compression or significant-events tracing provide good solutions
with size-reduction factors as high as 100, but with trace-reconstruction times that can slow
simulations by as much as 50 to 200. If simulation errors of 10% or less are considered acceptable,
then filtering and sampling methods provide a good solution, with spaceand time reduction factors
of as high as 10 to 50.

As a final note, some of these trace reduction methods can be combined to produce
multiplicative improvements in compression factors. A cache-filtered trace, for example, could also
be time or set sampled. Similarly, standard data-compression algorithms can be applied to most
traces reduced by the other methods, although the resulting compression factors are likely to be less
than they would be on a full trace where the initial entropy is lower.

6 TRACE PROCESSING

The ultimate objective of trace-driven simulation is, of course, to estimate the performance of
a range of memory configurations by simulating their behavior in response to the memory
references contained in an input trace. This final stage of trace-driven simulation is often the most
time consuming component because a designer is typically interested in hundreds or thousands of
different memory configurations in a given design space. As an example, the space of simple
caches defined by sizes ranging from 4 K-bytes to 64 K-bytes (in powers of two), line sizes ranging
from 1 word to 16 words (in powers of two), and associativities ranging from 1-way to 4-way,
contains 100 possible design points. Adding the choice of different replacement policies (LRU,
FIFO, Random), different set-indexing methods (virtually- or physically-indexed) and different
write policies (write-back, write-through, write-allocate) creates thousands of additional
possibilities. These design options are for a single cache, but actual memory systems are typically
composed of multiple caches that cooperate and interact in a multi-level hierarchy. Because of
these interactions and because different memory components often compete for scarce resources
such as chip-die area, the different components cannot be considered in isolation. This leads to a
further, combinatorial expansion of the design space. Researchers have explored two basic
approaches to dealing with this problem: (1) parallel distributed simulations, and (2) multi-
configuration simulation algorithms.

The first approach exploits the trivially-parallelizable nature of trace-driven simulations and
the abundance of unused computing cycles on networks of workstations; each memory
configuration of interest can be simulated completely independently from other configurations, so it
is a relatively simple matter to distribute multiple simulation jobs across the under-utilized
workstations on a network. In practice, there are some complications with this approach. If, for
example, the “owner” of a workstation wants to reclaim the resources of the computer sitting on his
desk, it is useful to have a method for suspending or moving a compute-intensive simulation task
that has been started on his machine. Another problem is that networks of workstations are
notoriously unreliable, so keeping track of which simulation configurations have successfully run

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 31

to completion can be an unwieldy task. Several software packages for workstation-cluster
management, which offer features such as process migration, load balancing, and checkpointing of
distributed batch simulation jobs, help to solve these problems. These systems are well-
documented elsewhere (see [Baker95] for a survey), so we discuss them no further here.

Algorithms that enable the simulation of multiple memory configurations in a single pass of an
address trace offer another solution to the compute-intensive task of exploring a large design space.
We use several criteria to judge a multi-configuration simulation algorithms in this survey (see
Table6). First, it is desirable that the algorithm be able to vary several simulationparameters
(cache size, line size, associativity, etc.) at a time and, second, that it be able to produce any of
several differentmetrics for performance, such as miss counts, miss ratios, misses per instruction
(MPI), write backs and cycles per instruction (CPI). Theoverhead of performing a multi-
configuration simulation relative to a single-configuration simulation is also of interest because this
value can be used to compute the effective simulation speedup relative to the time that would
normally be required by several single-configurations simulations.

6.1 Stack Processing

Mattson et al. were the first to develop trace-driven memory simulation algorithms that are
able to consider multiple configurations in a single pass of an address trace [Mattson70]. In their
original paper they introduced a method, calledstack processing, which determines the number of
memory references that hit in any size of fully-associative memory that uses astack algorithm for
replacement. Their technique relies on the property ofinclusion, which is exhibited by certain
classes of caches with certain replacement policies. Mattson et al. show, for example, that ann-
entry, fully-associative cache that implements an least-recently-used (LRU) replacement policy
includes all of the contents of a similar cache with only (n-1) entries.

When inclusion holds, a range of different-sized, fully-associative caches can be represented as
a stack as shown in Figure7. The figure shows that a one-entry cache holds the memory line
starting at 0x700A, a two-entry cache holds the lines starting at 0x700A and 0x5000, and so on.
Trace addresses are processed, one at a time, by searching the stack. Either the address is found
(i.e.,hits) in the stack at somestack depth (CaseI), or it is not found (CaseII). In the first case, the
entry is pulled from the middle of the stack and pushed onto the top to become the most-recently-
used entry; other entries are shifted down until the vacant slot in the middle of the stack is filled. In
the second case, the missing address is pushed onto the top of the stack and all other entries are
shifted down.

To record the performance of different cache sizes, the algorithm also maintains an array that
counts the number of hits at each stack depth. As a consequence of the inclusion property, the
number of hits in a fully-associative cache of sizen (hitsn) can be computed from this array by
adding all the hit counts up to a stack depth of (n-1) as follows:

(Eqn 9)

Further metrics, such the number of misses, the miss ratio, or the MPI in a cache of sizen can
then be computed as follows:

missesn = totalReferences - hitsn (Eqn 10)

hitsn hits i[]

i 0=

n 1–

∑=

Draft — Submitted for Publication to Computing Surveys — Draft

32 • Uhlig et al.

R
ef

er
en

ce
N

am
e

R
an

g
e

o
f

P
ar

am
et

er
s

M
et

ri
cs

O
ve

rh
ea

d
S

et
s

L
in

e
A

ss
o

c
W

ri
te

P
o

lic
y

S
ec

to
r

[M
at

ts
on

70
]

S
ta

ck
 P

ro
ce

ss
in

g
F

ix
ed

F
ix

ed
V

ar
y

N
on

e
N

o
M

is
se

s,
 M

is
s

R
at

io
, M

P
I

—

[H
ill

87
]

F
or

es
t S

im
ul

at
io

n
V

ar
y

F
ix

ed
1-

w
ay

N
on

e
N

o
M

is
se

s,
 M

is
s

R
at

io
, M

P
I

<
 5

%

[H
ill

87
]

A
ll-

A
ss

oc
ia

tiv
ity

V
ar

y
F

ix
ed

V
ar

y
N

on
e

N
o

M
is

se
s,

 M
is

s
R

at
io

, M
P

I
<

 3
0%

[T
ho

m
ps

on
89

]
—

F
ix

ed
F

ix
ed

V
ar

y
W

-b
ac

k
Ye

s
M

is
se

s,
 W

rit
e

B
ac

ks
<

 1
00

%

[W
an

g9
0]

—
V

ar
y

F
ix

ed
V

ar
y

W
-b

ac
k

N
o

M
is

se
s,

 W
rit

e
B

ac
ks

<
 6

5%

[S
ug

um
ar

93
]

C
he

et
ah

F
ix

ed
V

ar
y

1-
w

ay
W

-t
hr

u
N

o
M

is
se

s,
 W

B
 S

ta
lls

<
 1

20
%

Ta
bl

e
6.

M

ul
ti-

co
nfi

gu
ra

tio
n

M
em

or
y

S
im

ul
at

or
s

M
ul

ti-
co

nfi
gu

ra
tio

n
m

em
or

y
si

m
ul

at
or

s
ca

n
de

te
rm

in
e

th
e

pe
rf

or
m

an
ce

 fo
r

a
ra

ng
e

of
 m

em
or

y
co

nfi
gu

ra
tio

ns
 in

 a
 s

in
gl

e
pa

ss
 o

f a
n

ad
dr

es
s

tr
ac

e.
 E

ac
h

of
 th

es
e

si
m

ul
at

or
s

is
,

ho
w

ev
er

,
lim

ite
d

in
 t

he
 w

ay
 t

ha
t

m
em

or
y-

co
nfi

gu
ra

tio
n

pa
ra

m
et

er
s

ca
n

be
 v

ar
ie

d
(s

ee
R

an
ge

 o
f

P
ar

am
et

er
s)

 o
r

in
 t

he
 p

er
fo

rm
an

ce
 m

et
ric

s
th

at
th

ey
 c

an
 p

ro
du

ce
 (

se
e

M
et

ric
s)

.
M

os
t

m
ul

ti-
co

nfi
gu

ra
tio

n
al

go
rit

hm
s

ca
nn

ot
 v

ar
y

to
ta

l
ca

ch
e

si
ze

 d
ire

ct
ly

.
In

st
ea

d,
 t

he
y

va
ry

 t
he

 n
um

be
r

ca
ch

e
se

ts
 o

r
as

so
ci

at
iv

ity
, a

nd
 th

us
 v

ar
y

to
ta

l c
ac

he
 s

iz
e

as
 d

et
er

m
in

ed
 b

y
th

e
eq

ua
tio

n:
S

iz
e

=
 S

et
s

*
A

ss
oc

 *
 L

in
e.

