
Timing and Energy Estimation of C Programs
[SPECIAL ISSUE ON POWER AWARE EMBEDDED COMPUTING]

CARLO BRANDOLESE

WILLIAM FORNACIARI

FABIO SALICE

DONATELLA SCIUTO

Politecnico di Milano

This paper affords the problem of analyzing the timing and energetic aspects of software for

embedded applications. The main goal of the approach is to enable design space exploration

over different microprocessors, development environments and coding alternatives. The approach

embodies the benefits of static and dynamic analysis within a formal mathematical framework

and takes full advantage of the accuracy of low–level methodologies while operating at source

code level. The experimental assessment of the methodology considered C programs derived from

real–world applications and confirmed its accuracy and effectiveness.

Categories and Subject Descriptors: X.Y.Z [TBD]: TBD—TBD

General Terms: Power estimation, Embedded systems, Timing analysis

1. INTRODUCTION

Nowadays, the market trend is moving quickly toward a massive use of embedded
systems in all sorts of application fields (automotive, domotics, mobile phones, de-
vices for multimedia and Internet-browsing, etc.). Within such a wide range of
environments, portable and/or real–time systems represent a significant segment
of the associated market. As far as portable applications are concerned, battery
life is a key factor and therefore energy consumption control is one of the goals
the embedded systems’ designer must pursuit. On the other hand, embedded sys-
tems for real-time, possibly mission–critical applications, poses severe constraints
on the timing requirements whose violation, in many cases, could lead to catas-
trophic effects. The intrinsic conflict related to energy and time, along with the
implementation costs, imposes an accurate design space exploration since the trend
to use oversized components, to easily comply with fast response, is hard to fit with
the need of squeezing the systems to cope with low energy requirements.
In this scenario, the fast growth of the complexity of the required functionalities,

Authors’ address: C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, Politecnico di Milano,
Piazza L. Da Vinci, 32 – 20133 Milano, Italy, Tel. +39 02 23954.269, Fax. +39 02 23954.254,
{brandole,fornacia,salice,sciuto}@elet.polimi.it

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year, Pages 1–??.



2 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

the time–to–market contraction, and the product life–cycle shortening are factors
that naturally lead to reuse standard components as much as possible. Further-
more, significant parts of the system implementation are shifted toward software
since its intrinsic flexibility allows the designer to change even core sections of the
product without hardware reorganization until the latest steps of the design and,
in some cases, also after its release. As a result, a careful analysis of the design al-
ternatives is desirable, in order to deal with the intrinsic conflict among flexibility,
modularity, cost and performance. The implementation of an embedded system
requires an investigation of a large variety of the possible synergies between the
software and the hardware. In particular, different target processors and different
software/hardware partitioning solutions should be analyzed. A concurrent design
flow (co–design) is thus a valuable strategy to perform design space exploration. In
such a flow, one of the early steps deals with the identification of a set of admis-
sible hardware/software partitioning alternatives. Such solutions must fulfill the
constraints and requirements of the design.
It is quite understandable that the hardware/software partitioning step requires
a set of strategies, heuristics and metrics coping with the intrinsic complexity of the
problem and with the wideness of the design space. Among the aids for the inves-
tigation, particular attention should be paid to metrics. In fact, the evaluation in
terms of energy, time, cost, etc. of a point in the design space has to be as fast and
accurate as possible in order to ensure an effective exploration of alternative real-
izations. Do note that, due to flexibility requirements and the considerable impact
of the software component in terms of execution time and energy consumption, a
correct estimation of these figures is crucial for the success of an embedded system.
In recent years, different approaches have been presented in literature for software
analysis, either for energy or for execution time estimation, ranging from gate–
level simulations to high–level static methods. Excluding circuit– and gate–level
techniques [Mehta et al. 1996; Landman and Rabaey 1993], which are accurate
but both very slow and strongly processor–dependent, other approaches attack
the problem at different levels of abstraction and from different points of view.
The goal of these investigations is to identify a tradeoff between fast estimation
and accuracy. A possible, though simplistic, classification of such methodologies
considers two orthogonal aspects: estimation paradigm (static vs. dynamic) and
abstraction level (high–level vs. low–level).
Static approaches [Malik et al. 1997; Macii et al. 1998] analyze the specifica-
tion without performing any simulation (at high level) or execution (at low level).
These strategies produce a rapid, coarse–grained software characterization. Con-
versely, dynamic approaches [Giusto et al. 2001] simulate the specification taking
into account the impact of the environment. Such solutions, though extremely time
consuming, lead to finer–grained and more accurate results.
Low level estimation methods [Hsieh and Pedram 1998; Lazarescu et al. 2000;
Macii et al. 1998] are based on the analysis (static or dynamic) of the compiled spec-
ification, with explicit reference to a set of models of the processor, the instruction–
set and the memory architecture. Such estimation paradigms generally lead to very
accurate results since at the level of abstraction they operate, accurate information
is available. This, of course, is not in favor of estimation efficiency, and thus often
prevents a significant exploration of the design space.
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 3

Though extremely valuable, to the best of our knowledge, all the approaches
currently presented in literature (see [Benini and Micheli 2000] for a comprehensive
survey) are strongly specific and targeted to either accuracy or efficiency. Moreover,
most of them do not consider retargetability as a crucial issue.
The approach proposed in this paper tries to afford the problem of energy and
timing estimation of the software components of an embedded system under a
more general point of view. In particular, it combines the efficiency of high–level
static estimation with the accuracy of low–level dynamic analysis within a rigorous
conceptual framework based on well–defined and flexible mathematical models.

2. PROBLEM FORMULATION

The goal of the proposed approach is to achieve efficiency, retargetability and accu-
racy in energy and execution time estimation of software programs, with particular
emphasis to embedded applications. To this purpose, the adopted strategy consists
in a sharp decoupling of static and dynamic analyses to enhance the generality and
enforce efficiency. The static portion of the flow, in addition, has been decomposed
into a high–level, architecture–independent and a low–level, technology dependent
analyses. The complete flow is sketched in Figure 1.

