
Instruction-Level Power Estimation for Embedded VLIW Cores

M. Sami D. Sciuto C. Silvano V. Zaccaria

Politecnico di Milano

Dip. di Elettronica e Informazione

Milano, ITALY 20133

ABSTRACT
In this paper, a power estimation methodology operating
at the instruction-level is proposed. The methodology is
tightly related to the characteristics of the system archi-
tecture, mainly in terms of one or more target processors,
the memory sub-system, the system-level buses and the co-
processors. In this system-level framework, our main goal is

to de�ne a power model for CPU cores at the instruction-
level. First, the proposed power model deals with a general
�ve-stage pipeline processor architecture, then, the model is
extended to VLIW processors. The derivation of a VLIW
instruction-level power model results to be intractable from
the point of view of spatial complexity (which grows expo-

nentially w.r.t. the number of possible operations in the
ISA). In order to tackle this complexity, a new kind of
simpli�cation, based on the original concept of separability
of processor functional units, is introduced. The proposed
system-level methodology is the �rst step toward a more
general framework to support the design of power-oriented

applications through hardware/software co-design. 1

1. INTRODUCTION
Low power is an increasingly relevant requirement for ever
wider classes of embedded systems [1]. A reasonably eÆcient
approach to power estimation at the higher levels of abstrac-
tion is of fundamental importance for system design. Early
availability of such �gures will make it possible to guide

the subsequent design choices, from hardware/software par-
titioning down to technology mapping.

Aim of our work is the de�nition of a power-oriented method-

ology suitable for embedded systems based on VLIW cores.
The system-level methodology includes power models for
each module composing the target system architecture, main-
ly one or more processors, the memory sub-system, the
system-level buses and the co-processors. The target pro-

1
This work is partially supported by CNR (Project MADESS II) and

ST Microelectronics.

cessor architecture is a pipelined VLIW core in both single-
cluster and multi-cluster con�guration. In this system-level
scenario, the main focus of the present paper is the def-
inition of an instruction-level power estimation model for
VLIW cores based on a micro-architectural model of the

processor. The goal is to provide information on the power
consumed by the processor core during code execution. At
the same time, the micro-architectural model should provide
data to the programmer/compiler on the hot spots where
most power is consumed within the core micro-architecture.
We assume this level of detail cannot be achieved by us-

ing a simple black-box instruction-level power model such
as those presented in the literature so far.

The proposed model is quite general and parametric, to al-
low us the possibility of exploring the power budget by con-
sidering di�erent architectural solutions for a VLIW core,
given a speci�c application. The model is parametric with

respect to: number of clusters, instruction formats, number
of registers, number and type of functional units, intercon-
nection buses, the type and number of operations in the long
instruction, and so on.

In this paper, �rst we propose a new type of instruction-
level power estimation model for pipelined processors that

aims at unifying the micro-architectural view of the proces-
sor with its power behaviour. Then, we propose a power
characterization model of a general VLIW pipelined archi-
tecture based on the model derived for pipelined processors.
We introduce the concept of separability of the processor
functional units, to deal with the spatial complexity of the

instruction-level power model for VLIW cores, which grows
exponentially with the number of possible operations in the
ISA.

In our model, we de�ne a mapping between very-long in-
structions (bundles) and micro-architectural functional units
involved during the bundle execution. The bundle-to-unit

mapping provides power estimates during the instruction-
level simulation. The instruction-set simulator (ISS) trans-
fers information to the micro-architectural power model on
which units are involved in execution, and, at the same time,
it obtains from the model detailed estimates on the power
consumption on a cycle-by-cycle basis. The main goal of

the integration of the micro-architectural power model and
the bundle-to-unit mapping is the de�nition of an eÆcient
interaction mechanism for forward and backward transfer of
information between the proposed model and the ISS. The
forward ow of information from ISS to the power estima-
tion engine and the backward ow of power estimates from

the power model to the ISS, require minimum overhead on

the standard instruction-level simulation.

As further evolution of this work, the model will be re�ned
by the assessment of the relationships between elementary
sequences of very long instructions and relative power re-
quirements. This includes both the choice of operations
inserted in a single long instruction or distributed over a
sequence of long instructions (i.e. spatial versus temporal

inter-operations e�ects and dependencies) and the assess-
ment of policies for register management. The information
acquired can be passed to the user/compiler to provide fur-
ther power optimization �gures.