O
ve

rh
ea

d
is

 t
he

 e
xt

ra
 t

im
e

th
at

 it
 t

ak
es

 t
o

pe
rf

or
m

 a
 m

ul
ti-

co
nfi

gu
ra

tio
n

si
m

ul
at

io
n

re
la

tiv
e

to
 a

 s
in

gl
e-

co
nfi

gu
ra

tio
n

si
m

ul
at

io
n

(a
s

re
po

rt
ed

 b
y

th
e

au
th

or
s

of
ea

ch
 s

im
ul

at
or

).
 T

hi
s

ov
er

he
ad

 is
 u

su
al

ly
 a

n
un

de
re

st
im

at
e

of
 th

e
tr

ue
 p

ro
ce

ss
in

g
ov

er
he

ad
 b

ec
au

se
 v

al
ue

s
re

po
rt

ed
 in

 p
ap

er
s

ty
pi

ca
lly

 d
o

no
t i

nc
lu

de
 th

e
tim

e
to

 r
ea

d
in

pu
t t

ra
ce

s
fr

om
 a

 fi
le

.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 33

missRation = missesn / totalReferences (Eqn 11)

MPIn = missesn / totalInstructions (Eqn 12)

Mattson et al. give other examples of stack replacement algorithms (such as OPT), and also
note that some replacement policies, such as FIFO, are not stack algorithms. In their original paper,
and in a collection of other follow-on reports (see [Sugumar93] or [Thompson89] for a more
complete description), Mattson et al. described extensions to the basic stack algorithm to handle
different numbers of cache sets, lines sizes and associativities. In their early work, Mattson et al.
did not report on the efficiency of actual implementations of their multi-configuration simulation
algorithms. Many researchers have advanced multi-configuration simulation by proposing various
enhancements and by reporting simulation times for actual implementations of these
improvements. We focus on a selection of recent papers that extend the range of multi-
configuration parameters, and that characterize the current state-of-the-art in this form of
simulation (see Table6).

6.2 Forrest and All-associativity Simulation

Hill noted that the original stack algorithm of Mattson et al. requires the number of cache sets
and the line size to be fixed [Hill87]. This means that a single simulation run can only explore
larger caches through higher degrees of associativity. Hill argues that designers are often more
interested in fixing the cache associativity and varying the number of sets Hill’s forest-simulation
algorithm supports this form of multi-configuration simulation. Another algorithm studied by Hill

hits[] stack[]

...
...

Figure 7. Data Structures for Stack Simulation

In Case I, the address is found at stack depth 3, so the hits[3] counter is incremented, and the entry at
this depth is pulled to the top of the stack. In Case II, the address is not in the stack, so it is pushed
onto the top, and no counter is incremented.

Case I: Found in Stack Case II: Not Found in Stack

stack[]

...

0
1
2
3
4

700A
5000
3004
4002
6000

4002
700A
5000
3004
6000

3412
2310
1002
530
204

This counter is

Stack Stack

Memory Reference: 0x4002

incremented

Before After

hits[] stack[]

...
...

stack[]

...

0
1
2
3
4

700A
5000
3004
4002
6000

B004
700A
5000
3004
4002

3412
2310
1002
530
204

Stack Stack

Memory Reference: 0xB004

Before After

Draft — Submitted for Publication to Computing Surveys — Draft

34 • Uhlig et al.

is all-associativity simulation, which enables both the number of sets and the associativity to be
varied with just slightly more overhead than forest simulation. Thompson and Smith developed
extensions that count the number of writes to main memory for different-sized caches that
implement a write-back write policy [Thompson89]. They also studied multi-configuration
algorithms for sector or sub-block caches. Wang and Baer combined the work of [Mattson70],
[Hill89] and [Thompson89] to compute both miss ratios and write backs in a range of caches where
the both the number of sets and the associativity is varied. In his dissertation, Sugumar developed
algorithms for varying line size with direct-mapped caches of a fixed size, and also for computing
write-through stalls and write traffic in a cache with a coalescing write buffer [Sugumar93].

6.3 Summary of Trace Processing

There are several points to be made about multi-configuration algorithms in general. First, for
all of the examples considered, the overhead of simulating multiple configurations in one trace pass
is reported to be less than 100%, which means that one multi-configuration simulation of two or
more configurations would perform as well as or better than collections of two or more single-
configuration simulations. These results should, however, be interpreted with care because these
overheads are reported relative to the time to readand to process traces. When the time to read an
input trace is high, as is often the case when the trace comes from a file, the overhead of multi-
configuration is very low. If, however, the trace input times are relatively low, then the multi-
configuration overheads will be much higher. This is the case with the Sugumar’s Cheetah
simulator which appears to have very high overheads relative to Hill’s Tycho simulator [Hill87;
Sugumar93] (see Table6). Cheetah’s overall simulation times are, however, approximately eight
times faster than Tycho because its input processing is more optimized [Sugumar93].

A second point is that even though multiple configurations can be simulated with one trace
pass, it is often still necessary to re-apply multi-configuration algorithms several times to cover an
entire design space. Hill gives an example design space of 24 caches, with a range of sizes, line
sizes and associativities where the minimal number of trace passes required by stack simulation is
15 [Hill87]. For the same example, forest simulation still requires 3 separate passes but can cover
only half of the space. Hill argues that all-associativity simulation is the best method in this case
because although it also requires 3 separate passes, it can cover the entire design space.

Finally, despite many advances in multi-configuration simulation, there are many types of
memory systems and performance metrics that cannot be evaluated in a single trace pass. Most of
these algorithms restrict replacement policies to LRU, which is rarely implemented in actual
hardware. Similarly, performance metrics that require very careful accounting of clock cycles, such
as CPI, generally cannot be computed for a range of configurations in a single simulation pass (e.g.,
simulating contention for a second-level cache between split primary I- and D-caches requires a
careful accounting of exactly when cache misses occur in each cache).

7 COMPLETE TRACE-DRIVEN SIMULATION SYSTEMS

Until now, we’ve examined the three components of trace-driven simulation in isolation. In
this section we examine some of the ways that these components can be combined to form a
complete simulation system. Figure1 suggests a natural composition of the three components in
which they communicate through a simple linear interface of streaming addresses that may or may
not include some form of buffering between the components. Because of the high data rates
required, the selection of mechanisms used to transfer and buffer trace data is crucial to the overall

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 35

speed of a trace-driven system. A bottleneck anywhere along the path from trace collection to trace
processing can increase overall slowdowns. In this section we examine the pros and cons of
different interfacing methods and summarize some overall simulation slowdowns as reported in the
literature, as well as those measured by our own experiments.

7.1 Trace Interfaces

Because address traces conform to a simple linear-data-stream model, there are several options
available for communicating and buffering them (see Figure8). Some simulators rely on
mechanisms provided by the host operating system (files or pipes), while others implement
communication on their own using standard procedure calls or regions of memory shared between
the trace collector and the trace processor. We shall examine each of the possibilities in turn.

Because they are backed by secondary storage devices, files provide the advantages of deep
and non-volatile buffering. These capabilities enable the postponement of trace processing as well
as the ability to repeatedly use the same traces to obtain reproducible simulation results.
Unfortunately, files suffer some important disadvantages, the first of which is speed. Assuming disk
bandwidth of 1 MB/sec and an address-generation rate of 100 MB/sec by the host, a file stored on
disk can slow both trace collection and trace processing by a factor of 100 or more. A second
disadvantage of files is that they are simply never large enough. Assuming again a host address-
generation rate of 100 MB/sec, a one gigabyte hard disk would be filled to capacity in about 10
seconds of real-time execution. This underscores the importance of the trace-reduction methods,
described in Section 5, which can improve effective file capacity and bandwidth by one to two
orders of magnitude.

Pipes, which establish a one-way channel for the flow of sequential data from one process to
another, are another communication abstraction that can sometimes overcome the limitations of
files. Pipes use only a moderate amount of memory (on the order of kilobytes) to buffer the data
flowing between the two processes, which implies that both a trace collector and trace processor
must be running at the same time to prevent buffer overflow. With this approach, which is often
calledon-the-fly simulation, traces are discarded just after they are processed. Because traces must

Figure 8. Trace Interfaces

The slowdowns for each of these trace-interface options were estimated by measurements performed
on a DECstation 5000/133 with a 33-MHz processor and a SCSI-connected disk running Ultrix.

Disk
or Tape

Trace
Collector

Trace
Processor

Slowdown: ~ 100x

OS Kernel

File Interface
Trace

Collector
Trace

Processor

Slowdown: 5x - 10x

OS Kernel

Pipe Interface

Trace
Collector

Trace
Processor

Slowdown: < 5x

Procedure

Trace
Collector

Trace
Processor

Single

Memory

Slowdown: < 5x

Process

Single
Process

W
or

kl
oa

d

S
im

ul
at

or

Workload

Simulator

Interface Interface

Draft — Submitted for Publication to Computing Surveys — Draft

36 • Uhlig et al.

be re-collected for each new simulation run, this technique is most effective when the trace
collector is able to produce traces faster than can be read from a file. In the case of instruction-set
emulators and code annotators, where slowdowns range from 10 to 70, this requirement is usually
met. Communication via pipes is substantially faster than via files, with overheads typically adding
5 to 10 to overall simulation slowdown. Note that when pipes are used, trace-reduction methods are
less attractive because they must be re-applied during each simulation run and thus provide little or
no advantage over simply processing the full address trace.