Source code

Compilation Atoms

Execution KIS program

Static figures

Dynamic figures

Binary

Profiling data

Translation

Decomposition

Static anlysis

Instrumentation

Dynamic analysis

Models

Schemes

Library

Atom

Translation

Technology

2

3

4

5

7

6

1

Fig. 1. Source code estimation flow

An efficient analysis framework must necessarily operate on source code, since,
at this level of abstraction, the specification allows capturing coarser–grained prop-
erties at the same level at which a designer typically conceives the application.
Nevertheless, the elementary operations of a high–level language are far too com-
plex to be analyzed as a whole. Step (1) in the flow depicted in Figure 1 is devoted
to decompose the application specification into elementary constructs, henceforth
referred to as atoms. Section 3.1 introduces the idea of atom. While the semantic
of atoms is platform–independent, their implementation strongly varies from one
architecture to another, depending on the details of different assembly instruction–
sets. Step (2) of the analysis flow is devoted to fill this gap between high–level,

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



4 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

complex statements and low–level, simple assembly instructions. This is achieved
by representing source language atoms by means of pseudo–assembly (Kernel In-
struction Set) instruction sequences, forming a KIS program. The detailed descrip-
tion of the KIS and of the formal procedure used to derive it are treated in Section
3.2, while the most significant translation templates are reported in Section 6.
At this phase of the flow, the entire specification is represented by means of
simple operations, whose energy and timing properties can be more easily modeled.
It is worth noting that the platform–independence is still maintained at this level
since both Atom Models and Translation Templates (see, again, Figure 1) have
been designed with this purpose. Translation templates, in particular, refer to an
ideal architecture/compiler pair whose characteristics are clarified at the beginning
of Section 5. The low–level, technology–independent model is processed, at step
(3) of Figure 1, by associating a specific cost to each KIS instruction based on a set
of processor–specific Technology libraries collecting the timing and energy figures
of specific target architectures. Some approaches to low–level power modeling are
presented in [Russell and Jacome 1998; Tiwari et al. 1996; C.Brandolese et al. 2000;
2001]. It is worth noting that different target alternatives can be easily explored
at this point, without re–analyzing and re–translating the original source code, but
rather by simply choosing a different technology library.
All the steps described thus far lead to static figures. It is clear, however, that
sensible design choices can only be made on the basis of a dynamic characterization,
which is thus mandatory. Operating at the source code level implies two other
significant advantages related to retargetability. On one hand, the nature of all
high–level languages makes them independent from the target architecture and, on
the other hand, the source code can be easily profiled on a generic host machine
without loss of generality. To this purpose, the original source code is suitably
instrumented and compiled on a generic host machine (steps (4) and (5)). The
binary program obtained is executed in step (6) to produce source–level profiling
data. This phase can be repeated for all input data sets the designer is interested in.
Finally step (7) combines the static timing and energy figures with profiling data
and produces the dynamic estimates. A rigorous mathematical model, presented
in Sections 4 and 5, constitutes the statistical basis of the whole methodology.
In conclusion, the proposed flow constructs a technology– and data–independent
model of the source program that can be efficiently specialized for different tar-
get architectures and environmental stimuli. This allows the designer to obtain
accurate results by simply selecting the target architecture and feeding the model
with the desired input data. To better clarify all the estimation steps just de-
scribed, Section 7 presents a detailed description of a case–study, along with the
results obtained on some benchmarks. Some concluding remarks are finally drawn
in Section 8.

3. LANGUAGE DECOMPOSITION

3.1 Source language decomposition

To model a high–level language in a constructive and hierarchical way it is neces-
sary to define what an “elementary component” is. In the following, elementary
components will be referred to as atoms. The most critical point in defining the
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 5

atoms of a language is the choice of the granularity at which the language should
be analyzed. To this purpose it is valuable to describe the language (C, in this
case) using the formalism of grammars. The starting point is the definition of a
set of terminal symbols: these symbols are the basic building blocks of the atoms
of the language and, as a consequence, determine the granularity of the analysis.
It is important to note that some of the terminal symbols adopted in this context
would be non–terminals in the complete grammar of the language and would be
not disjoint but rather related by a production. The essential terminals are, as
in usual grammars, operators, keywords and special symbols such as =, (, ), {, },
for, return and others. In addition, to the purpose of the definition of atoms, it
is useful introducing new terminals for variables, and expressions. Using this set
of terminals a few productions can already be built. Consider, as an example the
productions of Figure 2.

st-break → break ;

st-return → return expr ;

st-assign → var = expr ; | var [ expr ] = expr ;

Fig. 2. Productions for some simple statements

The partial grammar of Figure 2 clarifies how the terminals combines to give
more complex portions of the language. In a similar manner, it is possible to define
more complex statements, such as while or if. An excerpt of their grammar is
reported in Figure 3.

st-while → while ( expr ) stmt
st-if → if ( expr ) stmt | if ( expr ) stmt else stmt

Fig. 3. Productions for two complex statements

In these productions the non–terminal symbol stmt represents a generic state-
ment defined by the partial grammar of Figure 4.

stmt → simple-stmt | block-stmt
simple-stmt → st-assign | st-break | . . .
block-stmt → { stmt-list }

stmt-list → stmt | stmt-list stmt

Fig. 4. Definition of the generic statement

Similarly, it is possible to define all the statements and constructs of the C
language. The outcome is an incomplete grammar Γ that, on one hand, lacks the
productions for all the symbols that have been assumed as terminals while, on the
other hand, allows defining in a formal way the concept of atom at the desired level
of granularity.

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



6 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

Definition 1. The terminal symbols on the right–hand side of a production of
the grammar Γ constitute an atom whose name is defined in the left–hand side of
the production.

According to this definition and referring, as an example, to the production for
the while statement, the atom whose name is while is constituted by the keyword
while and the couple of parentheses enclosing the conditional expression expr. The
condition and the body of the while construct, on the other hand, are not part of
the while atom itself.

3.2 Assembly language decomposition

The source code of a program can thus be seen as a set of atoms. Each atom
expresses a high–level operation that will be eventually implemented as a suitable
sequence of assembly instructions, according to either a simple translation template
or a more complex compilation algorithm. As an example, let us consider two dif-
ferent atoms: a loop construct such as while or for, and an arithmetic expression.
The former can be translated according to a template scheme since its syntax is
fixed. The syntax of the expression, though clearly defined, allows it to grow arbi-
trarily complex and thus no templates can be envisioned but rather each expression
must be processed according to tree–visiting algorithms.
The translation of a source code can thus be seen as a sequence of assembly
instructions each composed by an operation code and a certain number of operands
of different types. The operation code is strictly related to the tasks that must
be performed to implement the desired high–level functionality and thus is fixed.
The number of operands supported by the assembly language is a characteristic of
the instruction–set and is thus also fixed. Due to the reasons discussed above, the
number of operands of the instruction–set is fixed once the target processor has
been selected and predictions on which operation codes will be used can be made
based on the knowledge of the most popular compilation techniques and translation
templates.

Original instruction Transformed code

ADD [R0,R4], [R2+], R3

ADD R0, R4, R5

LOAD [R5], R6

LOAD [R2], R7

ADD R2, #1, R2

ADD R6, R7, R3

(a) (b)

Fig. 5. Sample decomposition of complex addressing modes

The addressing modes of the operands of the assembly instructions, on the other
hand, are extremely hard to predict: they depend, in fact, on a number of factors
such as the class of the target processor (RISC, CISC, VLIW, etc.), its architecture
(number of general purpose registers, data path complexity, etc.) and the compiler
(optimization techniques, etc.). To cope with this problem the following strategy
has been adopted. A generic instruction using complex addressing modes can always
be decomposed in a suitable sequence of instructions using only simple addressing
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 7

modes such as immediate register direct or register indirect. For example consider
the instruction shown in Figure 5(a): the first operand uses the indexed addressing
mode, the second uses the register indirect with auto–increment addressing mode
and the third is a register direct; this instruction can be replaced by the code of
Figure 5(b) exploiting simple addressing modes only.
It is reasonable to assume that a processor providing complex addressing modes
has a number of units specifically dedicated to their management. These units are
optimized and thus, probably, their use requires a shorter time than the execution
of the corresponding sequence of instructions exploiting simple addressing modes
only. This assumption is supported by the timing figures experimentally obtained
on many microprocessors: the execution time of the expanded instruction is always
an overestimate of the actual one. Based on this evidence, it is possible to translate
an arbitrary source code into an assembly program using simple addressing mode
instructions only, always resulting in a solution overestimating the actual execution
time. A significant achievement of using a limited subset of instructions is the
generalization capability since the basic operations that can be executed are roughly
the same over a wide range of general–purpose processors. This concept can be
formalized as follows.
Let Ph be a generic microprocessor and ISh its instruction–set. Let then P =