The paper is organized as follows. Previous literature on

instruction-level power estimation has been summarized in
Section 2. Section 3 introduces the general instruction-level
power estimation methodology for pipelined processors aim-
ing at modeling the energy associated with a single stage of
the pipeline. The model has been extended in Section 4
to consider the power contributions of the di�erent pipeline

stages. Section 5 describes how the proposed model can be
generalized to VLIW architectures, for which the complex-
ity of the power estimation problem is reduced based on the
concept of separability of the internal functional units. Ex-
perimental results carried out to demonstrate the validity
of the proposed approach applied to a simpli�ed VLIW ar-

chitecture have been reported in Section 6. Finally, Section
7 concludes the paper by outlining some research directions
originated from this work.

2. PREVIOUS WORK
Instruction-level power estimation [2] is a problem a�orded
only recently. As a consequence, only few proposals have
been made on this subject, that yet lacks of a mathemati-
cal approach. The major contributions found in literature

are based on empirical approaches. Tiwari et al. [2][3] ex-
plore instruction level power estimation using simple models
such as average energy per instruction, which is derived from
experimental measurements. They partially include an av-
erage inter-instruction e�ect energy.

The instruction-level power model proposed in [5] considers
an average instruction energy equal for all instructions in
the ISA. More speci�cally, this model is based on the ob-
servation that, for a certain class of processors, the energy

per instruction has very small variance. In [4], the authors
propose a new processor power model by considering pos-

sible inter-instruction e�ects as well as data statistics. Al-
though the developed power model is quite accurate, it lacks
general applicability, being developed only for a speci�c em-
bedded processor. In [8], the authors propose to measure
inter-instruction e�ects by considering only the additional
energy consumption observed when a generic instruction

is executed after a NOP (the power model derived is also
called the NOP model). This model could be an e�ective
solution to the problem of the spatial complexity proper of
instruction-level power models.

In general, inter-instruction e�ects play an important role

being highly correlated to the gate-level switching activity

of the functional units of processors. In RISC and VLIW ar-
chitectures [6], these e�ects can become particularly evident.
Conversely, in complex architectures like CISCs, the heavy
use of caches and microcode ROMs e�ectively increases the
average instruction energy, but reduces its variance, masking

inter-instruction e�ects.

3. INSTRUCTION-LEVEL ENERGY MODEL
Up to now, the existing approaches to software-level power
estimation do not take into account the power behaviour of
each pipeline stage of the processor. To characterize energy
consumption of a single instruction, the processor is consid-
ered as a whole without analyzing the power behavior during
the ow of the instructions through the pipeline stages.

This paper presents the �rst results of our work on software-
level power estimation based on an accurate characterization
of the pipeline stages. To describe our energy model, we

introduce a �ve-stage load/store pipelined processor archi-
tecture (see Fig.1). 2 The stages composing the processor
pipeline are:

� Instruction Fetch Stage (IF);

� Instruction Decode Stage (ID);

� Register Read Stage (RR);

� Execute Stage (EX);

� Write Back Stage (WB).

Let wn be the n-th instruction of a program execution trace
W . We assume the energy associated with wn to be strictly
dependent on the properties of wn (e.g., type of instruction,
registers accessed and data dependencies) as well as on its
execution context, i.e., the set of instructions contained in

W near to wn. The execution context can be split in two
major contributions:

� The preceding instruction wn�1.

� The instructions wk present in the pipeline during the

execution time of wn.

Given the processor pipeline composed of a set S of stages
(where S=fIF, ID, RR, EX, WBg), we propose to estimate
the average energy E associated with wn as follows:

E(wn) �
X

s2S

As(wnjwn�1) (1)

where As is the energy consumed by stage s when executing
instruction wn after wn�1. Then, we decompose the average
energy consumption per stage in two terms:

As(wnjwn�1) � Us(wnjwn�1) + Ts(wn) (2)

where term Us is the energy consumption of stage s dur-
ing an ideal execution of wn in the absence of any hazards
or exceptions, thus assuming one cycle execution per stage.