Both files and pipes are inter-process communication mechanisms provided by an OS
filesystem. As such, their use incurs a certain amount of operating system overhead for copying or
mapping data from one address space to another, and from context switching between processes.
These overheads can be avoided if a trace collector and trace processor run in the same process and
arrange communication and buffering without the assistance of the OS. Several of the instruction-
set emulation and code-annotation tools support trace collection and trace processing in the same
process address space (see Table3). In these systems, two different approaches to communicating
and buffering trace data are commonly used. The first method is to make aprocedure call to the
trace processor after each memory reference. In this case, trace collection and processing are very
tightly coupled and thus no trace buffering is required. A disadvantage is that procedure-call
overhead, such as register saving and restoring, must be paid after each memory reference. With the
second method, a region of memory in a process’s address space is reserved to hold trace data.
Execution begins in a trace-collecting mode, which continues until the trace buffer fills, and then
switches to a trace-processing mode which runs until the trace buffer is again empty. By switching
back and forth between these two modes infrequently, this method helps to amortize the cost of
procedure calls over many addresses. By bringing communication slowdowns under a factor of 5,
both of these methods improve over files and pipes, but it should be noted that placing a simulator
in the same process as the monitored workload can complicate the monitoring multi-process
workloads.

7.2 Complete Trace-driven Simulation Slowdowns

Because of the variety of trace-driven simulation techniques and the ways to interconnect
them, overall trace-driven simulation slowdowns range widely. Unfortunately, very few papers
report overall slowdowns because most tend to focus on just one component or aspect of trace-
driven simulation, such as trace collection. Researchers that do assemble complete trace-driven
simulation environments tend to report the results, not the speed of their simulations. There are,
however, a few exceptions, which we summarize in this section and augment with our own
measurements.

Table7 lists several complete trace-driven simulators composed of many different types of
trace-collection and trace-processing tools. As such, these systems are fairly representative of the
sort of simulators that can be constructed with state-of-the-art methods. We must be careful when
comparing the different slowdowns reported in Table7 because each corresponds to the simulation
of different memory configurations5 at different levels of detail, running different workloads and
using different instruction-set architectures. The table does, however, enable us to draw some
general conclusions about the achievable speed of standard trace-driven simulation systems.

5. For tools that enable multiprocessor memory simulations we report the slowdowns for one processor
only to enable more meaningful comparisons with the uniprocessor-only simulators.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 37

N
am

e
R

ef
er

en
ce

Tr
ac

e
C

o
lle

ct
io

n
Tr

ac
e

R
ed

u
ct

io
n

Tr
ac

e
P

ro
ce

ss
in

g
In

te
rf

ac
e

M
et

h
o

d
S

lo
w

d
o

w
n

E
ff

ec
ti

ve
S

lo
w

d
o

w
n

P
ix

ie
 +

 C
ac

he
20

00
[M

IP
S

88
]*

A
nn

ot
at

io
n

N
on

e
S

in
gl

e
C

on
fig

P
ip

e
60

 -
 8

0
60

 -
 8

0

M
on

st
er

 +
 C

he
et

ah
—

P
ro

be
-b

as
ed

Ti
m

e
S

am
pl

e
M

ul
ti

(8
)

F
ile

41
9

52

P
ix

ie
 +

 C
he

et
ah

[S
ug

um
ar

93
]*

A
nn

ot
at

io
n

N
on

e
M

ul
ti

(4
4)

P
ip

e
18

3
4

P
ix

ie
 +

 T
yc

ho
[G

ee
93

]
A

nn
ot

at
io

n
N

on
e

M
ul

ti
(4

4)
P

ip
e

62
50

14
2

gs
im

[M
ag

nu
ss

on
93

]
E

m
ul

at
io

n
N

on
e

S
in

gl
e

C
on

fig
P

ro
ce

du
re

45
 -

 7
5

45
 -

 7
5

Ta
lis

m
an

[B
ed

ic
he

k9
4;

 9
5]

E
m

ul
at

io
n

N
on

e
S

in
gl

e
C

on
fig

P
ro

ce
du

re
10

0
-

15
0

10
0

-
15

0

Ta
ng

oL
ite

[G
ol

ds
ch

m
id

t9
2;

 9
3]

A
nn

ot
at

io
n

N
on

e
S

in
gl

e
C

on
fig

M
em

or
y

76
5

76
5

E
po

xi
e

+
 P

an
am

a
[B

or
g8

9]
A

nn
ot

at
io

n
N

on
e

S
in

gl
e

C
on

fig
M

em
or

y
10

0
10

0

Ta
bl

e
7.

S

lo
w

do
w

ns
 fo

r
S

om
e

C
om

pl
et

e
Tr

ac
e-

dr
iv

en
 M

em
or

y
S

im
ul

at
io

n
S

ys
te

m
s

T
hi

s
ta

bl
e

gi
ve

s
so

m
e

ty
pi

ca
l s

lo
w

do
w

ns
 fo

r
a

co
m

pl
et

e
tr

ac
e-

dr
iv

en
 s

im
ul

at
io

n
sy

st
em

. T
he

 n
um

be
r

of
 c

on
fig

ur
at

io
ns

 c
on

si
de

re
d

in
 a

 s
in

gl
e

pa
ss

 o
f t

he
 tr

ac
e

ar
e

gi
ve

n
un

de
r

th
e

Tr
ac

e
P

ro
ce

ss
in

g
co

lu
m

n.
S

lo
w

do
w

ns
 a

re
 fo

r
a

si
ng

le
 s

im
ul

at
io

n
ru

n,
 w

hi
le

E
ffe

ct
iv

e
S

lo
w

do
w

ns
 a

re
 c

om
pu

te
d

by
 d

iv
id

in
g

by
 th

e
nu

m
be

r
of

 c
on

fig
ur

at
io

ns
 (

gi
ve

n
in

 p
ar

en
th

es
is

)
si

m
ul

at
ed

 d
ur

in
g

th
at

 r
un

.
In

 e
ac

h
ro

w
,

sl
ow

do
w

ns
 w

er
e

ta
ke

n
(o

r
co

m
pu

te
d)

 d
ire

ct
ly

 f
ro

m
 t

he
 r

ef
er

en
ce

d
pa

pe
r.

F
or

en
tr

ie
s

th
at

 h
av

e
an

 a
st

er
is

k
by

 th
e

re
fe

re
nc

e,
 s

lo
w

do
w

ns
 d

o
no

t c
om

e
fr

om
 th

e
pa

pe
r,

bu
t w

er
e

de
te

rm
in

ed
 b

y
ou

r
ex

pe
rim

en
ts

 o
n

a
D

E
C

st
at

io
n

50
00

/2
40

.

Draft — Submitted for Publication to Computing Surveys — Draft

38 • Uhlig et al.

As Table7 shows, complete simulators rarely exhibit slowdowns of less than about 100, with a
few rare exceptions that are able to achieve slowdowns of around 50. The fastest integrated
simulator was gsim, with reported slowdowns in the range of 45 - 75 for a relatively simple
workload (an optimized version of the Drystone benchmark). The fastest composed simulator,
constructed by driving Pixie traces through a pipe to the Cache2000 [MIPS88] trace processor,
exhibits slowdowns in the range of about 60 - 80. The workload in this case is more substantial: an
MPEG video decoder. By comparing the slowdowns for Cheetah driven by traces coming from a
file (Monster traces) versus coming from a pipe (Pixie traces) we can see the benefits of on-the-fly
trace generation and processing; the Pixie + Cheetah combination is more than two times faster
than the Monster + Cheetah system, despite the fact that a greater number of configurations (44
versus 8, respectively) is being simulated. Note that the overheads of the two multi-configuration
simulators (Tycho and Cheetah) cause their overall slowdowns, relative to single-configuration
simulation with Cache2000, to be much higher than the values reported in Section6. For Cheetah,
the overheads are at least 300%, and for Tycho they are an order of magnitude higher. Given the
degree of their simulation detail, the integrated simulators Talisman and gsim, which are based on
emulation techniques similar to those described in Section4.3, perform quite well, providing
further evidence than instruction-set emulation is a very viable technique for memory-system
evaluation.

