Power Estimation of a C algorithm on a VLIW Processor
Nathalie Julien, Eric Senn, Johann Laurent, Eric Martin
LESTER, University of South Brittany, France
Nathalie.Julien@univ-ubs.fr

Abstract

A complete methodology to estimate power consumption
directly at the C-level for on-the-shelf processors is proposed.
It relies on a power model of the processor that describes the
consumption variations relatively to algorithmic and
configuration parameters. The algorithmic parameters
represent the power and quality metrics of the code and can
be predicted directly from the C-algorithm with simple
assumptions on the compilation. To check the algorithm
performances with the application constraints without
compiling, direct estimation results on the C code can be
summarized on a consumption map. This method strongly
reduces the design complexity in terms of number of lines to
be studied and allows to spot the 'hot parts of the code in
order to target the writing effort. Applied to a VLIW
processor, the TI TMSC6201, the estimation method provides
an accurate power consumption estimation together with the
maximum and minimum bounds; a maximum error of 8%
against measurements for only 1.3% of the code studied is
obtained for a MPEG decoder; other classical DSP
applications are also presented.

1. Introduction

Algorithm designers have mainly focused on improving
performances. But software can have a substantial impact on
the power dissipation of a system [1]. Moreover, two codes
can have the same performances but different energy
dissipation [2]. As power consumption is currently a decisive
design criteria, the programmer needs to easily characterize his
algorithm at the system level.

The power consumption estimation of a C algorithm has
several interests. As the feedback to the designer is very fast,
the programmer is efficiently guided in his choices. For a
given algorithm, power consumption can be estimated on
different processors without compiling. The best target can
then be selected, without specific development tools. For a
given processor, power consumption of different scripts of the
same agorithm can be easily checked with the application
constraints.

For on-the-shelf processors, details about the processor
micro-architecture are often unavailable. This assumption
prohibits methods based on cycle-level simulation like in
Wattch or SimplePower [3-4]. In this case, a classica
approach is to evaluate the power consumption of an algorithm
by the instruction-level power anaysis (ILPA) [5]. This

method relies on current measurements for each instruction
and instruction pair. Its main limitation is the unrealistic
number of measurements for complex architectures. Some
approaches have proposed to group the instructions [6] or to
work on a reduced instruction set [7]; but till, parallelism
possibilities are not taken into account. Finaly, recent studies
have added a functional approach [8, 9]. All these methods
perform power estimation only at the assembly-level with an
accuracy from 2-4% for simple models to 10% when
parallelism and pipeline stalls are effectively considered.

This paper demonstrates that, differing from the instruction
level approach, afunctional approach makes power estimation
at the C-level possible. A first power estimation method has
been initially developed and validated for the assembly-level
with a maximum error of 3.5% against measurements [10].
This method is composed of two steps: the model definition
and the estimation process. The model definition provides a
complete power model of the processor with algorithmic and
configuration parameters as inputs. The estimation process
analyzes a reduced part of the code and extracts the required
parameters. From the same power model of the processor, we
propose here to predict some agorithmic parameters directly
from the C-algorithm, assuming different ways of compiling
the code. The maximum and minimum bounds are obtained
along with an accurate estimate, with an average error of 4.4%
against physical measurements. A 'consumption map’ is also
provided to describe to the designer the power variations of
the algorithm.

The estimation methodology and the model definition are
presented in section 2. The Functional Level Power Analysisis
explained through a case study: the VLIW processor
TMS320C6201. Then, the C-level estimation process is
detailed in section 3 together with the different prediction
models, defined to evaluate algorithmic parameter values. In
section 4, estimation results for several DSP applications are
provided. First, the accuracy of the estimation method is
validated. Then, we exhibit how to use these estimates to guide
the designer. Finally, current and future works are presented in
conclusion.

2. Model Definition

2.1 Estimation Methodology
The two steps of the estimation methodology are
represented in Figure 1. The Model Definition is done once

and before any estimation to begin. It is based on a Functiona
Level Power Anaysis (FLPA) of the processor, that
determines the relevant parameters and provides the complete
power model of the processor. This model is a set of
consumption rules that describes how the average supply
current of the processor core evolves with some algorithmic
and configuration parameters. These rules were elaborated
from a reduced set of physical measurements for elementary
assembly programs.