{P1, P2, . . . , Pp} be a set of p = |P| processors supporting instructions with the same
maximum number of operands (typically one, two or three). The generic instruction
set ISh can be partitioned into a fixed number c of predefined Instruction Classes
ICh,k performing similar operations, such as data transfer, load/store, branch, etc.
The instruction classes must satisfy the following relations:{

ISh =
⋃c

k=1 ICh,k

ICh,k1 ∩ ICh,k2 = ∅ ∀k1 	= k2 ∈ [1; c] (1)

Instruction sets of different processors may significantly differ: for this reason a
specific processor may have one or more empty instruction classes. Two instruc-
tions I1 ∈ IS1 and I2 ∈ IS2 belonging to different instruction sets are said to be
compatible if and only if:

∃k | (I1 ∈ IC1,k) ∧ (I2 ∈ IC2,k) (2)

Considering all the p processors in P and their instruction–sets ISh, c̄ compatible
instruction classes can be defined according to the following relation:

CICk =

{
∅ ∃h | ICh,k = ∅⋃p

h=1 ICh,k otherwise
(3)

These new instruction classes collect all the instructions of different processors that
are compatible in the sense that all the instructions in the same class perform
equivalent operations. The union of all CICk classes can be thought of as a generic
instruction set denoted as KIS or Kernel Instruction Set.

KIS =
c̄⋃

k=1, CICk �=∅
CICk (4)

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



8 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

Let CICk = {Ik,1, . . . , Ik,Nk
} be the k-th compatible instruction class and Nk its

cardinality. An instructions Ik,L can be identified in each compatible instruction
class CICk such that its execution time, expressed in terms of CPI (Clock–cycles
Per Instruction) is minimum. The instruction Ik,L is the lower execution time
bound for the k-th instruction class. Consider now a generic instruction I executed
in cpi(I) clock cycles. If I belongs to the k-th compatible instruction class, i.e.
I ∈ CICk then a lower–bound on its execution time is cpi(Ik,L). If I belongs to none
of the compatible instruction classes, then there exist no single instruction in the
compatible instruction set that can perform the same operation. Its functionality
must thus be obtained by combining more than one instruction in KIS, as clarified
by the example in Figure 5. The lower bound for execution time of instruction
I ∈ KIS can thus be defined introducing the function:

cpimin(I) = cpi(IL,k) | I ∈ CICk (5)

By using the instructions in KIS, it is thus possible to generalize the translation
templates over multiple instruction sets and to account for the behavior of different
compilers.

3.3 Assembly language reference model

This scheme, though, still does not account for the architectural differences be-
tween microprocessors. It is well known, in fact, that the result of the compilation
strongly depends on the available number of general–purpose registers. To prop-
erly account for such differences, an ideal architecture with an infinite number of
general–purpose registers has been assumed as reference. This assumption greatly
simplifies the construction of translation models, improves generality and allows an
accurate estimate of timing and energy figures. A detailed semantic and experi-
mental analysis of a wide range of instruction sets has led to the definition of the
compatible instruction classes listed in Table I, along with a brief description of
the semantics of the instructions they represent. The name of the class can be also

Class Semantics

alul Light ALU operations

aluh Heavy ALU operations

mvld Load from ‘memory’

jump Branches

Class Semantics

cmpl Light compare operations

cmph Heavy compare operations

mvst Store to ‘memory’

call Subroutine call/return

Table I. Compatible instruction classes composing the KIS

assumed to be the representative instruction of the class itself. For this reason, and
for the sake of conciseness, the term instructions, such as alul or jump, will be used
as a shorthand for the set of all actual instructions belonging to the corresponding
compatible instruction class. The two classes mvld and mvst are worth noting
since they refer to memory access. In the ideal reference architecture the memory
is non present since all data is supposed to reside in registers. Nevertheless, the C
language provides indirect memory access by means of pointers, i.e. variables whose
value is the memory address of another variable. This concept has been captured in
the kernel instruction set by assuming that a register can contain the number of a
different register and the two instructions mvld and mvst provide indirect register
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 9

access. As an example, suppose that register R3 contains the value 5 and register
R5 contains the value 10. In this case the instruction mvld R3,R0 will copy the
value 10 into the destination register R0.
Based on the kernel instruction set just defined, it is possible to identify either
a translation template or a translation algorithm that transforms an atom into the
sequence of kernel instructions necessary to its implement.

4. NOTATIONS

4.1 Code notations

The symbols summarized in Table II and described in the following are used to
formally represent the source code and the set of data it operates on. According to
the grammar Γ and to definition (1), a generic source code can be represented as a
list of couples describing the atoms and the hierarchical relations between them.

Notation Meaning

s source code index

i atom index

j data set index

m kernel instruction index

Cs s-th source code

As,i i-th atom of the s-th source code

Is,i,m m-th kernel instruction of atom As,i

Ls number of atoms of the s-th source code

Ms,i number of kernel instructions for atom As,i

Ds,j j-th data set for the s-th source code

Table II. Notation for source code

The generic source code Cs is a tree of atoms and can be completely defined by
an ordered list of Ls = |Cs| couples (As,i;As,i) where As,i is the actual atom while
As,i is a reference to the parent atom of As,i in the tree. A generic source code is
thus formally represented as:

Cs = {(As,1;As,1), (As,2;As,2), . . . , (As,Ls
;As,Ls

)} (6)

For the sake of clarity, let us consider a simple example. Figure 6(a) shows a
brief portion of C code and the identified atoms are listed in Figure 6(b). Finally
Figure 6(c) shows a graphical representation of the corresponding tree.

1. while(i > 0) {
2. if(a[i] != 0) {
3. n += 2;

4. }
5. }

As,0 = while, line 1
As,1 = expr, line 1
As,2 = if, line 2
As,3 = expr, line 2
As,4 = st-assign, line 3

As,0

AA

A A

s,1 s,2

s,4s,3

i>0 if(){}

while(){}

n+=2;a[i]!=0

(a) (b) (c)

Fig. 6. Source code, atoms and syntax tree

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



10 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

The list capturing the structure of this portion of code is thus:

Ls = {(As,0, root), (As,1, As,0), (As,2, As,0), (As,3, As,2), (As,4, As,2)} (7)

where the first couple indicates that the atom As,0 is the root atom.
Atoms, in turn, are represented as a list of kernel instructions, according to some
set of suitable translation templates. An atom As,i is thus modeled as as:

As,i ⇔ {Is,i,1, Is,i,2, , . . . , Is,i,Ms,i
, } with Is,i,m ∈ KIS (8)

Finally, the symbol Ds,j , far from giving details on the type, size and value of
data, is used to refer to a specific run of the source code. Data is made dependent
both on the spanning index j and the source code index s since a set of data must
be compatible with the specific source code.

