
Power Consumption Estimation of a C Program
for Data-Intensive Applications

Eric Senn, Nathalie Julien, Johann Laurent, and Eric Martin

L.E.S.T.E.R., University of South-Brittany, BP92116
56321 Lorient cedex, France

{eric.senn, nathalie.julien, johann.laurent, eric.martin}@univ-ubs.fr
http://lester.univ-ubs.fr:8080/

Abstract. A method for estimating the power consumption of an al-
gorithm is presented. The estimation can be performed both from the
C program and from the assembly code. It relies on a power model
for the targeted processor. Without compilation, several targets can be
compared at the C-level in order to rapidly explore the design space.
The estimation can be refined afterwards at the assembly level to allow
further code optimizations. The power model of the Texas Instrument
TMS320C6201 is presented as a case study. Estimations are performed
on real-life digital signal processing applications with average errors of
4.2 % at the C-level, and 1.8 % at the assembly level.

1 Introduction

Power consumption is currently a critical parameter in system design. The fact
is that the co-design step can lead to many solutions: there are many ways of
partitioning a system, and many ways of writing the software even once the
hardware is chosen. It is now well-known that the software has a very strong
impact on the final power consumption [1]. To find the best solution is not
obvious. Indeed, it is not enough to know whether the application’s constraints
are met or not; it is also necessary to be able to compare several solutions to
seek the best one. So, the designer needs fast and accurate tools to evaluate a
design, and to guide him through the design space. Without such a tool, the
application power consumption would only be known by physical measurement
at the very last stage of the design process. That involves to buy the targeted
processor, the associated development tools and evaluation board, together with
expansive devices to measure the supply current consumption, and that finally
expands the time-to-market.

This work demonstrates that an accurate power consumption estimation can
be conducted very early in the design process. We show how to estimate the
power consumption of an algorithm directly from the C program without ex-
ecution. Provided that the power model of the processor is available, there is
no need for owning the processor itself, nor for any specific development tool,
since it is not even necessary to have the code compiled. Thus, a fast and cheap
comparison of different processors, or of different versions of an algorithm, is



possible [2]. In the following step of the design flow, a method for refining the
estimation at the assembly level is also provided. This way, hot points can be
definitely located in the code, and further optimizations can be focused on these
critical parts.

Some power estimation methods are based on cycle-level simulations like in
Wattch or SimplePower [3, 4]. However, such methods rely on a low-level descrip-
tion of the processor architecture, which is often unavailable for off-the-shelf pro-
cessors. Another classical approach is to evaluate the power consumption with an
instruction-level power analysis [5]. This method relies on current measurements
for each instruction and couple of successive instructions . Its main limitation is
the unrealistic number of measurements for complex architectures [6]. Finally,
recent studies have introduced a functional approach [7, 9], but few works are
considering VLIW processors [8]. All these methods perform power estimation
only at the assembly-level with an accuracy from 4% for simple cases to 10%
when both parallelism and pipeline stalls are effectively considered. As far as we
know, only one unsuccessful attempt of algorithmic estimation has already been
made [10].

Our estimation method relies on a power model of the targeted processor,
elaborated during the model definition step. This model definition is based on
the Functional Level Power Analysis of the processor architecture [12]. During
this analysis, functional blocks are identified, and the consumption of each block
is characterized by physical measurements. Once the power model is elaborated,
the estimation process consists in extracting the values of a few parameters
from the code; these values are injected in the power model to compute the
power consumption. The estimation process is very fast since it relies on a static
profiling of the code. Several targets can be evaluated as long as several power
models are available in the library.

As a case study, a complete power model for the Texas Instruments TMSC6201
has been developed. It is presented in section 2 with details on the model defini-
tion. The estimation process, and the method to extract parameters from both
the C and the assembly codes is exhibited in section 3. Estimations for several
digital signal processing algorithms are presented in section 4. Estimations are
performed both at the assembly and C-level, and compared with physical mea-
surements. The gap between estimation and measure is always lower than 3.5%
at the assembly-level, and than 8% at the C-level.

2 Model Definition

The model definition is done once and before any estimation to begin. It is based
on a Functional Level Power Analysis (FLPA) of the processor, and provides
the power model. This model is a set of consumption rules that describes how
the average supply current of the processor core evolves with some algorithmic
and configuration parameters. Algorithmic parameters indicate the activity level
between every functional block in the processor (parallelism rate, cache miss rate



. . . ). Configuration parameters are explicitly defined by the programmer (clock
frequency, data mapping . . . ).