[CAIgorithm J [Processor]

models v

FLPA

¥
i
Model ¢

Measurements

C-level Power
Estimation

Estimation Process Model Definition

Fig. 1. The estimation methodology

The Estimation Process is done every time the
consumption of an agorithm has to be evaluated. At the
assembly-level, agorithmic parameters are directly computed
from the compiled code through a simple profiling. These
parameters are the inputs of the power model of the processor
[10]. At the C-level, agorithmic parameters are not known
exactly; they must be predicted from simple assumptions about
the capability of the compiler to efficiently target the processor
architecture. These assumptions are defined in the prediction
models.

2.2. Case study of the TM S320C6201

The FLPA has been applied on the C6201 from Texas
Instruments for which a complete power model has been
developed. This processor has been chosen for its complex
architecture: a deep pipeline (up to 11 stages), VLIW
instructions set, and paralelism capabilities (up to 8
instructions in paralel). It aso contains an Externa Memory
Interface (EMIF), used to load data and program from the
external memory. Its clock frequency F can reach 200 MHz.
Its internal program memory can be used in four different
memory modes (MM). In the mapped mode (MMy,), al the
instructions are in internal memory. In the bypass mode
(MMp), al the instructions are in externa memory. In the
cache mode (MM¢), the internal program memory is used as a
direct mapped cache and the freeze mode (MMg) is similar to
the cache mode with no writing allowed [11].

From our experiments on the C6201, severa preliminary
remarks can be done on the power dissipation in this VLIW
processor. First, there is no significant power consumption
variations between different operations. an addition or a
multiplication nearly dissipates the same amount of power.
The same conclusion occurs for aread or awrite instruction in

the internal memory. Moreover, the effect of data correlation
on the global power consumption is less than 2%. It seems that
the architecture complexity hides many power variations,
relatively to consumption cost of cache misses or pipeline
stalls.

The FLPA actually consists in a functional analysis of the
architecture from the power point-of-view. The am is to
determine which parameters are significant for the global
power consumption. The FLPA results for this processor are
summarized in Figure 2. The architecture is divided into four
blocks: the Instructions Management Unit (IMU), the
Processing Unit (PU), the Memory Management Unit (MMU)
and the Control Unit (CU). The CU contains every
configuration device in the DSP (PLL, Direct Memory Access
- DMA control registers, EMIF control registers, etc). As its
power consumption is relatively negligible in signal processing
applications, it is not represented here athough both pipeline
control and sequencer are actually taken into account.

PU
REGISTERS
MULTIPLEXERS
DC/ALU/ MPY
CTRL
T
(1-1)
A 4
€ (T E) DATA
M
b
1
A A
[EMIF |
__ l O —
[EXTERNAL MEMORY |

Fig. 2. FLPA onthe C6201

Each link on this functional diagram is associated to an
algorithmic parameter, that represents its activity rate, directly
impacting on the global power consumption. The parallelism
rate a assesses the flow between the fetch stages and the
internal program memory controller inside the IMU. The
processing rate 3 between IMU and PU represents the average
utilization rate of the processing units (ALU, MPY). The
activity rate between IMU and MMU is expressed by the
program cache miss rate y. The parameter T corresponds to
the external data memory access rate. The parameter € stands
for the activity rate between the data memory controller and
the DMA. All these parameters also are representative metrics
of the code.

2.3. Power Modd of the processor

Once the functional analysis achieved, consumption rules
have to be precisely determined to get the complete power
model. These rules are mathematical functions of both
algorithmic and configuration parameters. To determine these
functions and their coefficients, the average supply current of

the processor core ltora. Was measured in relation with the
variations of each parameter. These variations were achieved
by the mean of small programs, called scenarios, which are
unbounded loops written in assembly language. The
consumption rules were finaly obtained by curvefitting the
measurements. Current measurements are done on the core
supply pad (with the supply voltage V, = 2.5 V) and do not
include external memory. Though the choice of the externa
memory fully relies on the designer, the addition of a generic
memory model based on works in [12, 13] will be an
important part of future developments.