Term Us depends on the current instruction word executed
and on the preceding one in the trace. Us represents the con-
tribution of the individual stage only and therefore can be
evaluated independently. Term Ts is the incremental aver-
age energy consumed by stage s whenever either the number

of cycles needed by stage s to elaborate wn (latency cycles)
exceeds one or stage s stalls while executing wn because
there is a data-path conict (stall cycles due to resource
conicts, data hazards, or control hazards). In this case, wn
has to wait in s until the conict is resolved and the average
energy consumed depends only on wn. In the rest of the

paper, we denote by stall/latency probability the probability
that stage s is in one of the above stall/latency states. This
parameter is quite important because term Ts depends on
the probability that the processor stalls the pipeline:

Ts(wn) � ms(wn) � ps(wn) � Ss(wn) (3)

2
The pipeline is modi�ed with respect to the MIPS architecture pre-

sented in [6]; in particular, the memory access stage has been included

in the EX stage, for which an ad-hoc power model has been developed.

I$

D RF

FU1

D$

IF

FU3

LD/ST
FU

RF
FU2

D$

Bundle

Operation

Operation

Operation

Operation

...

......
...

Figure 1: A general VLIW Pipelined Processor Architecture.

where ms is the typical number of stall/latency cycles oc-

curred while executing wn, ps is the stall/latency probability
while executing wn and Ss is the stage energy consumption
for each of these stall/latency cycles. Note that ps and ms

have to be experimentally measured by observing the be-
haviour of the pipeline during several executions of a given
application or by simulating it cycle-by-cycle. Considering

our target architecture, this is not a major issue because ex-
isting VLIW simulators (such as Trimaran [9]) can produce
instrumented VLIW code to record this type of statistical
values. Finally, Ss can be derived in the same manner as Us,
i.e., by simulating a gate level description of the processor.

4. ANALYSIS OF PIPELINE STAGES
Referring to the pipelined processor architecture in Fig. 1,
in this section we analyze the contributions of the di�erent
pipeline stages.

4.1 IF Stage
The energy consumption of stage IF, AIF , can be decom-

posed in two parts: (i) I-cache energy contribution AIF;ic;
(ii) energy contribution AIF;logic due to the fetch logic, such
as issue bu�ers. I-cache energy contribution is strictly de-
pendent on the I-cache hit ratio. Thus we propose, for
AIF;ic, the following approximation:

H � Ehit + (1�H) � Emiss + TIF;ic(wn) (4)

where H is the I-cache hit ratio and Ehit and Emiss are the
average cache hit and miss energy consumption respectively;
TIF;ic(wn) is the stall energy consumption for the I-cache
due to stalls of the current instruction caused by other stages
and can be approximated as follows:

TIF;ic(wn) � mIF (wn) � pIF (wn) � SIF;ic(wn) (5)

where mIF and pIF are the average stall/latency cycles and
stall/latency probability not due to a cache miss, respec-
tively, and SIF;ic is the relative cache energy consumption.
Finally, fetch logic power consumption AIF;logic can be ap-
proximated by following the general power model:

UIF;logic(wnjwn�1) +mIF (wn) � pIF (wn) � SIF;logic(wn) (6)

where UIF;logic and SIF;logic represent, respectively, the single-

cycle ideal execution and the stall/latency average power
consumption of the fetch logic.

4.2 ID Stage
The average energy consumption AID(wnjwn�1) can be ap-
proximated by:

UID(wnjwn�1) +mID(wn) � pID(wn) � SID(wn) (7)

where UID is the single-cycle ideal execution energy con-
sumption, mID is the average number of stall/latency cycles
in the ID stage, pID is the average stall/latency probability
and SID is the average stall/latency energy consumption of

the decoding logic. The ideal (Us) and stall (Ss) average
energy are also strongly a�ected by the switching activity
produced by the control word ow through the pipeline.
This power consumption is due to the fact that the con-
trol word pipeline bu�ers drive other pipeline bu�ers and
the controlled units.

4.3 RR Stage
In this stage, operand values are selected from the following

sources:

� A multi-ported register �le with 2n read ports and

n write ports (where n is the number of slots in a
bundle);

� A register by-pass network that presents result val-

ues of the current instruction in the EX stage. This
forwarding network is used to reduce the latency of
operation to 1 cycle.