The model definition is illustrated here on the TI C6x. This processor was ini-
tially chosen to demonstrate the methodology on a complex architecture. Indeed,
it has a VLIW instructions set, a deep pipeline (up to 11 stages), and parallelism
capabilities (up to 8 operations in parallel). Its internal program memory can be
used like a cache in several modes, and an External Memory Interface (EMIF) is
used to load and store data and program from the external memory [11]. The use
of an instruction level method for such a complex architecture would conduct to
a prohibitive number of measurements.

The FLPA results for the TI C6x are summarized on the Figure 1. Three
blocks and five parameters are identified. These parameters are called algorith-
mic parameters for their value actually depends on the algorithm. The paral-
lelism rate α assesses the flow between the FETCH stages and the internal pro-
gram memory controller inside the IMU (Instruction Management Unit). The
processing rate β between the IMU and the PU (Processing Unit) represents
the utilization rate of the processing units (ALU, MPY). The activity rate be-
tween the IMU and the MMU (Memory Management Unit) is expressed by the
program cache miss rate γ. The parameter τ corresponds to the external data
memory access rate. The parameter ε stands for the activity rate between the
data memory controller and the Direct Memory Access (DMA). The DMA may
be used for fast transfer of bulky data blocks from external to internal memory
(ε = 0 if the DMA is not used).

FETCH/DP

CTRL

REGISTERS

MULTIPLEXERS

DC/ALU/MPY

CTRL

DATA MEM.PRG. MEM.

DMA

IMU PU

MMU

EMIF

EXTERNAL MEMORY

α

γ1−γ τ

τ−εε

1

1

1−τ

β

Fig. 1. FLPA for the C6x

To the former algorithmic parameters are added three configuration param-
eters, that also strongly impact on the processor’s consumption: the clock fre-
quency F, the memory mode MM, and the data mapping DM.

The influence of F is obvious. The C6x maximum frequency is 200 MHz, but
the designer can tweak this parameter to adjust consumption and performances.



The memory mode MM illustrates the way the internal program memory is
used. Four modes are available. All the instructions are in the internal memory
in the mapped mode (MMM ). They are in the external memory in the bypass
mode (MMB). In the cache mode, the internal memory is used like a direct
mapped cache (MMC), as well as in the freeze mode where no writing in the
cache is allowed (MMF ). Internal logic components used to fetch instructions
(for instance tag comparison in cache mode) actually depends on the memory
mode, and so the consumption.

The data mapping impacts on the processor’s consumption for two reasons.
First, the logic involved to access a data in internal or in external memory is
different. Secondly, whenever a data has to be loaded or stored in the external
memory, or whenever two data in the same internal memory bank are accessed
at the same time, the pipeline is stalled and that really changes the consumption.

Hence the final power model for the TI C6x, presented in the Figure 2.

α

γ
τ

ε
β

POWER
MODEL

Algorithmic
Parameters

Configuration
Parameters MM

DM

F

POWER
CONSUMPTION

P=Vdd * Icore

Fig. 2. Power Model

This model comes with a set of consumption rules that gives the power con-
sumption of the processor, given the former parameters’ values. To determine
these rules, the parameters were made to vary, with the help of small assembly
programs. Variations of the processor’s core supply current were measured, and
mathematical functions were obtained by curve fitting. For this processor, no
significant difference in power consumption was observed between an addition
and a multiplication, or a read and a write in the internal memory. Moreover,
the effect of data correlation on the global power consumption appeared lower
than 2%. More details on the consumption rules and their determination can be
found in [12].

3 Estimation Process

To estimate the power consumption of a program with our power model, we
must determine the value of all its input parameters. We will first explain how
to precisely compute these parameter values from the assembly code, and then
how to predict them directly from the C code without compilation.



3.1 Parameters Extraction from the Assembly Code

In the C6x, eight instructions are fetched at the same time. They form a fetch
packet. In this fetch packet, operations are gathered in execution packets depend-
ing on the available resources and the parallelism capabilities. The parallelism
rate α can be computed by dividing the number of fetch packet (NFP ) with the
number of execution packet (NEP ) counted in the code. However, the effective
parallelism rate is drastically reduced whenever the pipeline stalls. Therefore,
the final value for α must take the number of pipeline stalls into account. Hence,
a pipeline stall rate (PSR) is defined, and α is computed as follows:

α =
NFP

NEP
× (1− PSR) (1)

Identically, the PSR is considered to compute the processing rate β, with
NPU the average number of processing unit used per cycle (counted in the code),
and NPUMAX the maximum number of processing units that can be used at
the same time in the processor (NPUMAX = 8 for the C6x):