Algorithmic parameters defined in Figure 2 area, 3, v, T
and €. Although the DMA is modeled, for the sake of
simplicity, the € parameter will be set here to 0. In fact, the
four other parameters are not fully independent. Indeed, y and
T directly impact on the number of pipeline stalls, and then on
the pipeline stall rate (PSR) modifying the average parallelism
rate and the average number of processing units. As a result,
only 4 algorithmic parameters a, 3, PSR and y are the inputs
of the final power model.

The consumption rules obtained for the TM S320C6201 are
given in Table 1. These rules express the average supply
current Itora. by linear functions of both algorithmic and
configuration parameters. The configuration parameters are
the clock frequency (F) and the memory mode (MM). Vaues
of the constant coefficients a;, bi, ¢, d;, g and f; with {i = 0 to
4} can be found in [10] together with details on their
determination. The dependence between parameters implies
that our expressions are more complex than those derived from
a linear regression analysis. The static contribution, actually
known as a non-negligible part in the power dissipation,
appears explicitly in the consumption rules.

Table 1. Consumption Rules for the C6201
CONSUMPTION RULES

MM

ltotaL =
MMy apB(1- PSRF + (a,a (1 - PSR) +by) (¢F +dy)
MMg (20B(1-PR) +b) F + ¢,

MMc | @B(1-PSR)F + (aza (1 - PSR) +bs)(cap# ds)(esF+13)
MMe | a0B(1- PSR)F + (aua (1 - PSR) +by)(Capt dg)(esF+14)

Finaly, the globa power consumption P for the
application is computed as follows:

P=Vopp * ltoraL (2)
This processor power model, first settled and validated for

the assembly level estimation, can aso be used for the C-level
power estimation, as presented now in the next section.

3. Estimation Process

The inputs of the power model of the processor are both
configuration and algorithmic parameters. The configuration
parameters are part of the application and therefore are known
a the C-level. Among the algorithmic parameters, the pipeline
stall rate PSR and the cache miss rate y are strongly depending
on the data mapping, the processor architecture and the writing
of the code. In several cases, they can be defined (in the
mapped memory mode, y = 0) or approximated; else, a
dynamic profiling of the code would be necessary to obtain
these parameters. The section 4 will present how a
consumption map of the algorithm is provided when y and the
PSR are ill undetermined at the early step of the design
process.

The two remaining algorithmic parameters are a and 3. In
the C6201, 8 instructions are fetched at the same time. They
form a fetch packet (FP). In this fetch packet, operations are
gathered in execution packets (EP) depending on the available
resources and the parallelism capabilities [11]. The parallelism
rate a and the processing rate 3 are computed as follows:

a = ﬂ <1 ,IB = ;@ <

NEP NPUwmax NEP

NFP and NEP stands for the average number of
respectively FP and EP. NPU is the average number of
processing units (every instruction except the NOP) and
NPUpax is the maximum number of processing units; here,
NPUax = 8.

Then, the determination of the a and 3 parametersrelies on
the knowledge of NFP, NEP and NPU that directly depend of
the compiled code. The prediction of these parameters must
anticipate the way the code is compiled. According to the
processor architecture, four prediction have been defined for
DSP applications, where loops are dominant:

- the sequential model (SEQ) is the simplest since it
assumes that al the operations are executed sequentially. This
model isonly realistic for non-parallel processors.

- the maximum model (MAX) corresponds to the case
where the compiler fully exploits al the architecture
possibilities. In the C6201, 8 operations (with 2 load
instructions maximum) can be done in paralel. This model
gives a maximum bound of the application power
consumption.

- the minimum model (MIN) assumes that load and store
instructions are never executed at the same time - indeed, it
was noticed on the compiled code that al parallelism
capabilities were not aways fully exploited for these
instructions. That will give a lower bound for the algorithm’s
power consumption.

- at last, the data model (DATA) expresses more acutely the
parallelism of load and store instructions. It supposes that one
load and one store can be executed in the same cycle only if
they involve two different data.