4.2 Profiling notation

When a source code Cs is run with data Ds,j each atom, observed as a whole at
source level, is executed a certain number of times. The symbols summarized in
Table III are used to formally express profiling information.

Notation Meaning

n() function returning the number of executions

Ns,i,j number of executions of the atom As,i with data Ds,j

Ns,j number of execution of all atoms of Cs with data Ds,j

Table III. Notation for source–level profiling

Since the function n() returns a dynamic measure, it must always depend on a
set of data. According to the above definitions, the following relations hold:

Ns,i,j = n(As,i,Ds,j) (9)

Ns,j = n(Cs,Ds,j) =
Ls∑
i=1

n(As,i,Ds,j) =
Ls∑
i=1

Ns,i,j (10)

The count returned by the function n() has no explicit relation with the actual
execution time or with the number of clock cycles.

4.3 Timing notation

In order to account for a real measure of the execution time, the functions and
symbols of Table IV have been introduced.

Notation Meaning

t() returns the actual execution time of its argument

t() returns the reference execution time of its argument

t̂() returns the estimated execution time of its argument

Ts,j actual execution time of source code Cs with data Ds,j

T s,j reference execution time of source code Cs with data Ds,j

T̂s,j estimated execution time of source code Cs with data Ds,j

Table IV. Notation for timing

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 11

The measure of unit of time, in this context, is expressed in terms of CPI in
order to be independent of the operating frequency of a microprocessor. In the
construction of the mathematical form the upper–case, shorthand forms will be
used more often. Their meaning is clarified by the three following simple relations:

Ts,j = t(Cs,Ds,j) (11)
T s,j = t(Cs,Ds,j) (12)

T̂s,j = t̂(Cs,Ds,j) (13)

The total actual execution time Ts,j of the source code Cs with data Ds,j can be
expressed as the sum of the execution time of each atom As,i, counted Ns,i,j times,
that is:

Ts,j =
Ls∑
i=1

t(As,i,Ds,j) · n(As,i,Ds,j) =
Ls∑
i=1

t(As,i,Ds,j) ·Ns,i,j (14)

The reference and estimated timing can also be expressed with similar relations,
but their discussion is deferred until the next Section.

5. FORMAL MODELS

5.1 Execution time general model

In this paragraph, a general mathematical framework suitable to describe the execu-
tion time of a software, starting from its high–level source description is presented.
As indicated in the concluding part of the previous Section, the execution time
of a source code Cs with input data Ds,j can be expressed as:

Ts,j =
Ls∑
i=1

Ns,i,j · t(As,i,Ds,j) (15)

where the dependence of the real execution time of an atom is explicitly indicated
by the second argument of the function t().
Equation (14) explicitly shows the dependence of the execution time on the spe-
cific input data and defines what is called actual time throughout the rest of the
paper. To afford the complexity of the problem it is useful to start by considering
ideal conditions delineated by the following assumptions:

—the target architecture has an unlimited number registers and all the variables
of the code are allocated to a fixed register;
—the initial value of the variables is pre–loaded in the corresponding register and
thus no explicit initialization is required;
—the execution time of a KIS instruction is approximated with its lower bound.
—inter–atom compiler optimizations are neglected;
—intra–atom compiler optimizations are neglected;

The first three items of this list lead to an underestimate of the real execution time
while the last two tend to produce an overestimate. Let t() denote the function
returning the execution time in these ideal conditions, referred to, in the following,

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



12 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

as reference time. Noting that the reference execution time of a kernel assembly
instruction t̄(Is,i,m) is equal to cpimin(Is,i,m), the following equation holds:

T s,j =
Ls∑
i=1


Ns,i,j ·

Ms,i∑
m=1

cpimin(Is,i,m)


 (16)

The aim of the model is to determine a function t̂() returning an estimate of the
actual execution time such that the estimation error is minimized. The relation
that express the estimated timing of a source code is similar to equation (14) for
the actual timing:

T̂s,j =
Ls∑
i=1

Ns,i,j · t̂(As,i, Cs) (17)

It is worth noting that the function t̂ does not depend on the actual data fed
as input to the source code: this dependence is completely accounted for in the
execution count coefficient Ns,i,j . This is crucial in order to allow an a–priori
characterization of the atoms. Nevertheless, an explicit dependence on the source
code Cs, considered as a whole, is present: this point is clarified later on. The error
to minimize over a number of source codes and input data sets is thus:

ε2s,j =
(
Ts,j − T̂s,j

)2

(18)

The basic idea behind the model is that the estimated timing of each atom can
be expressed as the sum of two contribution: the reference timing, that accounts
for all the deterministic aspects in ideal conditions, and a statistical deviation
that depends on complex factors such as the structure of the source code, the
characteristics of the compiler, the actual architecture etc. This idea is be formally
expressed by the following relation:

t̂(As,i, Cs) = t(As,j) + δ(Cs, As,i) (19)

where the form of the function δ() can be arbitrarily defined. An analysis of some
preliminary timing measurement results, suggests that δ should depend on the
specific atom As,i as well as on the source code considered as a whole. For the sake
of generality, it might be useful and interesting to consider a dependence not only
on the atom As,j but rather on a range of adjacent atoms, thus:

δ = δ(As,i−k1 , . . . , As,i, . . . As,i+k2 , Cs) (20)

where k1 and k2 determine the extension of the range around As,i. The dependence
on the source code and the range of atoms defined thus far is only symbolic, since
atoms and source code are neither numbers nor functions, and does not specify the
explicit mathematical form. To refine the expression of the function it is necessary
to identify some measures to be performed statically on an arbitrary range of atoms
and on the entire source code. As examples consider measurements such as the
number of consecutive sequential statements, the maximum nesting level of the
whole source, the number of variable used and so on. For the sake of conciseness,
let q() and Q() be two vector functions operating on a range of atoms and on the
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 13

tree representing the entire source code, respectively. Formally:

q = q(As,i−k1 , . . . , As,i, . . . As,i+k2) (21)
Q = Q(Cs) (22)

According to the definitions and hypotheses discussed thus far, and combining
equations (17), (19), (20), (21) and (22) the estimated time can be expressed as:

T̂s,j =
Ls∑
i=1

Ns,i,j ·
[
t(As,i) + δ(q(As,i−k1 , . . . , As,i+k2),Q(Cs))

]
(23)

Equation 23 expresses a very general and flexible model but involves a number of
scalar, vectorial and functional unknowns that render it almost mathematically un-
treatable. The next paragraph proposes some simplifications that, though limiting
the generality, lead to an affordable mathematical problem.