β =
1

NPUMAX

NPU

NEP
× (1− PSR) (2)

To determine the PSR, we must evaluate the number of cycles where the
pipeline is stalled (NPS), and divide it by the total number of cycles for the
program to be executed (NTC):

PSR =
NPS

NTC
(3)

Pipeline stalls have several causes:

– a delayed data memory access: if the data is fetched in external memory
(related to ε) or if two data are accessed in the same internal memory bank
(related to the data mapping DM)

– a delayed program memory access: in case of a cache miss for instance (re-
lated to the cache miss rate γ), or if the cache is bypassed or freezed (related
to the memory mode MM)

– a control hazard, due to branches in the code: we choose to neglect this
contribution because only data intensive applications are considered.

As a result, NPS is expressed as the sum of the number of cycles for stalls
due to an external data access NPSτ , for stalls due to an internal data bank
conflict NPSBC , and for stalls due to cache misses NPSγ .

NPS = NPSγ + NPSτ + NPSBC (4)

Whenever a cache miss occurs, the cache controller, via the EMIF, fetch a
full instruction frame (containing 8 instructions) from the external memory. The
number of cycles needed depends on the memory access time Taccess. As a result,
with NFRAME the number of frames causing a cache miss:



NPSγ = NFRAME × Taccess (5)

Similarly, the pipeline is stalled during Taccess for each data access in the
external memory. That gives, with NEXT the number of data accesses in external
memory:

NPSτ = NEXT × Taccess (6)

A conflict in an internal data bank is resolved in only one clock cycle. So,
NPSBC is merely the number of bank conflicts NCONFLICT.

NPSBC = NCONFLICT (7)

The three numbers NEXT, NCONFLICT and NFRAME can be computed
from the assembly code. In fact, NFRAME is also needed to compute the cache
miss rate γ, with the total number of instruction frames in the code, and the
cache size. However, since the assembly code for digital signal processing appli-
cations generally fits in the program memory of the C6x, γ is often equal to zero
(as well as NFRAME).

The numbers NEXT and NCONFLICT are directly related to the data map-
ping. This mapping is expressed in the power model through the configuration
parameter DM.

The number of DMA accesses can be counted in the assembly code. The
DMA access rate ε is computed by dividing the number of DMA accesses by the
total number of data accesses in the program.

At last, external data accesses are fully taken into account through NEXT
which includes the parameter τ ; indeed, τ does not appear explicitly in our set
of consumption rules.

3.2 Parameters Prediction from the C code

In the previous section, the parameters needed to actually estimate the power
consumption of an application were extracted from the assembly code. In this
section, we show how to determine these parameters directly from the C code,
without compilation.

As stated before, the pipeline stall rate PSR is needed to compute the val-
ues of the parameters α and β. To calculate the PSR, we need the number
of external data accesses NEXT, the number of internal data bank conflicts
NCONFLICT, and the number of instruction frames that involve cache misses
NFRAME (Equations 3-7).

It is remarkable that the two numbers NEXT and NCONFLICT can be de-
termined directly from the C program. Indeed, they are related to the data
mapping which is actually fixed by the programmer (by the mean of explicit
compilation directives associated to the C sources) and only taken into account
by the compiler during the linkage. Accesses to the DMA are explicitly pro-
grammed as well. Because the programmer knows exactly the number of DMA
accesses, he can easily calculate the DMA access rate ε without compilation.



Nevertheless, it is not possible to predict NFRAME at the C-level. Indeed, the
assembly code size is needed to be compared with the cache size; a compilation is
necessary. As explained before, the C6x cache is however large enough for most
of the digital signal processing applications, and in these cases NFRAME and γ
equal zero. Whenever NFRAME and γ are not known in the early step of the
design process, it is still possible to provide the designer with consumption maps
to guide him in the code writing [2].

To determine α and β at the C-level, the three parameters NFP , NEP
and NPU must be predicted from the algorithm (instead of being counted in
the assembly code). It is clear that this prediction must rely on a model that
anticipates the way the code is executed on the target. According to the processor
architecture and with a little knowledge on the compiler, four prediction models
were defined:

The sequential model (SEQ) is the simplest one since it assumes that all the
operations are executed sequentially. This model is only realistic for non-parallel
processor.

The maximum model (MAX) corresponds to the case where the compiler
fully exploits all the architecture possibilities. In the C6x, 8 operations can be
done in parallel; for example 2 loads, 4 additions and 2 multiplications in one
clock cycle. This model gives a maximum bound of the application consumption.