(©)

By our experience on the Tl compiler, the performance
compiler optimization is a more efficient way to optimize the
power consumption of the application than optimizing the code
size. Considering that the user will always try to compile with
the best results, we consider the highest level for the
performance. Of course, in another case, as example a specific
low power compiler, it could be possible, if necessary, to
develop a more appropriate prediction model. But the
prediction only relies on the quality of the results of the
compilation in terms of using properly the architecture.

Asillustration, a simple example is presented here.
For (i=0;i<512; i++)
Y= X[i] * (H[i] + H[i+1] + H[i-1]) + Y;

In the loop nest are needed 4 loads (LD), and 4 other
operations (OP): 1 multiplication, and 3 additions. Operations
at the beginning or at the end of the loop body are neglected.
As example, the final store for Y, only done once at the end of
the loop, is not considered. Here, our 8 operations will always
be gathered in one single FP so NFP = 1. Because no NOP

operation is involved, NPU = 8 and o and [3 parameters have
the same value.

In the SEQ model, al instructions are assumed to be
executed sequentially. Then NEP = 8, and a = 3 = 0.125.
Results for the other models are summarized in Table 2.

Table 2. Prediction models for the example

MODEL EP1 EP2 EP3 EP4 a,B
MAX 2LD | 2LD, 40P - - 0.5
MIN 1LD 1LD 1LD 1LD,40P| 0.25
DATA 2LD 1LD 1LD, 40P - 0.33
Of course, redistic cases are more elaborated: the

prediction has to be done for each part of the program (loop,
subroutine...) for which local values are obtained. The global

parameter values, for the complete C source, are computed b1¥1e
averaging all the local values. Such an approach permits to

easily spot 'hot points' in the program.

4. Applications
First, the estimation method at the C-level is validated by a

direct comparison with measurements. Next, an application of

this estimation method to explore the power consumption of
an algorithm is proposed.

4.1 Estimation validation

Our prediction models are applied on classical digital
signal processing algorithms: a FIR filter, a FFT, a LMS filter,
a Discrete Wavelet Transform (DWT) with two different
image sizes (64*64 and 512*512), an Enhanced Full Rate
(EFR) vocoder for GSM and a MPEG1 decoder. In Table 3

are reported the size of the different C and assembly codes.
Obviously, studying directly the C code instead of the
assembly code strongly reduces the complexity of the
estimation and then improves its rapidity. Moreover, for the
most complex application (MPEG with 11 different functions),
only 1.3% of the C code has to be studied.

Table 3: Reduction of the complexity in code line number

o Linecodenumber | C Linesstudied

Application
C ASM Number %C

FFT 77 408 10 13
LMS 30 408 4 13.3
DWT 64*64 | 46 714 17 37
EFR 118 1323 37 31.2
MPEG 2267 | 8488 30 13

The purpose here is to validate the C-level estimation
method by evaluating its accuracy. Theand 3 algorithmic
parameters are predicted as presented above. The pargmeter
is set to 0 because the power model of the processor has
already been validated at the assembly level for a variable
cache miss rate [10]. The global power consumption is
computed with the PSR obtained after compilation. Indeed,
our aim is to provide the designer with estimates about all the
possible consumption variations, including the real case.
Results are presented in Table 4, for a nominal clock
frequency F = 200MHz, different memory modes (MM) and
data placement (INT/EXT). The relative error between power
estimation and measurement is given for the DATA model.

The SEQ model provides unsatisfying results since it does
not take account of the architecture possibilities. In fact, this
model has been developed to explore the estimation
possibilities without any knowledge about the architecture of
the targeted processor.

It could be noticed that, for the LMS in bypass mode, all
prediction models overestimate the power consumption
with close results. In fact, in this marginal memory mode,
every instruction is loaded from the external memory and thus
pipeline stalls are dominant. As the SEQ model assumes
sequential operations, it is the most accurate prediction model
in this mode.

Eventually, the estimation possibilities at the C-level are
summarized:

- to determine precisely the power consumption without
any knowledge about the targeted processor is not possible
(SEQ model).