5.2 Execution time simplified model

At this point it is useful to summarize how the different components of the model
can be determined.
what, in the model, is to be considered known and what is unknown. The
following components are known:

(1) The reference time of each atom t(As,j). The value can be derived by using
the analytical models of the atoms, described in Section 6, combined with the
timings of KIS instructions.

(2) The execution count of atoms Ns,i,j . These values can be derived from source–
level profiling of the code. A possible solution to this problem has been imple-
mented by instrumenting, compiling and running the original source code on a
generic host platform.

(3) The mathematical form of the statistical correction function δ(·) with respect
to the vector functions q and Q. A possible formulation is proposed in this
Section.

(4) The meaning of the vector functions q and Q. They should be applied to lists
of atoms, and return numeric values corresponding to some sort of measure on
the source code. Though it is possible to suggest a number of such measure-
ment functions, it is all but straightforward to determine whether the adopted
functions are meaningful for the problem or not. In the present work, both
functions have been assumed constant.

A simple yet versatile form for the function δ(·) is that of a multilinear dependence
on the two vector functions: this leads to a significant mathematical simplification
with an acceptable loss of generality. This assumption leads to the expression:

δ = a × q(As,i−k1 , . . . , As,i+k2) + b × Q(Cs) + c (24)

that, expanding the vectors and denoting with nq and nQ the number of elements
of the two vectors q and Q, respectively, becomes:

δ = [ a1 · · · anq ]×




q1
...

qnq


+ [ b1 · · · bnq ]×




Q1

...
Qnq


+ c (25)

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



14 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

In this equation a1, . . . , b1, . . . and c are the parameters of the model and their
values have to be determined statistically in order to minimize the square error,
while q1, . . . and Q1, . . . are the results of the measures performed on ranges of
atoms and the entire source code, respectively.

5.3 Statistical model characterization

Consider now a source code Cs and a corresponding set of data Ds,j . According to
equations 24 and 23 and noting that the reference times t(As,i) and the vectors q
and Q are known, the estimated time can be expressed as:

T̂s,j =
Ls∑
i=1

Ns,i,j ·
[
t(As,i) + a × q+ b × Q+ c

]
(26)

Distributing the summation an noting that a and b are intended to be independent
of the atom, this relation can be rewritten as:

T̂s,j = T s,j + a × qtot,j + b × Qtot,j + c ·Ns,j (27)

where:

T s,j =
Ls∑
i=1

Ns,i,j · t(As,i) (28)

qtot,j =
Ls∑
i=1

Ns,i,j · q (29)

Qtot,j =
Ls∑
i=1

Ns,i,j · Q (30)

Ns,j =
Ls∑
i=1

Ns,i,j (31)

Let now Cs be fixed and let the data set Ds,j vary with the index j = [1, . . . , nd].
For each data set, the actual timing is given by Ts,j while the estimated timing can
be derived by using the above relations. With these data it is possible to build the
linear system:


Ts,1

...
Ts,nd


 =




T s,1

...
T s,nd


+




qT
tot,1 QT

tot,1 Ns,1

...
...

...
qT

tot,nd
QT

tot,nd
Ns,nd


 ×


 aT

bT

c


 (32)

or, in a more compact form:

Ts = Ts +A × X (33)

which becomes the well known linear form:

Y = A × Y (34)

where the vector Y has been defined as:

Y = Ts − Ts (35)
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 15

In equations (34) and (35), Y is a nd × 1 column vector, A is a nd × (nq + nQ +1)
matrix and X is a (nq+nQ+1)×1 column vector. Since the matrix A is not square
and the experimental setup is such that nd � (nq + nQ +1), the linear system can
only be solved in a statistical sense. A simple and well known statistical estimator
is the least square method that leads to the solution:

X =
(
AT × A

)−1 × AT × Y (36)

allowing to derive the parameters of the simplified linear model for any number
of metric functions q and Q.

5.4 Energy consumption model

The models presented thus far allow estimating the execution time of a program by
analyzing and decomposing its source code into kernel assembly instructions. Such
approach is viable thanks to the possibility of characterizing each KIS instruction
with a reference execution time. To obtain an estimate of the energy absorbed by
the execution of a program with a certain set of input data, each KIS instruction
must also be associated with a reference energy absorption. To maintain the desired
level of abstraction with respect to the target processor, energy characterization
must be parametric.
Different approaches for the energy characterization of processors at assembly–
level have been proposed in literature. The models in [Tiwari et al. 1996; Macii
et al. 1998; Russell and Jacome 1998] are particularly interesting and can be easily
adopted in this context. All these methodologies, though, do not provide sufficient
generalization capabilities, resulting thus in contrast with one of the main goals of
this paper.
The approach proposed in [C.Brandolese et al. 2000], on the other hand, abstracts
from the architectural level by determining a set of functionalities and by decompos-
ing the computational activity of each instruction in terms of these functionalities.
The model shows good generalization properties and provides a static estimation
of the energy consumption of single instructions. According to [C.Brandolese et al.
2000], the energy dissipation em of an instruction Is,i,m is given by as:

em =
5∑

j=0

em,j = Vdd · τ ·
5∑

j=0

ifj · am,j (37)

where ifj is the average current associated with the j-th functionality, Vdd is the
power supply voltage, τ is the clock period and am,j is a coefficient expressing the
execution time spent by instruction the Is,i,m in the j-th functionality. It is worth
noting that the energy contributions ifj are the parameters that make the model
generic with respect to the target architecture. The coefficients am,j , on the other
hand, are used to model the functional and timing behavior of eachKIS instruction
and satisfy the following relation:

5∑
j=0

am,j = t̄(Is,i,m) (38)

According to this model the energy absorbed by each instruction is computed as
the weighted sum of the contributions related to the different functionalities.

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



16 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

6. ANALYSIS OF THE C LANGUAGE

6.1 Data types and variable access

Data types and variables are a critical aspect of the C language. Defining a clear and
consistent model for the cost of variable access is thus of paramount importance. To
this purpose, it is necessary to descend in further detail into the adopted memory
model. The C language provides four classes of data types: scalars, pointers, arrays
and structures (or unions). For each of these types a storage model has been defined
paying particular attention to the mutual consistence.

6.1.1 Scalars. A scalar variable is stored in a single register, either integer or
floating–point. In this context, the types char, int and all short, long, long
long, signed and unsigned variants are considered integer while the types float
and double and their variants are considered floating–point. The access cost is
thus null since ALU instructions can access them directly.

6.1.2 Pointers. A pointer is stored in a single register and there is no difference
between pointer to different data types. Accessing a pointer itself has thus a null
cost while dereferentiation (operator *) is achieved by means of mvld or mvst
instructions. Address extraction (operator &) involves copying the number of a
register into a different register and this is performed by an alul instruction.

6.1.3 Arrays. Array elements are organized in a bank of consecutive registers.
An additional register points to the base of the bank. This model closely resembles
the memory model actually adopted by the C language. Accessing an element
involves, thus, the computation of the target register, base plus (alul) offset, and
an indirection operation. It is worth noting that the array access model and the
pointer access model must be consistent. The translations of two semantically
equivalent atoms such as a[5] and *(a+5) are, in fact, identical: both involve alul
and mvld or mvst instructions.