To better understand the sources of trace-driven slowdown, we measured the speed of the
Cache2000 + Pixie combination over a range of instruction- and data-cache sizes. The results,
shown in Figure9, illustrate that most of the slowdowns are due to trace processing. This
observation is supported by reported experiences with other tools as well. Goldschmidt reports that

1 2 4 8 16 32 64 128 256

I-cache Size (K-bytes)

0

20

40

60

80

S
lo

w
do

w
n

Instruction Addresses Only

Trace Collection

Trace Interface

Trace Processing

1 2 4 8 16 32 64 128 256

Cache Size (K-bytes)

0

20

40

60

80

Instruction and Data Addresses

Figure 9. The Components of Trace-driven Simulation Slowdowns

These two plots show the components of trace-driven slowdowns for a complete trace-driven memory
simulator constructed by driving the Cache2000 trace processor with Pixie-generated traces via the
pipe interface under Ultrix. The left plot shows slowdowns for I-cache simulations, while the right plot
shows the slowdowns when simulating both I- and D-caches concurrently.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 39

trace processing in TangoLite slows a system by an additional factor 17 relative to a workload that
is annotated to produce address traces only [Goldschmidt92] (compare the TangoLite entries in
Table3 with those of Table7). Borg et al. report a similar observation, noting that their Epoxie-
driven Panama simulations spend far more time processing address references than collecting them
[Borg89].

7.3 Summary of Complete Trace-driven Simulation Systems

As Table7 and Figure9 show, the generation, transfer and processing of trace data for
memory-system simulation is extremely challenging — few traditional trace-driven simulators
achieve slowdowns much lower than about 50, with the main bottleneck being the time required to
process address traces. These results suggest that the biggest gains in overall trace-driven
simulation speed are likely to come either from methods that speed-up trace processing, or from
techniques that can avoid invoking the trace processor altogether. The latter strategy is the subject
of our next section.

8 BEYOND TRACE-DRIVEN SIMULATION

Strict adherence to the trace-driven simulation paradigm is likely to limit further substantial
improvements in memory-simulation speeds. The primary bottleneck in trace-driven simulation
comes from collecting and processingeachmemory reference made by a workload, whether or not
it changes the state of a simulated memory structure. Several researchers, noting this bottleneck to
trace-driven simulation, have developed innovative methods for eliminating or reducing the cost of
processing memory references (see Table8). Although the mechanisms that they use differ, each of
these tools works by finding special cases where a memory reference has no affect on simulated
memory state. A common example is a cache hit which, unlike a cache miss, typically does not
require any updates to a cache’s contents.

8.1 Software-based Miss Detection

MemSpy [Martonosi92] is a memory simulation and analysis tool built on top of the TangoLite
trace collector discussed in Section4.4. Original implementations of MemSpy, which annotated
assembly code to call a simulation routine after each heap or static-data reference, exhibited typical
trace-driven slowdowns in the range of 20 to 60 when performing simulations of a 128-KB, direct-
mapped data cache. Each call to the MemSpy simulator incurred overheads for saving and restoring
registers, simulating the cache, and updating statistics. Martonosi et al. observed that in the case of
a cache hit, memory state need not be updated, and the call to the cache simulator can be avoided
altogether. To exploit this fact, Martonosi et al. modified the annotations around each memory
reference to test for a cache hit before invoking the full cache simulator. When hit occurs, the
MemSpy simulator code isbypassed and execution continues to the next instruction. Thishit-
bypassing code requires about 25 instructions, compared with the 320 to 510 cycles for a full call
into the MemSpy simulator on a cache miss. Because cache hits are far more common than misses,
the long path is infrequently invoked, and the MemSpy slowdowns were effectively reduced to the
range of 10 to 20.

Fast-cache [Lebeck95] is another example of a simulator that optimizes for the common case
of cache hits. Fast-cache is based on an abstraction calledactive memory, which is a block of
memory with a pointer to an associatedhandler routine that is called whenever memory locations

Draft — Submitted for Publication to Computing Surveys — Draft

40 • Uhlig et al.

M
et

h
o

d
R

ef
er

en
ce

s
N

am
e

C
yc

le
s

p
er

 H
it

C
yc

le
s

p
er

M
is

s
O

ve
ra

ll
S

lo
w

d
o

w
n

M
is

s-
d

et
ec

ti
o

n
M

ec
h

an
is

m

Ty
p

e
o

f
S

im
u

la
ti

o
n

C
o

m
p

le
te

n
es

s

M
u

lt
i-

p
ro

ce
ss

O
S

K
er

n
el

S
of

tw
ar

e-
ba

se
d

M
is

s
D

et
ec

tio
n

[M
ar

to
no

si
92

;9
3]

M
em

S
py

25
32

0
-

51
0

10
 -

 2
0

A
nn

ot
at

io
n

D
-c

ac
he

N
o

N
o

[L
eb

ec
k9

5]
F

as
t-

C
ac

he
4

55
2

-
7

A
nn

ot
at

io
n

D
-c

ac
he

N
o

N
o

[R
os

en
bl

um
95

]
[W

itc
he

l9
6]

S
im

O
S

 +
E

m
br

a
10

—
7

-
21

E
m

ul
at

io
n

D
-c

ac
he

,
I-

ca
ch

e,
 T

LB
Ye

s
Ye

s

H
ar

dw
ar

e-
ba

se
d

M
is

s
D

et
ec

tio
n

[N
ag

le
93

]
Ta

pe
w

or
m

1
-

2
10

0
-

65
0

0.
5

-
4.

5
T

LB
 M

is
s

T
LB

Ye
s

Ye
s

[R
ei

nh
ar

dt
93

]
W

W
T

1
-

2
2,

50
01

1.
4

-
46

1
E

C
C

D
-c

ac
he

N
o

N
o

[U
hl

ig
94

]
Ta

pe
w

or
m

 II
1

-
2

30
0

0
-

10
E

C
C

I-
ca

ch
e,

 T
LB

Ye
s

Ye
s

[L
ee

94
]

Ta
pe

w
or

m
48

6
1

-
2

3,
60

0
-

4,
00

0
0

-
14

P
ag

e
F

au
lt

T
LB

Ye
s

Ye
s

[T
al

lu
ri9

4]
F

ox
tr

ot
1

-
2

1,
50

0
-

4,
00

0
—

T
LB

 M
is

s
T

LB
N

o
N

o

Ta
bl

e
8.

B

ey
on

d
Tr

ac
es

: S
om

e
R

ec
en

t F
as

t M
em

or
y

S
im

ul
at

or
s

E
ac

h
of

 t
he

 s
im

ul
at

or
s

in
 t

hi
s

ta
bl

e
im

pr
ov

e
pe

rf
or

m
an

ce
 b

y
re

du
ci

ng
 o

r
el

im
in

at
in

g
th

e
co

st
 o

f
pr

oc
es

si
ng

 m
em

or
y

re
fe

re
nc

es
 t

ha
t

do
 n

ot
 c

au
se

 a
 c

ha
ng

e
of

ca
ch

e
st

at
e

(e
.g

.,
ca

ch
e

hi
ts

).
 T

he
 c

os
t o

f c
ac

he
 o

r
T

LB
 h

its
 (

C
yc

le
s

pe
r

H
it)

 a
nd

 m
is

se
s

(C
yc

le
s

pe
r

M
is

s)
, a

s
w

el
l a

s
th

ei
r

re
la

tiv
e

nu
m

be
rs

 d
et

er
m

in
e

O
ve

ra
ll

S
lo

w
do

w
n.

 B
ec

au
se

 c
ac

he
 m

is
se

s
ar

e
de

pe
nd

en
t

on
 t

he
 c

on
fig

ur
at

io
n

(s
iz

e,
 a

ss
oc

ia
tiv

ity
)

of
 t

he
 c

ac
he

 o
r

T
LB

 b
ei

ng
 s

im
ul

at
ed

,
ov

er
al

l s
lo

w
do

w
ns

 c
an

 v
ar

y
w

id
el

y,
 s

o
w

e
re

po
rt

 th
em

 a
s

ra
ng

es
 o

f v
al

ue
s.

Ty
pe

 o
f S

im
ul

at
io

n
an

d
C

om
pl

et
en

es
s

su
m

m
ar

iz
e

th
e

ra
ng

e
of

 s
im

ul
at

io
ns

 s
up

po
rt

ed
. A

lth
ou

gh
 s

om
e

sy
st

em
s

(e
.g

.,
S

im
O

S
 a

nd
 W

W
T

)
su

pp
or

t s
im

ul
at

io
n

of
 m

ul
tip

ro
ce

ss
or

 m
em

or
y

sy
st

em
s,

 w
e

re
po

rt
 o

nl
y

th
ei

r
un

ip
ro

ce
ss

or
 s

lo
w

do
w

ns
 h

er
e.

1 M
is

s
co

st
s

an
d

sl
ow

do
w

ns
 fo

r
W

W
T

 a
re

 fr
om

 [L
eb

ec
k9

4]
.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 41

in the block are referenced. During a cache simulation, these handlers are changed dynamically to
detect when cache misses occur. At the beginning of a simulation, all Fast-cache memory blocks
point to a handler for cache misses. As the blocks of memory are accessed for the first time, the
miss handler is invoked, it counts the miss and then sets the handler for the missing memory block
to point to a NULL routine. Future accesses to these memory blocks (which are now resident in the
simulated cache) are processed much more quickly because the NULL routine simply returns to the
workload without invoking the complete cache simulator. As the simulated cache begins to fill, the
miss handler will eventually begin loading newly- referenced memory blocks into the cache at
locations that are already occupied by other memory blocks. These cache conflict misses are
modeled by resetting the handler for the displaced memory blocks to point back to the miss handler
again so that future references to the displaced block will register a miss. Fast-cache implements
active memory blocks by using the EEL executable editor, described in Section4.4, to annotate
each workload instruction that makes a memory reference with 9 additional instructions that lookup
the state of an active memory block and invoke the appropriate handler. In the case of a NULL
handler, only 5 additional instructions are required per memory reference. Depending on the
workload, Fast-cache achieves overall slowdowns in the range of about 2 to 7 for the simulation of
direct-mapped data caches ranging in size from 16 KB to 1 MB. Like MemSpy, Fast-cache
simulates only data caches for single process workloads (i.e, it does not monitor instruction or
operating-system references).