The minimum model (MIN) is more restrictive than the previous model since
it assumes that load and store instructions are never executed at the same time -
indeed, it was noticed on the compiled code that all parallelism capabilities were
not always fully exploited for these instructions. That will give a reasonable
lower bound for the algorithm’s power consumption.

At last, the data model (DATA) refines the prediction for load and store
instructions. The only difference with the MAX model is to allow parallel loads
and stores only if they involve data from different memory banks. Indeed, there
are two banks in the C6x internal data memory, which can be accessed in one
clock cycle.

Assuming data-intensive applications, the prediction is performed by apply-
ing those models for each significant loop of the algorithm. Operations at the
beginning or at the end of the loop body are neglected. As illustration, we present
below a simple code example:

For (i=0; i<512; i++) {Y=X[i]*(H[i]+H[i+1]+H[i-1])+Y;}

In this loop nest, there are 4 loads (LD), and 4 other operations (OP): 1
multiplication, and 3 additions. In our example, the final store for Y, only done
once at the end of the loop, is not considered. Here, our 8 operations will always
be gathered in one single fetch packet so NFP = 1. Because no NOP operation
is involved, NPU = 8 and α and β parameters have the same value. In the SEQ
model, instructions are assumed to be executed sequentially. Then NEP = 8,
and α = β = 0.125. Results for the other models are summarized in Table 1.

Of course, realistic cases are more elaborated: the parameter prediction is
done for each part of the program (loops, subroutines . . . ) for which local values



Table 1. Prediction models for the example

model EP1 EP2 EP3 EP4 α = β

MAX 2LD 2LD,4OP - - 0.5

MIN 1LD 1LD 1LD 1LD,4OP 0.25

DATA 2LD 1LD 1LD,4OP - 0.33

are obtained. The global parameters values, for the complete C source, are com-
puted by a weighted averaging of all the local values. Such an approach permits
to spot ”hot points” in the program. In the case of data-dependent algorithms,
a statistic analysis should be performed to get those values.

4 Application

The estimation at the assembly level was already validated by direct comparison
with measurements in [12]. In this section, the same process is applied at the
C-level, and the two approaches are finally compared.

The estimation is performed for several digital signal processing algorithms:
a FIR filter, a FFT, a LMS filter, a Discrete Wavelet Transform (DWT) with
two different image sizes, an Enhanced Full Rate (EFR) Vocoder for GSM, and
a MPEG1 Decoder (1600 lines in the C program; 4000 lines in the assembly
code). The results are presented for different memory modes (mapped, cache
and bypass) and data mappings (EXTernal or INTernal memory).

In Table 2, the value of the power model parameters extracted from the
assembly code, and from the C code assuming the DATA prediction model, are
presented. For these applications, γ = 0 since all the code is contained in the
internal program memory, and ε = 0 since the DMA is not used. The PSR
measured value (PSRm), obtained with the help of the TI development tool,
is used for estimation at the assembly level (but the calculated value could be
used as well). The average error between the estimated (PSR) and the measured
(PSRm) pipeline stall rates is 3.2%. It never exceeds 5.5% which indicates the
PSR estimation accuracy.

The power consumption of the algorithm is computed from those parameters’
values. The relative error between estimation and measurements is given in Table
3. Results are given for the assembly level and for the four prediction models at
the C-level.

Of course, the SEQ model gives the worst results since it does not take into
account the architecture possibilities (parallelism, several memory banks etc.).
In fact, this model has been developed to explore the estimation possibilities
without any knowledge about the architecture of the targeted processor. It seems
that such an approach cannot provide enough accuracy to be satisfying.

It is remarkable that, for the LMS in bypass mode, every model overestimates
the power consumption with close results. This exception can be explained by
the fact that, in this marginal memory mode, every instruction is loaded from



Table 2. Parameters estimations (F = 200MHz)

Configuration Assembly level C-level

Application MM DM α β PSRm α β PSR

FIR MMM INT 0.492 0.454 0 0.5 0.5 0

FFT MMM INT 0.099 0.08 0.64 0.119 0.113 0.604

LMS-1 MMB INT - 0.029 0.93 - 0.0312 0.95

LMS-2 MMC INT 0.625 0.483 0.25 0.76 0.475 0.24

DWT-1 (64*64) MMM INT 0.362 0.287 0.0027 0.365 0.324 0.0269

DWT-2 (64*64) MMM EXT 0.0915 0.0723 0.755 0.105 0.0932 0.713

DWT-3 (512*512) MMM EXT 0.088 0.0695 0.765 0.1 0.089 0.726

EFR MMM INT 0.594 0.472 0.225 0.669 0.479 0.219

MPEG MMM INT 0.706 0.715 0.108 0.682 0.568 0.09

the external memory and thus pipeline stalls are dominant. As the SEQ model
assumes sequential operations, it is the most accurate in this mode.