6.1.4 Structures and unions. Similarly to arrays, structures are stored in bank
of adjacent registers plus a register that serves as a pointer to the base of the bank.
This organization is mainly motivated by an accurate analysis of the actual assem-
bly code generated by different compilers for different architectures. The dot (.)
member access operator has thus the same translation of an array access, while the
indirect member access operator (->) requires an additional mvld instruction to
dereference the pointer to the structure. This scheme is consistent with respect to
the semantic equivalence of atoms such as s->x and (*s).x.
Unions are treated differently. A union, in fact, contains a single datum whose
dimension depends on the field that is accessed. All fields of the union are stored in
the same, shared, bank of registers whose base is fixed and known at compile–time.
A member of a union, accessed by means of the dot operator, is thus a simple
variable that can be used directly by all instructions. For the same reason, the
indirect member access operator is translated according to the template adopted
for simple pointers.

6.1.5 Data types and variables cost models. The translation templates described
above lead to the models summarized in Table V. The costs are reported for the
two cases in which the variable is either read (use) or written (definition).
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 17

Cost

Data type Operator Use Definition

Scalar n/a 0 0
* t̄(mvld) t̄(mvst)

Pointer & t̄(alul) t̄(alul)

Array [] t̄(alul) + t̄(mvld) t̄(alul) + t̄(mvst)

. t̄(alul) + t̄(mvld) t̄(alul) + t̄(mvst)
Structure -> t̄(alul) + 2 · t̄(mvld) t̄(alul) + t̄(mvld) + t̄(mvst)

. 0 0
Union -> t̄(mvld) t̄(mvst)

Table V. Data types and variable access costs

6.2 Expressions

Expressions constitute the most important and complex portion of almost all pro-
gramming languages. Their structure is hierarchical and involves many different
types of operators and variables. To dominate this complexity, a taxonomy of the
operators has been performed, resulting in three classes: arithmetic operators (+, -,
/, bitwise operations etc.), relational operators (>, <, ==, etc.) and logical operators
(!, &&, ||). According to these classes, three subtypes of expressions, referred to
as pure expression, can be introduced, each containing only operators of one class.
The analysis of pure expressions is simpler than that of generic expressions and
constitutes the starting point of the complete expression model.

6.2.1 Pure arithmetic expressions. A pure arithmetic expressions is defined by
the production of Figure 7:

arith-expr → var
| arith-expr binary-arith-op arith-expr
| unary-arith-op arith-expr

Fig. 7. Production for pure arithmetic expressions

where binary-arith-op and unary-arith-op are terminals standing for all arith-
metic operators. The translation, and thus the cost, of the operators is easily
determined by recalling the definitions of the compatible instruction classes and is
summarized in Table VI.

Operator Operand Cost

+ (unary) both 0

-, ~ (unary) integer t̄(alul)

- (unary) foating point t̄(alul)

+, -, &, |, ^, <<, << integer t̄(alul)

% integer t̄(aluh)

+, - floating point t̄(aluh)

*, / both t̄(aluh)

cast both t̄(aluh)

Table VI. Arithmetic operators costs

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



18 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

To derive the overall cost of a pure arithmetic expression, let opi denote the
operators and varj the variables involved. The cost is then given by the expression:

t̄(arith-expr) =
∑

i

t̄(opi) +
∑

j

t̄(varj) (39)

where t̄(varj) accounts for the access cost of the j-th variable.

6.2.2 Pure relational expressions. Pure relational expressions are very simple
since the concatenation of relational operators, generally, makes no sense. The
grammar reported in Figure 8 defines this type of expressions.

rel-expr → var rel-op var

Fig. 8. Production for pure relational expressions

The cost model must account for the two possible uses of these expressions. On
one hand they can be used as a condition in a selection or looping statement,
while, on the other hand, can be used as subexpressions in an arithmetic or logic
expression. In the latter case, the evaluation, and thus the translation, involves not
only a comparison but also a jump to an appropriate statement devoted to assign
the values 0 or 1 to a variable. The cost of the relational operators is summarized
in Table VII.

Operator Operand Cost

<, <=, >, >=, ==, != integer t̄(cmpl) + t̄(jump)

<, <=, >, >=, ==, != floating point t̄(cmph) + t̄(jump)

Table VII. Relational operators costs

Recalling the symbols used for the arithmetic expression model, the cost of rela-
tional expressions is given by the relation:

t̄(rel-expr) =
∑

i

t̄(opi) + t̄(var1) + t̄(var2) (40)

where opi indicates the relational operator and possible cast operators.

6.2.3 Pure logic expressions. Pure logic expressions are defined by the produc-
tion reported in Figure 9.

logic-expr → var
| logic-expr binary-logic-op logic-expr
| unary-logic-op logic-expr

Fig. 9. Production for pure logic expressions

This class of expressions poses two critical problems. For efficiency reasons, in
fact, many compilers translate a complex expression by introducing shortcuts. This
implies that some portions of the expression might not be evaluated at all. This
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 19

aspect is accounted for by a suitable profiling mechanism, omitted here for the sake
of conciseness. The second problem is related to the possibility of combining in
the same expression variables or arithmetic expressions with relational expressions.
To clarify this point let consider the two sample expressions of Figure 10 and their
translations in assembly (on a Sparc machine).

(a>b) && (c>d) x && y

mov 0, %o4 mov 0, %o4

cmp %o0, %o1 cmp %o0, 0

ble .LL3 be .LL3

cmp %o2, %o3 cmp %o1, 0

ble .LL3 be .LL3

mov 1, %o4 mov 1, %o4

.LL3 nop .LL3 nop

(a) (b)

Fig. 10. Translation of logic expression

In the code of Figure 10(a) the compare and jump instructions come from the
translation template of the the two relational subexpressions a>b and c>d. In this
case the cost of the logic operator && is null. In the code of Figure 10(b), on
the other hand, the same instructions can only be associated to the && operator
since the accesses to the variables x and y have zero cost. A statistical analysis of
approximately 500,000 lines of C source code has shown that logic expressions of
the form of Figure 10(b) account for less than the 1.5% of all logic expressions. The
adopted model refers, thus, to the the case of 10(a) and the cost of logic operators
is assumed to be always 0. According to this hypothesis, the overall cost of a logic
expression is given by the relation:

t̄(logic-expr) =
∑

j

t̄(varj) (41)

6.2.4 Generic expressions cost model. Based on the models described in the
three preceding paragraphs, a complete scheme for generic expressions translation
can be built. The productions of Figure 11 summarize their grammar.

operator → rel-op | binary-arith-op | unary-arith-op | logic-op
expr → rel-expr | arith-expr | logic-expr | expr operator expr

Fig. 11. Productions for generic expressions

To correctly evaluate the overall cost, though, the order in which subexpressions
are evaluated is important. In particular the syntax tree of the expression must be
visited depth–first and whenever a subexpression is completely analyzed, it must be
substituted with a placeholder representing a temporary variable of the appropriate
type. An example of expression cost calculation is reported in Figure 12, where all
the necessary substitution steps are explicitly shown.
The leftmost tree contains all three types of expression. After the first reduction,
leading to the temporary placeholder t1, the tree only contains relational and logic

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



20 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

||

<

a b c +

d e

>

a b c

< >

||

t1

t2 t3

||

Fig. 12. Generic expression visit example

expressions. The reduction of the two relational expression into the temporary
placeholders t2 and t3, leads a new tree representing a pure logical expression. All
the expressions that have been reduced at each step of this process are pure.