Embra [Witchel96] uses dynamic compilation techniques similar to those of Shade (see
Section4.3) to generate code sequences that test for simulated TLB and cache hits before invoking
slower handlers for misses in these structures. Embra’s overall slowdowns (7 - 21) compare very
favorably with those of MemSpy and Fast-cache, given that it simulates a more complete memory
system consisting of TLB, I-cache and D-cache. Embra runs as part of theSimOS [Rosenblum95]
simulation environment, which enables it to fully emulate multi-process workloads as well as
operating-system kernel code.

8.2 Hardware-based Miss Detection

Simulators like Memspy, Fast-cache, and Embra reduce the cost of processing cache hits, but
because they are based on code annotation or emulation, they always add a minimal base overhead
to the execution of every memory operation. One way around this problem is to use the host
hardware to assist in the detection of simulated misses. This can sometimes be accomplished by
using certain features of the host hardware, such a memory-management units or error-correcting
memory, to constrain access to the host’s memory and cause kernel traps to occur whenever a
workload makes a memory access that would cause a simulated cache or TLB miss. If implemented
properly, this method requires no instructions to be added to a workload, enabling simulated hits to
proceed at the full speed of the underlying host hardware. Trap-driven simulations can thus, in
principle, achieve near-zero slowdowns when the simulated miss ratio is low.

Tapeworm is an early example of a trap-driven TLB simulator that relies on the fact that all
TLB misses in its host machine (a MIPS-based DECstation) are handled by software in the
operating-system kernel [Nagle93]. Tapeworm works by becoming part of the operating system of
the host machine that it runs on — the usual software handlers for TLB misses are modified to pass
the relevant information about all user and kernel TLB misses directly to the Tapeworm simulator
after each miss. Tapeworm then uses this information to maintain its own data structures for
simulating other possible TLB configurations, using algorithms similar to the software-based tools
described in the previous section. There are two principal advantages to compiling the Tapeworm

Draft — Submitted for Publication to Computing Surveys — Draft

42 • Uhlig et al.

simulator into the host operating system to intercept TLB miss traps. First, by being in the kernel,
Tapeworm can capture TLB misses from all user processes, as well as the OS kernel itself. Second,
because Tapeworm doesn’t add any instructions to the workload that it monitors, non-trapping
memory references proceeded at the full speed of the underlying host hardware, which results in
zero-slowdown processing of simulated TLB hits. On the other hand, a simulated TLB miss incurs
the full overhead of a kernel trap and the simulator code, which varies from 100 to 650 host cycles.
Fortunately, TLB hits are far more frequent than TLB misses, outnumbering them by more than
300 to 1 in the worst case [Nagle93]. The result is that Tapeworm TLB simulation slowdowns
range from about 0.5 to 4.5.

Trap-driven TLB simulation has recently been implemented on other architectures with similar
success. Lee has implemented a trap-driven TLB simulator on a 486-based PC running Mach 3.0
[Lee94]. Because the i486 processor has hardware-managed TLBs, Lee’s simulator uses a different
mechanism for causing TLB miss traps, one that is based on page-valid bits. By manipulating the
valid bit in a page-table entry, Lee’s simulator causes TLB misses to result in kernel traps in the
same way that they do in a machine with software-managed TLBs. Talluri et al. uses similar
techniques in a trap-driven TLB simulator that runs on SPARC-based workstations under the
Foxtrot operating system to study architectural support for superpages [Talluri94]. Talluri and Lee
both report that the overall slowdowns for their simulators are comparable to those of Tapeworm.

A limitation of the trap-driven simulators described above is that they are not easily extended
to cache simulation. This is because the mechanisms that they use to cause kernel traps operate at
the granularity of a memory page. The first trap-driven simulator that overcame this limitation is
the Wisconsin Wind Tunnel (WWT), which caused kernel traps by modifying the error-correcting
code (ECC) check bits in a SPARC-based CM-5 [Reinhardt93]. Because each memory location has
ECC bits, this method enables traps to be set and cleared with a much finer granularity, enabling
cache simulation. As with the trap-driven TLB simulators noted above, a simulated cache hit in
WWT runs at the full speed of the host machine, and for caches with low miss ratios, overall
slowdowns are measured to be as low as 1.4. However, in a comparison with Fast-cache, Lebeck et
al. reports that WWT exhibits slowdowns of greater than 30 or 40 for caches smaller than 32KB
[Lebeck94]. These slowdowns are much higher than those reported for TLB simulation, both
because cache misses occur much more frequently than TLB misses, and because a WWT trap
requires about 2,500 cycles to service.

Tapeworm II, a second-generation Tapeworm simulator which also uses ECC-bit modification
to simulated caches, improves on the speed of WWT by showing that trap-handling times can be
reduced by nearly an order of magnitude to about 300 cycles, bringing overall simulation
slowdowns for instruction caches into the range of 0 to 10 [Uhlig94]. Tapeworm II, like the original
Tapeworm, also demonstrates that trap-driven cache simulation is capable of complete monitoring
multi-process and operating-system workloads. Experiments performed with Tapeworm II show
that trap-driven simulation slowdowns are highly dependent on the memory structure being
simulated, with the relationship between slowdown and configuration parameters often being quite
different than with trace-driven simulation. Trace-driven simulations of associative caches, for
example, are typically slower than direct-mapped cache simulations because of the extra work
required to simulate an associative search. With trap-driven simulations, however, the opposite is
true: Tapeworm’s associative-cache simulations are faster because there is a lower ratio of misses
(and thus traps) to total memory references relative to simulations of direct-mapped caches of the
same size. Other experiments with Tapeworm II have examined sources of measurement and
simulation error of trap-driven simulation compared with those of trace-driven simulation. Many

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 43

sources of error are the same (e.g., time dilation), but some were found to be unique to trap-driven
simulation. In particular, because Tapeworm II becomes part of its running host system, it is more
sensitive to dynamic system effects, such as virtual-to-physical page allocation and memory
fragmentation in a long-running system. Although Tapeworm’s sensitivity to these effects may
necessitate multiple experimental trials, this should not be viewed as a liability; a trap-driven
simulator that becomes part of a running system can give insight into real, naturally-occurring
system effects that are beyond the scope of static traces.

8.3 Summary of New Memory Simulation Methods

With slowdowns commonly around 10, and in some cases approaching 0, the new simulators
discussed in this section show that memory-simulation speeds can be improved dramatically by
rejecting the traditional trace-driven simulation paradigm of collecting and processing each and
every memory reference made by a workload. There are substantial performance gains to be had by
optimizing for the common case of cache or TLB hits.

The three software-based systems (MemSpy, Fast-cache, and Embra/SimOS) share a number
of important advantages. They are flexible, low in cost, and relatively portable because they do not
rely on special hardware support. Because they are based on the same basic techniques as trace
collectors that use code annotation or emulation, these three tools suffer from some of the same
disadvantages, such as memory overheads as high as 5 to 10 due to added instructions and/or
emulation state. Code expansion may not be a concern for applications with small text segments,
but annotating larger, multi-process workloads along with the kernel, can cause substantial
expansion.

The hardware-based trap-driven simulators, such as Tapeworm II and WWT, avoid the
problems of code expansion, and they are also able to achieve near-zero slowdowns when miss
ratios are small. The main weakness of trap-driven simulation is low flexibility and portability —
all of the trap-driven simulators that we examined were limited in the simulations that they could
perform, and all rely on ad-hoc methods to cause OS kernel traps.

While hit overheads are zero with the hardware-based methods, their miss costs are on average
much higher than those for the software-based techniques. This suggests that the fastest method
depends highly on the ratio of hits to misses for a given workload and memory configuration.
Lebeck studied this issue and concluded that a hardware-based approach is better for miss ratios up
to about 5%, at which point the high cost of servicing miss traps begins to make a software-based
approach more attractive [Lebeck95]. Given this, the software-based methods are probably the
better choice for simulating small on-chip caches with their higher miss ratios, but the trap-driven
methods are more effective for simulating large off-chip caches, which have traditionally been
difficult to manage with standard trace-driven simulation because of the time it takes to overcome
cold-start bias [Kessler91].