Table 4. Comparison between measurements and power estimation

* INT/EXT: datain internal/external memory

- a coarse grain prediction model, including only
the architecture possibilities in terms of parallelism,
number of processing units,... provides the maximum
and minimum bounds of the agorithm power
consumption with an average error of 7.3% and
15.2% respectively.

- the fine grain prediction model, with both
elementary information on the architecture and data
placement, offers a very accurate estimation with a
maximum error of 8% against measurements.

4.2 Algorithm Power Consumption Exploration

If the cache miss rate (y) and/or the pipeline stall rate
(PSR) are unknown at the C-level, a’consumption map’ is
provided to the programmer. This map represents the
power consumption variations of the algorithm according
to these parameters. Thus, by evaluating sensible
variations for these two parameters, it is possible to
locate, on the consumption map, the probable power
consumption limits. Furthermore, the maor part of
current embedded applications have a program size (after
compilation) easily contained in the internal memory of
the C6201 (64 Kbytes) which also givesy =0.

Let us reconsider the application of the EFR vocoder.
The Figure 3 represents the power consumption
exploration through all the prediction models for the
mapped memory mode (y = 0%). Of course, the PSR
cannot be equal to 100% since no operation would be
executed. Obvioudly, the average power consumption

Algorithm Measurements Power estimation (W)
Application MM | INT/EXT Texe P(W) Energy SEQ | MAX | MIN DATA
FIR MMy INT 6.885us 4.5 30.98uJ 2.745 4725 3.015 4.725 +5%
FFT MMy INT 1.389ms 2.65 3.68mJ 2.36 2.97 2.57 258 -2.6%
LMS MM g INT 1.847s 4.97 9.18J 5.02 5.12 5.07 5.1p +3%
LMS MM ¢ INT 165.75ms 5.665 939mJ 2.55 6 4.76 6 +5.9%
DWT 64*64 MMy, INT 2.32ms 3.755 8.71mJ 2.82 4.24 3.2 3.53 -6%
DWT 64*64 MMy EXT 9.19ms 2.55 23.46mJ| 2.295 2.68 24 246 -3.5%
DWT 512*512 MMy EXT 577.77ms 2.55 1.473J 2.27 2.61 2.37 2.45 -3.9%
EFR vocoder MM, INT 39us 5.0775 198uJ 2.54 5.636 3.86 5.13 +1%
MPEG decoder| MM INT 40.37us 5.823 235.08uJ 2.665 6.380 3.927 5.3538%
average error 28.2% 7.3% 15.2% 4.4%

decreases when the PSR gets higher. In the same time, the
minimum and maximum bounds of the estimation become
closer because the PSR dominates the global power
consumption by lowering the paralelism rate. The
measurement value, very close of the DATA model, is
also represented.

POWER (W)
7 <
6 A
5 ——MAX
P S ;E | —=DATA
3 —&—MIN
5 === = » g 4§~ -== SEQ
1

0

0O 10 20 30 40 50 60 70 80 90
PSR (%)

Fig. 3. Power Consumption Exploration for the EFR
vocoder in mapped mode.

For the cache mode and the DATA prediction model,
results are presented in Figure 4. Here, the cache miss
rate y aso varies. The minimum power consumption
value is obtained for y = 0% and the maximum PSR.
Indeed for these values, a and 3 are minimum. The
maximum power consumption is obtained when y =
100% and PSR = 0%; actually, this case is unrealistic
since each cache miss provokes pipeline stalls through
external memory access.

—¥—Measurement

POWER (W)

N A O ©

PSR (%)

Fig. 4. Power consumption Exploration for the EFR
vocoder in cache mode

The power consumption exploration points out if the
algorithm does not respect the application consumption
congtraints (in terms of energy and/or power). Since, at
the C-level, the execution time is unknown, the energy
could be evaluated from the execution time constraint
(given by the programmer). If the algorithm consumption
estimation is aways under the constraint, then the C code
is suitable. Else, the programmer can focus on the more
dissipating parts of the algorithm, spotted through the
local a and B parameters; the program can be modified
being aware on the data mapping that strongly affects
pipeline stalls and cache misses. The comparison of
several codes or parts of codes can be conducted with the
algorithmic parameters as code quality metrics; actualy,
the higher a and 3 are and the lower PSR and y are, the
more the code is efficient, both for the performance and
the energy consumption.