6.3 Assignment statements

Expressions are mainly used as r–value in assignment statements. Nevertheless,
assignments may also be used to copy a value from a variable to a different variable,
i.e. from a register or a bank of registers to a different one. In the case of an
expression whose result is assigned to a variable, the assignment operator = has a
null cost. In fact, the compiler can always arrange the translation in such a way
that the operator at the root of the syntax tree of the expression assigns its result
directly to the variable appearing at the left–hand side of the assignment.
An explicit copy is, on the contrary, necessary whenever the right–hand side of
the assignment is a variable. In this case, the copy requires a certain number of
alul, mvld or mvst instructions. The choice of mvld or mvst instructions rather
alul instructions depends on the number of indirections necessary to access the
two variables involved. Table VIII summarizes the cost models adopted. In this
table, the number of indirections indicates the number of chained dereferentiations
necessary to access a variable and the function r(·) indicates the number of registers
necessary to store a variable.

Number of indirections

l–value r–value Cost

0 0 r(var) · t̄(alul)

0 > 0 [r(var)− 1] · t̄(mvld)

> 0 0 [r(var)− 1] · t̄(mvst)

> 0 > 0 [r(var)− 1] · [t̄(mvld) + t̄(mvst)]

Table VIII. Cost of the assignment atom

It is worth noting that the term −1 in the factors r(var)− 1 is motivated by the
fact that one of the mvld or mvst instruction is already accounted for in the cost
model of variable access and must not thus be considered again when evaluating
the assignment itself.
The C language also provides special assignment operators such as += or -=.
In these cases, an assignment can always be expanded in its explicit form, and
evaluated afterward. For this reason, no specific model has been introduced for
such operators.
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 21

6.4 Selection statements

The selection statements of the C language are the if-then-else, the switch-case
and the ternary operator ?:. For the sake of conciseness this paper only reports
the model of the first construct, which, by the way, can be used to implement the
others. Similarly to logical expressions, the condition in an if atom can either be
an arithmetic expression or a logic or relational expression. In the former case, an
implicit comparison with zero is assumed. Whenever the condition is a relational
or logic expression, the compare and jump instructions (necessary to implement
the selection statement) are already accounted for during expression evaluation. In
the case of an arithmetic expression or a variable, conversely, the comparison and
the jump need to be explicitly associated to the if statement.
The else–branch implies the presence of an additional jump at the end of the

then–branch code to skip the else–branch code. Since it is not possible to es-
timate at compile–time the result of the evaluation of the condition, the cost of
the additional jump can be conveniently weighted by a coefficient accounting for
the probability of the execution of the then–branch. The resulting cost model is
reported in Table IX, where ptrue is the probability that the condition evaluates to
true and ptrue ≡ 0 whenever an else–branch is missing.

Expression class Expression type Cost

arithmetic integer t̄(cmpl) + (1 + ptrue) · t̄(jump)

arithmetic floating point t̄(cmph) + (1 + ptrue) · t̄(jump)

logic, relational both ptrue · t̄(jump)

Table IX. Cost of the if-then-else atom

The models of other selection statements are built according to a similar proce-
dure and a detailed description can be found in [Dadomo 2002].

6.5 Loops

The C language provides three loop constructs: for, while and do-while. In the
following, only the model of the while construct is reported. This atom requires
the evaluation of a condition at the beginning of the loop and a jump from the end
of the loop body back to the beginning. The discussion on the condition done for
the if-then-else atom also apply to this case. The only difference lays in the fact
that the jump back is executed at all iteration but the last one. Since most loops
iterate a high number of times, the cost of the missing jump at the last iteration
can be safely neglected. The resulting cost model is summarized in Table X.

Expression class Expression type Cost

arithmetic integer t̄(cmpl) + 2 · t̄(jump)

arithmetic floating point t̄(cmph) + 2 · t̄(jump)

logic, relational both t̄(jump)

Table X. Cost of the while atom

Again, the other loop statements are described in full detail in [Dadomo 2002].
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



22 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

6.6 Function calls

Function calls modeling requires considering two aspects: jumping from the caller
to the callee and back, and passing the actual parameters to the function. Jumps
are always implemented by means of dedicated assembly instructions, belonging to
the call class of the kernel instruction set and can thus be easily modeled. The
problem of parameter passing, on the other hand, is more complex and in fact
requires the notion of stack. In the ideal reference architecture, the stack is a
variable–sized register bank plus an additional register playing the role of stack
pointer. According to this assumption, a push operation implies copying as many
registers as required by the specific datum considered and consequently updating
the stack pointer register. With the exception of the direction of the copy, a pop
operation involves exactly the same steps.
A function call is thus translated into a sequence of push operations to copy the
formal parameters onto the stack and a jump to the beginning of the function code.
It is worth noting that while executing the code of the function, all parameters must
be popped from the stack into local variables. The cost related with the sequence
of pop operations cannot be associated to an atom of the called function since it
is implicit in its prototype definition. Nevertheless, a call to a function necessarily
involves both pushing and popping all parameters, and for this reason, both costs
are associated to the function-call atom in the caller function.
A similar translation strategy can be adopted for the return statement. In this
case the called function pushes the return value onto the stack and requires popping
it after passing the control back to the caller.
The resulting cost models are summarized in Table XI, where varin,j are the
actual parameters, varout is the returned variable and the function r(·) returns the
number of registers necessary to store a variable.

Statement Cost

function call t̄(call) + [t̄(mvld) + t̄(mvst)] · ∑j r(varin,j)

function return t̄(call) + [t̄(mvld) + t̄(mvst)] · r(varout)

Table XI. Cost of the function call/return

It is worth noting that copying the actual parameters—as well as the return
value—from (or to) the origin registers, which are known at compile–time, to a dif-
ferent register bank whose position is determined at run–time by means of the stack
pointer register, involves mvld and mvst instructions and not alul instructions.

7. EXPERIMENTAL RESULTS

To validate the entire methodology, different benchmarks have been analyzed and
the obtained results compared with assembly–level data derived from processor–
specific instruction set simulators. The platform on which validation has been
carried out is based on the Intel i486 Embedded Processor and the GNU gcc com-
piler under Linux RedHat 7.2. To assess the accuracy of energy figures, an indirect
approach has been followed, based on the assembly–level characterization of single
instructions [Tiwari et al. 1996]. All the analysis steps outlined in Figure 1 have
been implemented in a completely automated toolset. The next paragraphs give
Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 23

the flavor of how the different steps of the methodology can be applied and report
the results obtained considering a significant benchmark set.