Both the hardware- and software-based techniques have been shown capable of monitoring
complete OS and multi-task workloads (e.g., SimOS, Tapeworm II). The Tapeworm II approach of
compiling the trap handlers directly into the kernel of the host system enables it to benefit from
much of the existing host infrastructure. SimOS, by contrast, must develop detailed simulation
models of several system components (such as network controllers, disk controllers, etc.) to
achieve the same effect. Although more work is required to establish these models, SimOS, in the
end, is able to account for effects such as time dilation, a form of distortion that Tapeworm II has
difficulty compensating for.

Draft — Submitted for Publication to Computing Surveys — Draft

44 • Uhlig et al.

When hit-bypassing is implemented in software, it limits the effectiveness of techniques such
as time sampling [Laha88] and set sampling [Puzak85]. Martonosi investigated time sampling by
adding an additional check to MemSpy’s annotations that enabled and disabled monitoring at
regular intervals [Martonosi93]. When enabled, annotation overheads are similar to those cited
previously (25 instructions per hit), but when disabled, an annotated reference executes only 6 extra
instructions. When trapping is enabled for 10% of the entire execution time, MemSpy slowdowns
dropped to about 4 to 10, a factor of two improvement over simulations without sampling. Ideally
10% sampling would result in a factor of 10 speedup, but in this case, code annotation adds an
unavoidable base overhead; even when trapping is turned off, each annotated memory reference
still results in the execution of 6 extra instructions. In contrast, experiments with Tapeworm II show
that the trap-driven approach lends itself well to sampling [Uhlig94] — when Tapeworm samples
1/N-th of all references, slowdowns are reduced in direct proportion, by a factor of N. This is true
because unsampled references, like simulated cache hits, can run at the full speed of the host
hardware.

The trade-offs between these new memory-system simulators are complex, and neither the
software-based or hardware-based approaches are clear winners in every situation. The reliance on
ad-hoc trapping mechanisms is a considerable disadvantage for the trap-driven simulators, so the
software-based tools are likely to be more popular in the immediate future. If, however, future
machines begin to provide better support for controlling memory access in a fine-grained manner,
trap-driven simulation could become more attractive. Such support is not necessarily expensive,
and could be useful for other applications as well, such as distributed shared memory
[Reinhardt96].

9 SUMMARY

Trace-driven simulation has played an important role in the design of memory systems in the
past, and because of the increasing processor-memory speed gap its usefulness is likely to continue
growing in the future. This survey has defined several criteria to use when judging the features of a
trace-driven simulation system, and has come to several conclusions contrary to the conventional
wisdom. In particular, instruction-set emulation is faster than commonly believed, probe-based
trace collection is slower than commonly believed, and multi-configuration simulations include
more overhead than typically reported. Most importantly, no single method is best when all points
of comparison, including speed, accuracy, flexibility, expense, portability and ease-of-use, are
taken into consideration.

Perhaps the most important factor to keep in mind when selecting the components of a
complete trace-driven memory simulator is balance. Research in trace-driven simulation frequently
places too much emphasis on one aspect of the process (e.g., speed) at the expense of others (e.g.,
completeness or portability). In the quest for raw speed, a simulator writer might, for example, be
tempted to select a static code annotator over an instruction-set emulator because the former is
typically twice as fast as the latter for collecting addresses traces. When trace-processing times are
taken into account, however, this difference may make a negligible contribution to overall
slowdowns and may not be worth the flexibility and ease-of-use that annotators sacrifice to obtain
their speed advantage over emulators. Similarly, the results obtained from fastest known cache
simulator may not be of much value if it can only be used to study single-process workloads. A
slower, but more complete system, capable of capturing multi-process and operating-system
activity, may often be the better choice.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 45

Looking forward, we can expect to see continued changes in the way that memory-system
simulation is performed. The biggest change is likely to come in the contents of the traces
themselves. As we saw in Section8, there is much to be gained by moving beyond a simple
sequential trace interface in which each and every memory reference is passed from trace collector
to trace processor. Richer trace interfaces will result not only in faster simulation times, but may
become a necessity to enable accurate simulations of tomorrow’s complex microprocessors, which
will be capable of making out-of-order, non-blocking accesses to the memory system.

10 ACKNOWLEDGEMENTS

Many thanks to Stuart Sechrest, Peter Bird, Peter Honeyman and Mike Smith, as well as the
anonymous reviewers fromComputing Surveys for their helpful comments on earlier versions of
this paper. A special thanks to Andre Seznec and IRISA for supporting this work during its final
stages.

11 REFERENCES

[Agarwal86] Agarwal, A., Sites, R. L. and Horowitz, M. ATUM: A new technique for capturing address
traces using microcode. InProceedings of the 13th International Symposium on Computer Architecture,
Tokyo, Japan, IEEE, 119-127, 1986.

[Agarwal88] Agarwal, A., Hennessy, J. and Horowitz, M. Cache performance of operating system and multi-
programming workloads.ACM Transactions on Computer Systems6 (4): 393-431, 1988.

[Agarwal89] Agarwal, A. Analysis of cache performance for operating systems and multiprogramming. Ph.D.
dissertation, Stanford. 1989.

[Agarwal89b] Agarwal, A., Horowitz, M. and Hennessy, J. An analytical cache model.ACM Transactions on
Computer Systems7 (2): 184-215, 1989.

[Agarwal90] Agarwal, A. and Huffman, M. Blocking: Exploiting spatial locality for trace compaction. In
Proceedings of the 1990 SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
Boulder, CO, ACM, 48-57, 1990.

[Alexander85] Alexander, C. A., Keshlear, W. M. and Briggs, F. Translation buffer performance in a UNIX
environment.Computer Architecture News13 (5): 2-14, 1985.

[Alexander86] Alexander, C., Keshlear, W., Cooper, F. and Briggs, F. Cache memory performance in a UNIX
environment.Computer Architecture News 14: 14-70, 1986.

[AMD91] AMD. Am29050 Microprocessor User's Manual. Sunnyvale, CA, 1991.

[AMD93] AMD. Am486 DX/DX2 Microprocessor Hardware Reference Manual. Sunnyvale, CA, Advanced
Micro Devices, Inc., 1993.

[Baker95] Baker, M. Cluster Computing Review. Northeast Parallel Architectures Center (NPAC) Technical
Report SCCS-748, November, 1995.

[Becker93] Becker, J. and Park, A. An analysis of the information content of address and data reference
streams. InProceedings of the 1993 SIGMETRICS Conference on the Measurement and Modeling of Com-
puter Systems, Santa Clara, CA, 262-263, 1993.

[Bedichek94] Bedichek, R.The meerkat multicomputer: tradeoffs in multicomputer architecture. Ph.D. dis-
sertation, University of Washington Department of Computer Science Technical Report 94-06-06, August
1994.

[Bedichek95] Bedichek, R. Talisman: fast and accurate multicomputer simulation. InProceedings of the 1995
SIGMETRICS Conference on Measurement and Modeling of Computer Systems,14-24, 1995.

[Biomation91] Biomation.Biomation CLAS 4000 Application Note 4032. Cupertino, CA, Biomation. 1991.

[Borg89] Borg, A., Kessler, R., Lazana, G. and Wall, D. Long address traces from RISC machines: generation

Draft — Submitted for Publication to Computing Surveys — Draft

46 • Uhlig et al.

and analysis.DEC Western Research Lab Technical Report 89/14, 1989.

[Borg90] Borg, A., Kessler, R. and Wall, D. Generation and analysis of very long address traces. InProceed-
ings of the 17th Annual International Symposium on Computer Architecture, IEEE, 1990.

[Chen93] Chen, B. Software methods for system address tracing. InProceedings of the Fourth Workshop on
Workstation Operating Systems, Napa, California, 1993.

[Chen93b] Chen, B. and Bershad, B. The impact of operating system structure on memory system perfor-
mance. InProceedings of the 14th Symposium on Operating System Principles, 1993.

[Chen94] Chen, B. Memory behavior of an X11 window system. InProceedings of the USENIX Winter 1994
Technical Conference, 1994.

[Clark85] Clark, D. W., Bannon, P. J. and Keller, J. B. Measuring VAX 8800 performance with a histogram
hardware monitor. In Proceedings of the 15th Annual International Symposium on Computer Architecture,
Honolulu, Hawaii, IEEE, 176-185, 1985.

[Cmelik93] Cmelik, R. and Keppel, D. Shade: A fast instruction-set simulator for execution profiling.Univer-
sity of Washington Technical Report UWCSE 93-06-06. 1993.

[Cmelik94] Cmelik, B. and Keppel, D. Shade: A fast instruction-set simulator for execution profiling. InPro-
ceedings of the 1994 SIGMETRICS Conference on Measurement and Modeling of Computer Systems, Nash-
ville, TN, ACM, 128-137, 1994.

[Covington88] Covington, R. C., Madala, S., Mehta, V., Jump, J. R. and Sinclair, J. B. The Rice parallel pro-
cessing testbed. InProceedings of the 1988 SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, ACM, 4-11, 1988.

[Cvetanovic94] Cvetanovic, Z. and Bhandarkar, D. Characterization of Alpha AXP performance using TP
and SPEC Workloads. InProceedings of the 21st Annual International Symposium on Computer Architec-
ture, Chicago, Ill., IEEE, 1994.