We propose to approximate ARR with the following expres-
sion:

�RRR � (1 +mRR(wn) � pRR(wn)) (8)

where �RRR is the average energy consumption per cycle of

the entire pipeline stage. We take an average value because
the register �le power consumption is inuenced by inter-
stage e�ects (such as writes generated by the WB stage)
which are very complex to model.

4.4 EX Stage
During this stage, instructions are dispatched to the dedi-
cated FUs through a switching network. After the instruc-
tion execution, if the instruction is a simple operation be-

tween registers, the results are redirected to a register �le
write port. Conversely, if the instruction is a load opera-
tion, the data are fetched from the data-cache (stalling the
pipeline in the case of a cache miss). On the other hand, a
store instruction moves data towards the data-cache bu�ers

in the WB stage. The energy consumption (AEX(wnjwn�1))
associated to stage EX can be modeled as:

UEX (wnjwn�1) +mEX(wn) � pEX (wn) � SEX(wn) (9)

where UEX and SEX take into account energy consump-
tion due to: (i) functional units; (ii) switching networks;

(iii) D-cache (including incoming reads from EX stage and
incoming writes from WB stage).

The energy consumption of the functional units is strongly
dependent on both the switching activity induced by inter-
instruction e�ects and data correlation. Due to the inher-
ent complexity and number of alternative implementations
for switching networks, functional units and D-caches, their

energy consumption is modeled statistically by taking an
average value over all the executed instructions.

4.5 WB Stage
Finally, we model the WB stage energy consumption by:

UWB(wnjwn�1) +mWB(wn) � pWB(wn) � SWB(wn) (10)

Note that energy consumption due to register �le writes and
D-cache writes has been already considered in the RR and
EX stages, thus WB energy parameters must account only
for the remainder of the logic (e.g., stage bu�ers).

5. EXTENDING THE ENERGY MODEL
TO VLIW ARCHITECTURES

In a VLIW processor, long instructions (or bundles) are com-
posed of one or more explicitly parallel operations. After a
bundle is fetched from the I-cache, each operation is dis-
patched to a speci�c functional unit (See Fig. 1). Unlike a
superscalar processor, which can be considered an atomic in-

struction architecture [10], a VLIW processor does not check
for any data or control dependency, thus the compiler must
assure that the ow of operations does not present any type
of intra or inter -bundle dependency.
As already noted in [8], the challenge of every instruction-
level power model derives from the complexity of the spatial

and temporal correlation of the instructions in the execution
trace W . In fact, for each parameter we must maintain an
n-dimensional array where n depends on the type of inter-
instruction e�ects that we are considering. For example, the
parameter Us(wnjwn�1) takes into account only the inter-

instruction e�ect between adjacent instructions and must
be maintained in a bi-dimensional array whose dimension is
proportional to the number of instruction in the ISA. In the
case of a RISC machine this problem can be solved by clus-
tering instructions [3], thus reducing the parameter's array
length.

In contrast, a VLIW machine presents each bundle as com-
posed by a set of operations [6]. The derived power model
must account for all the allowable combinations of opera-
tions in a bundle, thus the problem complexity grows expo-
nentially with the size of the bundle. As for the RISC case,
instruction clustering can be e�ective to reduce the problem

complexity by trading o� power estimation accuracy with
spatial complexity.
Power-per-stage analytical regression models based on few
parameters, such as the average Hamming distance between
operand addresses, can also be envisioned to reduce spatial
complexity. In this case, the size of the problem would be

reduced to the number of parameters considered (hopefully
less than VLIW issue width). This approach would also
support energy reduction through instruction scheduling for
all the pipeline stages.
In this paper, we propose an approach aiming at reducing

the problem complexity by introducing the concept of sep-
arability. Seemingly, since operations in a long instruction
are by de�nition not-conicting with each other (being ex-
ecuted simultaneously) they should be considered as sepa-

rable, i.e. their contribution to the energy model should be
simply additive. In reality, even by referring to a very sim-

ple architectural model (such as that in Fig. 1), it becomes
evident that real separability fully applies only to the set of
functional units, therefore to stage EX.
In that sense, the functional units are separable since each
one of them is dedicated to execute one particular opera-
tion of the bundle. Therefore, no VLIW processor is en-

tirely separable. In fact, although the interference between

operations of the same bundle is minimized, there exist al-

ways some portions of the processor that are inuenced by
the concurrent execution of more than one operation at the
same time. We de�ne these portions of the processor as not
separable. They are:

� The IF stage: We assume the processor fetches the

instructions from a common I-cache, thus the fetch
logic is not separable.