For all the other algorithms, the MAX and the MIN models always respec-
tively overestimates and underestimates the application power consumption.
Hence, the proposed models need a restricted knowledge on the processor ar-
chitecture; but they guaranty to bound the power consumption of a C algorithm
with reasonable errors.

Table 3. Power estimation vs measurements

Measurements Estimation vs Measure (%)

Application P (W ) Asm SEQ MAX MIN DATA

FIR 4.5 2.3 -38 5.5 -24.3 5.5

FFT 2.65 2.5 -10 28.5 -1 2.87

LMS-1 4.97 3.5 1.4 2.8 2 2.8

LMS-2 5.66 -1.8 -50 6.4 -15.2 6.4

DWT-1 3.75 1.9 -27 4.7 -13.2 4.7

DWT-2 2.55 -0.2 -10 3.4 -4.2 3.4

DWT-3 2.55 -1 -10.4 2.4 -4.7 2.4

EFR 5.07 -2.8 -50 11.1 -24 1.5

MPEG 5.83 0.7 -54 10 -33 -8

Average errors: 1.8 27.8 8.3 -13.5 4.2

The DATA model is the more accurate since it provides a maximum error of
8 % against measurements. After compilation, the estimation can be performed
at the assembly level where the maximum error is decreased to 3.5%.



5 Conclusion

The main interest in this work is to propose an accurate and fast estimation of a C
program without compilation. This estimation relies on a prediction that includes
parallelism capabilities and pipeline stalls, which strongly impact on the power
consumption. The method is therefore suitable to complex processors. Whenever
the compiled code is too large for the target’s internal program memory, the
cache miss rate γ is hardly predictable. In this case, consumption maps are
proposed, to summarize the variations of the power consumption [2].

Current works include the development of an on-line tool and the exten-
sion of the power models library to other processors. Future works will address
the prediction of the execution time from the algorithm, to also achieve energy
estimation at the C-level.

References

1. M. Valluri, L. John ”Is Compiling for Performance == Compiling for Power?,” pre-
sented at the 5th Annual Workshop on Interaction between Compilers and Com-
puter Architectures INTERACT-5, Monterey, Mexico (2001)

2. N. Julien, E. Senn, J. Laurent, E. Martin ”Power Consumption Estimation of a C
Algorithm: A New Perspective for Software Design”, in Proc. of the Sixth Workshop
on Languages, Compilers, and Run-Time Systems for Scalable Computers, ACM
LCR’02 (2002)

3. D. Brooks, V. Tiwari, M. Martonosi ”Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations” in Proc ISCA (2000)

4. W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin ”The Design and Use of Sim-
plePower: A Cycle Accurate Energy Estimation Tool” in Proc. Design Automation
Conf. (2000)

5. V. Tiwari, S. Malik, A. Wolfe ”Power analysis of embedded software: a first step
towards software power minimization” IEEE Trans. VLSI Systems, vol.2 (1994)

6. B. Klass, D.E. Thomas, H. Schmit, D.F. Nagle ”Modeling Inter-Instruction Energy
Effects in a Digital Signal Processor,” presented at the Power Driven Microarchi-
tecture Workshop in ISCA (1998)

7. S. Steinke, M. Knauer, L. Wehmeyer, P. Marwedel ”An accurate and Fine Grain
Instruction-Level Energy Model Supporting Software Optimizations,” in Proc. PAT-
MOS (2001)

8. L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, R. Zafalon ”A Power
Modeling and Estimation Framework for VLIW-based Embedded Systems,” in Proc.
PATMOS (2001)

9. G. Qu, N. Kawabe, K. Usami, M. Potkonjak ”Function-Level Power Estimation
Methodology for Microprocessors,” in Proc. Design Automation Conf. (2000)

10. C. H. Gebotys, R. J. Gebotys ”An Empirical Comparison of Algorithmic, Instruc-
tion, and Architectural Power Prediction Models for High Performance Embedded
DSP Processors,” in Proc. ACM Int. Symp. on Low Power Electronics Design (1998)

11. TMS320C6x User’s Guide, Texas Instruments Inc. (1999)
12. J. Laurent, E. Senn, N. Julien, E. Martin ”High Level Energy Estimation for DSP

Systems,” in Proc. Int. Workshop on Power And Timing Modeling, Optimization
and Simulation PATMOS (2001)