[Davies94] Davies, P., Lacroute, P., Heinlein, J., Horowitz, M., Mable: a technique for efficient machine simu-
lation. Stanford University Technical Report CSL-TR-94-636, October, 1994.

[Davis91] Davis, H., Goldschmidt, S. and Hennessy, J. Multiprocessor simulation and tracing using Tango. In
Proceedings of the 1991 International Conference on Parallel Processing, 99-107, 1991.

[Digital86] Digital. VAX architecture handbook. Bedford, MA, Digital Equipment Corporation, 1986.

[Digital92] Digital. Alpha Architecture Handbook. USA, Digital Equipment Corporation, 1992.

[Eggers90] Eggers, S., Keppel, D., Koldinger, E. and Levy, H. Techniques for efficient inline tracing on a
shared-memory multiprocessor. In Proceedings of the 1990 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Boulder, CO, 37-47, 1990.

[Emer84] Emer, J. and Clark, D. A characterization of processor performance in the VAX-11/780. InProceed-
ings of the 11th Annual Symposium on Computer Architecture, Ann Arbor, MI, IEEE, 301-309, 1984.

[Eustace94] Eustace, A., Srivastava, A. ATOM: a flexible interface for building high performance program
analysis tools. In Proceedings of the USENIX Winter 1995 Technical Conference on UNIX and Advanced
Computing Systems, New Orleans, Louisiana, 303-314, January, 1995.

[Flanagan92] Flanagan, J. K., Nelson, B. E., Archibald, J. K. and Grimsrud, K. BACH: BYU address collec-
tion hardware, the collection of complete traces. InProceedings of the 6th International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation, 128-137, 1992.

[Flanagan94] Flanagan, J. K.Personal Communication. 1994.

[Fuentes93] Fuentes, C. Hardware support for operating systems.University of Michigan Technical Report.
1993.

[Gee93] Gee, J., Hill, M., Pnevmatikatos, D. and Smith, A. J. Cache Performance of the SPEC92 Benchmark
Suite.IEEE Micro (August): 17-27, 1993.

[Goldschmidt92] Goldschmidt, S. and Hennessy, J. The accuracy of trace-driven simulation of multiproces-
sors. Stanford University Computer Systems Laboratory Technical Report CSL-TR-92-546, September
1992.

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 47

[Goldschmidt93] Goldschmidt, S. and Hennessy, J. The accuracy of trace-driven simulation of multiproces-
sors. InProceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems, 146-157, May 1993.

[Grimsrud93] Grimsrud, K. Address translation of BACH i486 traces. Brigham Young University Technical
Report. 1993.

[Hammerstrom77] Hammerstrom, D. and Davidson, E. Information content of CPU memory referencing
behavior. In Proceedings of the 4th International Symposium on Computer Architecture, 184-192, 1977.

[Happel92] Happel, L. P. and Jayasumana, A. P. Performance of a RISC machine with two-level caches.IEE
Proceedings-E139 (3): 221-229, 1992.

[Hennessy90] Hennessy, J. L. and Patterson, D. A.Computer Architecture A Quantitative Approach. San
Mateo, Morgan Kaufmann, 1990.

[HP90] Hewlett-Packard.PA-RISC 1.1 Architecture and Instruction Set Reference Manual. Hewlett-Packard,
Inc., 1990.

[HP91] Hewlett-Packard.Test and Measurement Catalog. Santa Clara, CA, Marketing Communications,
1991.

[Hill87] Hill, M. Aspects of cache memory and instruction buffer performance. Ph.D. dissertation, The Uni-
versity of California at Berkeley. 1987.

[Hill89] Hill, M. and Smith, A. Evaluating associativity in CPU caches.IEEE Transactions on Computers38
(12): 1612-1630, 1989.

[Hodges64] Hodges, J. L. and Lehmann, E. L.Basic concepts of probability and statistics. San Fransciso, CA,
Holden-day, Inc., 1964.

[Holliday90] Holliday, M. and Ellis, C. Accuracy of memory reference traces of parallel computations in
trace-driven simulation.Department of Computer Science, Duke University, Durham, NC. Technical Report
CS-1990-8. 1990.

[Holliday91] Holliday, M. Techniques for cache and memory simulation using address reference traces.Inter-
national journal in computer simulation1: 129-151, 1991.

[IBM90] IBM. IBM RISC System/6000 Technology. Austin, TX, IBM, 1990.

[Intel90] Intel. i860 64-bit Microprocessors Programmer's Manual. Santa Clara, CA, Intel Corporation, 1990.

[Jouppi90] Jouppi, N. Improving direct-mapped cache performance by the addition of a small fully-associa-
tive cache and prefetch buffers. InProceedings of the 17th Annual International Symposium on Computer
Architecture, Seattle, WA, IEEE, 364-373, 1990.

[Kane92] Kane, G. and Heinrich, J.MIPS RISC Architecture. Prentice-Hall, Inc., 1992.

[Kaeli91] Kaeli, D. Issues in Trace-Driven Simulation. InProceedings of the 22rd Annual Pittsburgh Model-
ing and Simulation Conference, Vol. 22, Part 5, May, 2533-2540, 1991.

[Kessler91] Kessler, R.Analysis of multi-megabyte secondary CPU cache memories. Ph.D. dissertation, Uni-
versity of Wisconsin-Madison. 1991.

[Lacy88] Lacy, F. An address trace generator for trace-driven simulation of shared memory multiprocessors.
University of California at Berkeley. Technical Report UCB/CSD 88/407. 1988.

[Laha88] Laha, S., Patel, J. and Iyer, R. Accurate low-cost methods for performance evaluation of cache
memory systems.IEEE Transactions on Computers37 (11): 1325-1336, 1988.

[Larus90] Larus, J. R. Abstract Execution: A technique for efficiently tracing programs.Software Practice
and Experience, 20(12):1241-1258, December, 1990.

[Larus91] Larus, J. SPIM S20: A MIPS R2000 Simulator. University of Wisconsin-Madison Technical
Report, Revision 9. 1991.

[Larus93] Larus, J. R. Efficient program tracing.IEEE Computer May, 1993: 52-60, 1993.

[Lebeck94] Lebeck, A. and Wood, D. Fast-Cache: A new abstraction for memory-system simulation.Univer-
sity of Wisconsin - Madison Technical Report 1211, 1994.

[Lebeck95] Lebeck, A. and Wood, D. Active Memory: A new abstraction for memory-system simulation. In

Draft — Submitted for Publication to Computing Surveys — Draft

48 • Uhlig et al.

Proceedings of the 1995 SIGMETRICS Conference on the Measurement and Modeling of Computer Sys-
tems, May, 220-230, 1995.

[Lee94] Lee, C.-C. A case study of a hardware-managed TLB in a multi-tasking environment.University of
Michigan Technical Report. 1994.

[MacWeek94] MacWeek Staff, Apple holds up 603 for cache,MacWeek8 (21): 1, 100, May 24, 1994

[Magnusson93] Magnusson, P. A design for efficient simulation of a multiprocessor. In Proceedings of the
1993 Western Simulation Multiconference on International Workshop on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems (MASCOTS-93), 69-78, La Jolla, California, 1993.

[Martonosi92] Martonosi, M., Gupta, A. and Anderson, T. MemSpy: Analyzing memory system bottlenecks
in programs. InProceedings of the 1992 SIGMETRICS Conference on the Measurement and Modeling of
Computer Systems, ACM, 1992.

[Martonosi93] Martonosi, M., Gupta, A. and Anderson, T. Effectiveness of trace sampling for performance
debugging tools. InProceedings of the 1993 SIGMETRICS Conference on the Measurement and Modeling
of Computer Systems, Santa Clara, California, ACM, 248-259, 1993.

[Martonosi94] Martonosi, M.Analyzing and tuning memory performance in sequential and parallel pro-
grams. Ph.D. dissertation, Stanford University. 1994.

[Mattson70] Mattson, R. L., Gecsei, J., Slutz, D. R. and Traiger, I. L. Evaluation techniques for storage hier-
archies.IBM Systems Journal9 (2): 78-117, 1970.

[May87] May, C. Mimic: A fast S/370 simulator. In Proceedings of the ACM SIGPLAN 1987 Symposium on
Interpreters and Interpretive Techniques, St. Paul, Minnesota, ACM, 1-13, 1987.

[Maynard94] Maynard, A. M., Donnelly, C. and Olszewski, B. Contrasting characteristics and cache perfor-
mance of technical and multi-user commercial workloads. InProceedings of the Sixth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, San Jose, CA, ACM,
145-156, 1994.

[MIPS88] MIPS.RISCompiler Languages Programmer's Guide. MIPS, 1988.

[Mogul91] Mogul, J. C. and Borg, A. The effect of context switches on cache performance. InProceedings of
the 4th International Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Santa Clara, California, ACM, 75-84, 1991.

[Motorola90] Motorola. MC88100 RISC Microprocessor User's Manual. Englewood Cliffs, NJ, Prentice
Hall, 1990.