� The ID stage: Complex switching networks that redi-

rect operations to the functional units are not separa-
ble.

� The RR stage: The structure of the multi-port reg-
ister �le used to support concurrent read and write

operations is not separable.

� The WB stage: Same as the RR stage.

For not separable stages we propose to substitute parame-
ters Us(wnjwn�1) and Ss(wn) by their average, i.e., �Us and
�Ss. In this way, the expression of As(wnjwn�1) becomes
easier to compute:

As(wnjwn�1) � �Us +ms(wn) � ps(wn) � �Ss (11)

Besides, the standard deviation of As can be calculated to
characterize the model accuracy.
Suppose now that stage s is separable, i.e., it is decompos-
able in D independent partitions, each one executing a par-
ticular stream of operations. In the case of Ss (that depends

on only one instruction), we do the following approximation:

Ss(w) �

DX

d=1

�s(od) (12)

where od is the operation issued to partition d by w and

�s(o) is the average energy consumed by the stage while
executing a long instruction composed only of an operation
o (all other operations in the bundle being NOPs and thus
not activating functional units). In the case of a regular
VLIW architecture [6], the derivation of \od"s from a given
bundle w is straightforward because each slot of the bundle

can be conceptually assigned to one and only one partition.
In this way, we reduce the complexity due to Ss from O(Nd)
to O(d�N) (where N is the number of operations in the ISA)
which is muchmore tractable. In the case of Us = Us(w1jw2)
(s being separable) we can apply the same approximation:

Us(w1jw2) �

DX

d=1

�s(o1;djo2;d) (13)

where o1;d; o2;d are the operations issued to partition d by
the �rst and the second bundle respectively, and �s(o1jo2)
is the average energy consumed by the stage while execut-

ing o1 after o2 on the same partition (assuming the rest of
partitions being issued with NOPs).

6. EXPERIMENTAL RESULTS
To validate the proposed energy model, we have considered
a simpli�ed VLIW architecture (SV LIW for brevity) pro-

vided with data forwarding and operation latency equal to
one cycle. The SV LIW architecture (shown in Fig. 2) can
execute a two operation bundle < o1; o2 > without any stall.
The operations taken into account in our experiments are
ADD andMUL functional operations and NOP operation.
The processor architecture is composed of:

� A register �le composed of 64 registers with 4 read-

ports and 2 write-ports;

� 2 FUs (adder and multiplier) each one statically linked
to 2 register �le read ports and 1 write port;

I$ RF
+

IF ID RR EX WB

*

Slot 1

Slot 2 Register
Switching
Network

Operands

Slot
Select

+/* SRC1 SRC2

Bundle

2 bit

DEST

6 bit 6 bit6 bit

+/* SRC1 SRC2

2 bit

DEST

6 bit 6 bit6 bit

Figure 2: A simpli�ed VLIW Pipelined Processor Architecture.

� A direct mapped 16-bundle I-cache with 1-bundle line
size and 100% hit rate.

The SV LIW processor has been described in VHDL. This
description has been synthesized as a multi-level logic by us-
ing Synopsys Design Compiler and mapped onto the 0:35�m

and 3:3V technology library supplied by ST Microelectron-
ics. Energy consumption estimates have been obtained with
Synopsis Design Power by assuming a 50MHz clock fre-
quency.
A �rst set of experiments have been carried out to demon-

strate the validity and the accuracy of the energy model
proposed in equation (1), when the SV LIW processor ex-
ecutes a sequence of instructions of the same type. In this
case, the term As of equation (1) becomes:

As(wnjwn�1) = As(< o1;NOP > j < o1;NOP >) (14)

where o1 2 fNOP; ADD;MULg.
The columns of Table I report the corresponding power con-

sumed by each stage s of the pipeline. Note that the energy
consumed by the WB stage accounts only for stage bu�ers,
while the energy due to write operations in the register �le
are taken into account in the energy associated with the
RR stage. The row ~P(wn) shows the power estimated by

applying equation (1), that is by adding the single contri-
bution of each pipeline stage, while row P (wn) reports the
average processor power associated with the instruction wn.
The value of P (wn) has been estimated by considering the
processor as a black-box executing a trace of identical in-
structions. The percentage error of ~P(wn) with respect to

P (wn) is equal to 4:94% for NOP , 12:62% for ADD, and
3:12% for MUL. These errors are justi�ed by the fact that
our model allows us to account for �ne-grained switching
activity and capacitive loads, while the black-box model in-
evitably masks some details and thus may be, in some cases,
less accurate.