5. Conclusion

This paper has demonstrated the possibility of
performing an accurate power estimation of a C-
algorithm, reducing the complexity by focusing only on
the loops in the code. A complete power model of the
VLIW processor has been elaborated, taken account of
important phenomena like pipeline stalls and cache
misses. The conditions for this estimation have also been
settled. For DSP applications, and with elementary
information on both architecture and data placement, our
C-level power estimation method provides accurate
results together with the maximum and minimum bounds
of the algorithm power consumption. . For a MPEG
decoder where only 1.3% lines of the C-code have been
studied, a maximum error of 8% is reported; such an
accuracy is similar to the estimation methods at the
assembly-level. When cache miss rate and/or pipeline
stall rate are undefined at the C-level, a consumption map
alows to verify if the application constraints are
respected.

Current works are the development of an automatic
tool, and the implementation of the FLPA method on
other processors. Future works will concern the addition
of a generic memory model to include the external
memory in our power estimation.

References

1.

10.

11.
12.

13.

K. Roy, M. C. Johnson " Software Design for Low Power,"

in NATO Advanced Study Institute on Low Power Design

in Deep Submicron Electronics, Aug. 1996, NATO AS
Series, chap. 6.3.

M. Valuri, L. John "Is Compiling for Performance ==
Compiling for Power?" presented at the 5" Annud
Workshop on Interaction between Compilers and
Computer Architectures INTERACT-5, Monterey,
Mexico, Jan. 2001.

W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin “The
Design and Use of SimplePower: A Cycle Accurate
Energy Estimation Tool,” inProc. Design Automation
Conf., June 2000, pp. 340-345.

D. Brooks, V. Tiwari, M. Martonosi "Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations," in Proc. Int. Symp. on Computer
Architecture, June 2000, pp. 83-94.

V. Tiwari, S. Malik, A. Wolfe "Power analysis of
embedded software: a first step towards software power
minimization,"|EEE Trans. VLS Systems, vol.2, n°4, Dec.
1994, pp. 437-445.

M. T.-C. Lee, V. Tiwari, S. Malik, M. Fujita "Power
Analysis and Minimization Techniques for Embedded DSP
Software,"|IEEE Trans. VLS Systems, vol. 5, n°1, March
1997, pp. 123-135.

C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto “An
Instruction-Level Functionality-Based Energy Estimation
Model for 32-bits Microprocessors,” ifProc. Design
Automation Conf., June 2000, pp. 346-351

L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria,
R. Zafalon "A Power Modeling and Estimation Framework
for VLIW-based Embedded Systems," iRroc. Int.
Workshop on Power And Timing Modeling, Optimization
and Smulation PATMOS Sept.2001, pp. 2.3.1-2.3.10.

G. Qu, N. Kawabe, K. Usami, M. Potkonjak "Function-
Level Power Estimation Methodology for
Microprocessors," ifProc. Design Automation Conf, June
2000, pp. 810-813.

J. Laurent, E. Senn, N. Julien, E. Martin "High Level
Energy Estimation for DSP Systems,” #roc. Int.
Workshop on Power And Timing Modeling, Optimization
and Smulation PATMOS Sept 2001, pp. 311-316.
TMS320C6x User's Guide, Texas Instruments Inc., 1999
S. Steinke, M. Knauer, L. Wehmeyer, P. Marwedel "An
accurate and Fine Grain Instruction-Level Energy Model
Supporting Software Optimizations," irProc. Int.
Workshop on Power And Timing Modeling, Optimization
and Smulation PATMOS Sept.2001, pp. 3.2.1-3.2.10.

S. L. Coumeri, D. E. Thomas "Memory Modeling for
System Synthesis,IEEE Trans. VLS Systems, vol. 8,
n°3, June 2000, pp. 327-334.