[Motorola93] Motorola.PowerPC 601 RISC Microprocessor Users' Manual. Motorola, Inc., 1993.

[Nagle92] Nagle, D., Uhlig, R. and Mudge, T. Monster: A tool for analyzing the interaction between operating
systems and computer architectures.University of Michigan Technical Report CSE-TR-147-92. 1992.

[Nagle93] Nagle, D., Uhlig, R., Stanley, T., Sechrest, S., Mudge, T. and Brown, R. Design tradeoffs for soft-
ware-managed TLBs. InProceedings of the 20th Annual International Symposium on Computer Architec-
ture, San Diego, California, IEEE, 27-38, 1993.

[Nagle94] Nagle, D., Uhlig, R., Mudge, T. and Sechrest, S. Optimal Allocation of On-chip Memory for Multi-
ple-API Operating Systems. InProceedings of the 21st International Symposium on Computer Architecture,
Chicago, IL, 1994.

[Pierce94] Pierce, J. and Mudge, T. IDtrace - A tracing tool for i486 simulation.University of Michigan Tech-
nical Report CSE-TR-203-94. 1994.

[Pierce94b] Pierce, J. and Mudge, T. IDtrace - A tracing tool for i486 simulation (extended abstract). InPro-
ceedings of the International Workshop on Modeling, Analysis and Simulation of Computer and Telecom-
munications Systems (MASCOTS), 419-420, 1994.

[Pierce95] Pierce, J., Smith, M. D., and Mudge, T., “Instrumentation tools,” in Fast Simulation of Computer
Architectures (T. M. Conte and C. E. Gimarc, eds.), Kluwer Academic Publishers: Boston, MA, 1995, to
appear.

[Pleszkun94] Pleszkun, A. Techniques for compressing program address traces.Technical Report, Depart-

Draft — Submitted for Publication to Computing Surveys — Draft

Trace-driven Memory Simulation: A Survey• 49

ment of Electrical and Computer Engineering, University of Colorado-Boulder. 1994.

[Prieve74] Prieve, B. G.A page partition replacement algorithm. University of California at Berkeley. 1974.

[Puzak85] Puzak, T. Analysis of cache replacement algorithms. Ph.D. dissertation, University of Massachu-
setts. 1985.

[Reinhardt93] Reinhardt, S., Hill, M., Larus, J., Lebeck, A., Lewis, J. and Wood, D. The Wisconsin Wind
Tunnel: Virtual prototyping of parallel computers. InProceedings of the 1993 SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, Santa Clara, CA, ACM, 48-60, 1993.

[Reinhardt96] Reinhardt, S., Pfile, R., and Wood, D. Decoupled hardware support for distributed shared
memory. To appear inProceedings of the 23rd Annual International Symposium on Computer Architecture,
1996.

[Romer96] Romer, T., Lee, D., Voelker, G., Wolman, A., Wong, W., Baer, J., Bershad, B. and Levy, H. The
Structure and Performance of Interpreters. To appear in theProceedings of the 7th International Conference
on Architectural Support for Programming Languages and Operating Systems, Cambridge, MA, October,
1996.

[Rosenblum95] Rosenblum, M., Herrod, S., Witchel, E., and Gupta, A. Complete computer simulation: the
SimOS approach, InIEEE Parallel and Distributed Technology, Fall 1995.

[Samples89] Samples, A. Mache: no-loss trace compaction. InProceedings of 1989 SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems, ACM, 89-97, 1989.

[Sites88] Sites, R. L. and Agarwal, A. Multiprocessor cache analysis with ATUM. In Proceedings of the 15th
Annual International Symposium on Computer Architecture, Honolulu, Hawaii, IEEE, 186-195, 1988.

[Sites92] Sites, R., Chernoff, A., Kirk, M., Marks, M. and Robinson, S. Binary translation.Digital Technical
Journal4 (4): 137-152, 1992.

[Smith77] Smith, A. J. Two methods for the efficient analysis of memory address trace data.IEEE Transac-
tions on Software EngineeringSE-3 (1): 94-101, 1977.

[Smith82] Smith, A. J. Cache memories.Computing Surveys14 (3): 473-530, 1982.

[Smith86] Smith, A. Bibliography and readings on CPU cache memories and related topics.Computer Archi-
tecture News14: 22-42, 1986.

[Smith91] Smith, M. D. Tracing with pixie.Technical Report, Stanford University, Stanford, CA. 1991.

[Srivastava94] Srivastava, A. and Eustace, A. ATOM: A system for building customized program analysis
tools. InProceedings of the SIGPLAN ‘94 Conference on Programming Language Design and Implementa-
tion, 196-205, June 1994.

[Stephens91] Stephens, C., Cogswell, B., Heinlein, J., Palmer, G. and Shen, J. Instruction level profiling and
evaluation of the IBM RS/6000. InProceedings of the 18th Annual International Symposium on Computer
Architecture, Toronto, Canada, ACM, 180-189, 1991.

[Stone93] Stone, H.High-performance Computer Architecture. Reading, Massachusetts, Addison-Wesley,
1993.

[Stunkel89] Stunkel, C. and Fuchs, W. TRAPEDS: producing traces for multicomputers via execution-driven
simulation. InProceedings of the 1989 SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems, Berkeley, CA, ACM, 70-78, 1989.

[Stunkel91] Stunkel, C., Janssens, B. and Fuchs, W. K. Collecting address traces from parallel computers. In
Proceedings of the 24th Annual Hawaii International Conference on System Sciences, Hawaii, 373-383,
1991.

[Sugumar93] Sugumar, R.Multi-configuration simulation algorithms for the evaluation of computer designs.
Ph.D. dissertation, University of Michigan. 1993.

[Talluri94] Talluri, M. and Hill, M. Surpassing the TLB Performance of Superpages with Less Operating Sys-
tem Support. InProceedings of the 6th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, ACM, 1994.

[Tektronix94] Tektronix.Test and Measurement Product Catalog. Wilsonville, OR, 1994.

Draft — Submitted for Publication to Computing Surveys — Draft

50 • Uhlig et al.

[Thekkath94] Thekkath, C. and Levy, H. Hardware and software support for efficient exception handling. In
Proceedings of the 6th International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, ACM Press, 110-119, 1994.

[Thompson89] Thompson, J. and Smith, A. Efficient (stack) algorithms for analysis of write-back and sector
memories.ACM Transactions on Computer Systems7 (1): 78-116, 1989.

[Torrellas92] Torrellas, J., Gupta, A. and Hennessy, J. Characterizing the caching and synchronization perfor-
mance of multiprocessor operating system. InProceedings of the 5th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Boston, Massachusetts, ADM, 162-
174, 1992.

[Uhlig94] Uhlig, R., Nagle, D., Mudge, T. and Sechrest, S. Trap-driven simulation with Tapeworm II. InPro-
ceedings of the Sixth International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, California, ACM Press (SIGARCH), 132-144, 1994.

[Uhlig95] Uhlig, R., Nagle, D., Mudge, T. Sechrest, S., and Emer, J. Instruction Fetching: Coping with Code
Bloat. To Appear InProceedings of the 22nd International Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, June, 1995.

[Upton94] Upton, M. D.Architectural trade-offs in a latency tolerant gallium arsenide microprocessor. Ph.D.
Dissertation, The University of Michigan, 1994.

[Veenstra94] Veenstra, J. and Fowler, R. MINT: A front end for efficient simulation of shared-memory multi-
processors. InProceedings of the 2nd International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication systems (MASCOTS), 201-207, 1994.

[Wall89] Wall, D. Link-time code modification.DEC Western Research Lab Technical Report 89/17. 1989.

[Wall92] Wall, D. Systems for late code modification.DEC Western Research Lab. Technical Report92/3.
1992.

[Wang90] Wang, W.-H. and Baer, J.-L. Efficient trace-driven simulation methods for cache performance anal-
ysis. InProceedings of the 1990 SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, Boulder, CO, ACM, 27-36, 1990.

[Wiecek82] Wiecek, C. A. A case study of VAX-11 instruction set usage for compiler execution. In Proceed-
ings of Architectural Support for Programming Languages and Operating Systems, ACM Press, New York,
177-184, 1982.

[Wilkes69] Wilkes, M. The growth of interest in microprogramming: a literature survey, Computing Surveys
1(3): 139-145, September 1969.

[Winsor89] Winsor, D. Bus and cache memory organizations for multi-processors. Ph.D. dissertation, The
University of Michigan. 1989.

[Witchel96] Witchel, E. and Rosenblum, M. Embra: fast and flexible machine simulation, InProceedings of
the 1996 SIGMETRICS Conference on Measurement and Modeling of Computer Systems,Philadelphia,
May, 1996.

[Wood91] Wood, D., Hill, M. and Kessler, R. A model for estimating trace-sampled miss ratios. InProceed-
ings of the 1991 SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 79-89,
1991.

[Ziv76] Ziv, J. and Lempel, A. A universal algorithm for sequential data compression.IEEE Transactions on
Information Theory23(1976): 75-81, 1976.