A second set of experiments have been carried out to demon-
strate the validity of the separability assumption for the FUs
of the SV LIW processor. In this case:

As(wnjwn�1) = As(< o1; o2 > j < NOP ;NOP >) (15)

where o1; o2 2 fNOP; ADD;MULg ^ o1 6= o2.
From Table II, we can observe that the 39:0072 mW power

consumption of the EX separable stage in the case of <

Pipeline o1 = NOP o1 = ADD o1 = MUL

Stage [mW] [mW] [mW]

IF-cache 2.3818 3.3832 3.3832

IF-fetch 2.4725 2.4725 2.4725

ID 1.4967 2.4891 1.5853

RR 19.0749 22.2322 22.3636

EX 6.0191 11.6928 32.626

WB 2.9439 4.5638 4.5642
~P(wn) 34.3889 46.8336 66.9948

P (wn) 36.1777 41.584 64.9657

% Error 4.94% 12.62% 3.12%

Table 1: Power consumption results for the SV LIW processor exe-
cuting instructions of the same type

Pipeline o1 = ADD o1 = MUL o1 = ADD

Stage o2 = NOP o2 = NOP o2 = MUL

[mW] [mW] [mW]

EX 12.0712 33.0017 39.0072

Table 2: Power consumption results for the SV LIW processor to
prove the separability assumption

ADD;MUL > can be approximated (as stated by equation
(13)), with the sum of the power �gures associated with the
< ADD;NOP > and < MUL;NOP > with a percentage
error of 15:55% in excess.

7. CONCLUDING REMARKS
We have presented a new instruction-level power estima-
tion method which, for the �rst time, accounts for several
architectural parameters such as number and typology of
the pipeline stages as well as the stall probability and the
latency of operations. We applied it to a simple VLIW pro-

cessor to show its e�ectiveness and to demonstrate how to
reduce the spatial complexity associated with this type of
processor architectures. Our work is now oriented to vali-
date this methodology by measuring the accuracy (absolute
and relative) obtained on real processors while executing
real instruction traces.

8. REFERENCES
[1] A. Chandrakasan and R. Brodersen, \Minimizing Power Con-

sumption in Digital CMOS Circuits," Proc. of IEEE, 83(4), pp.
498-523, 1995.

[2] V. Tiwari, S. Malik and A. Wolfe, \Power Analisys of Embedded
Software: A First Step Towards Software Power Minimization,"
IEEE Trans. VLSI Systems, pp. 437-445, Dec. 1994.

[3] M. T.-C. Lee, V. Tiwari, S. Malik and M. Fujita, \Power Anal-
isys and Minimization Techinques for Embedded DSP Software,"
IEEE Trans. VLSI System, pp. 123-135, Mar. 1997.

[4] D. Sarta, D. Trifone and G. Ascia, \A Data Dependent Ap-
proach to Instruction Level Power Estimation," Proc. of Volta

'99, Como, Italy, pp. 182-190, Mar. 1999.

[5] J. T. Russel and M. F. Jacome, \Software Power Estimation for
High Performance 32-bit Embedded Processors," Proc. of ICCD
'98.

[6] J. Hennessy and D. A. Patterson, \Computer Architecture: A

Quantitative Approach," Morgan Kaufmann Publishers, San
Mateo, CA, Second Edition, 1996.

[7] C. Chakrabarti and D. Gaitonde, \Instruction Level Power
Model of Microcontrollers," Proc. of ISCAS '99.

[8] B. Klass, D. E. Thomas, H. Schmit and D. F. Nagle \Modeling
Inter-Instruction Energy E�ects in a Digital Signal Processor,"
Proc. of ISCAS '98.

[9] Trimaran Home Page, http://www.trimaran.org

[10] H. Corporaal, \Microprocessor Architectures from VLIW to

TTA," John Wiley and Sons, Chichester, England.