7.1 Sample analysis flow

This paragraph briefly discusses the different phases of the analysis applied to a
very small code portion. The main purpose is to clarify some details of the method-
ology and to illustrate how the theoretical formulation presented above applies to
the practice. Let the starting point be the simple code of Figure 13(a). The decom-
position phase leads to the 11 atoms listed in Figure 13(b). It is important to note
that a reference to the source line number is maintained for each atom to enable
backannotation of low–level figures up to the source code.

1. i=n=0;

2. while( i < 10 ) {
3. if( i % 2 == 0 ) {
4. n = n + i;

5. } else {
6. n = n * (i - 1);

7. }
8. i++;

9. }

As,0 st-assign n=0 line 1
As,1 st-assign i=n line 1
As,2 while while(){} line 2

As,3 expr i<10 line 2
As,4 if-then-else if(){} line 3
As,5 expr i%2==0 line 3
As,6 st-assign n= line 4
As,7 expr n+i line 4
As,8 st-assign n= line 6
As,9 expr n*(i-1) line 6
As,10 expr i++ line 8

(a) (b)

Fig. 13. Atom decomposition of a sample source code

The atoms in the second column of Figure 13(b) are then translated according
to the schemes presented in Section 6 and lead to the KIS program of Figure 14.

As,0 st-assign n=0 line 1 –
As,1 st-assign i=n line 1 –
As,2 while while(){} line 2 jump
As,3 expr i<10 line 2 cmpl, jump
As,4 if-then-else if(){} line 3 ptrue · jump
As,5 expr i%2==0 line 3 aluh, cmpl, jump
As,6 st-assign n= line 4 –
As,7 expr n+i line 4 alul
As,8 st-assign n= line 6 –
As,9 expr n*(i-1) line 6 aluh, alul

As,10 expr i++ line 8 alul

Fig. 14. Translation of the sample source code into a KIS program

This simple code requires no input data and thus the profiling information can
be derived simply by compiling an instrumented version of the source code and
by running it on a generic host platform. The results of profiling refer to atoms,
i.e. for each atom an execution count is collected. Thus far, the analysis proce-
dure does not make explicit reference to any specific target architecture. At this

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



24 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

point, the different KIS instructions can be mapped to the selected processor sim-
ply by looking up their cost into a technology library. Table XII summarizes the
data available in this final phase of the analysis flow, where the execution time is
expressed in clock cycles and the energy is reported as average current in mA.

Atom Line KIS Count Time Energy

As,0 1 – 1 0.000 0.000
As,1 1 – 1 0.000 0.000

As,2 2 jump 11 1.186 1.046
As,3 2 cmpl, jump 11 2.620 2.580
As,4 3 ptrue · jump 10 0.593 0.523
As,5 3 aluh, cmpl, jump 10 15.119 9.177
As,6 4 – 5 0.000 0.000
As,7 4 alul 5 1.434 0.681
As,8 6 – 5 0.000 0.000
As,9 6 aluh, alul 5 13.933 7.278
As,10 8 alul 10 1.434 0.681

Table XII. Translation of the sample source code into a KIS program

The total execution time is thus Ts,j = 290.161 clock cycles. To calculate the
total energy let the clock frequency be f = 33MHz and the power supply voltage be
Vdd = 3.3V. Under this operating conditions the total energy is Es,j = 19.982µJ,
corresponding to an average power dissipation ofWs,j = 2.086W. It is worth noting
that to derive an estimate for a different processor it is sufficient to replace the values
of the last two columns of Table XII, which can be done effortlessly.

7.2 Results

The same methodology has been applied to more significant testbenches such as a
16-bit CRC encoder, a Base64 encoder, a prime factor decomposition algorithm used
in cryptography and an ADPCM compression/decompression algorithm. Table XIII
collects the results and allows comparing the estimated values with the actual ones.
The average absolute error for both energy and timing is below 5%.

Time (Clock cycles) Energy (µJ)
Program Real Estimated Error (%) Real Estimated Error (%)

loop 25256 25394 -0.54 1867 1888 -1.11

factorial 56940 61030 -6.70 4169 5137 -18.84

mcd3 32193 32094 +0.31 2379 2373 +0.27

arith 48294 49949 -3.31 3553 3678 -3.41

crc16 226093 246012 -8.10 17510 18539 -5.55

base64enc 162455 149211 +8.88 11501 11098 +3.63

real2frac 46735 48688 -4.01 3407 3533 -3.57

pfactor 84058 84158 -0.12 6264 6500 -3.63

adpcm 41384 37629 -9.07 3213 3275 +1.93

Average 4.55 4.65

Table XIII. Execution time and energy consumption results

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



Timing and Energy Estimation of C Programs · 25

These results refer to the simplest version of the mathematical model, namely
the one that assumes the statistical correction function δ(·) ≡ 0. Nevertheless,
preliminary results suggest that using δ(·) = const would significantly compensate
the errors that the current model exhibits. To prove this, consider the two plots,
one for the execution time and one for the energy consumption, shown in Figure 15.

0 500 1000 1500 2000 2500 3000
Array Size

0

2

4

6

8

10

12

E
ne

rg
y 

(m
j)

Estimated
Actual

0 500 1000 1500 2000 2500 3000
Array Size

0

20

40

60

80

100

120

140

160

T
im

e 
(c

lo
ck

 c
yc

le
s)

Actual
Estimated

Fig. 15. Data–size dependence of estimation error

The reported measures, referring to the Base64 encoding algorithm, show that
the gap between actual and estimated figures is proportional to the size of the data
being encoded, which in turn, is strictly correlated to the number of iterations of
the main loop. Recalling Equation (23) and noting that the statistical term δ(·)
is multiplied by the execution count Ns,i,j , it seems reasonable to suppose that a
constant term would thus be sufficient to compensate such a deviation.

8. CONCLUSION

The goal of this paper has been to provide the designer a comprehensive and theo-
retically well–funded methodology to analyze both timing and energy characteris-
tics of software for embedded applications. The key elements are the possibility to
maintain the analysis at the same (source) abstraction level at which the designer
is coding the application, while achieving an accuracy close to that of a lower–
level profile–driven analysis of the compiled code. The paper presented a strategy
to analyze C specifications, by identifying basic elements called atoms and trans-
lation templates schemes, in a manner that is fairly independent from the target
microprocessor. All the different elements composing a program have been con-
sidered and properly modeled, including function calls. Retargetabiliy is another
important achievement of the methodology, since specific information on timing
and energy are stored in technology libraries allowing easy account for different
microprocessors. The outcome is a system–level model allowing the designer to
feed the program with stimuli and to obtain the estimates without performing any

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year



26 · C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto

additional time–consuming compilation or simulation. Experimental assessment of
the methodology has been carried out by considering a benchmark set composed
of code coming from real embedded applications. The average accuracy in predict-
ing time and energy is within the error band of 5% with runtimes is the order of
seconds (assuming the availability of technology libraries), thus enabling effective
design space exploration. Current effort is devoted to refine the statistical correc-
tion term and to include additional models tailored to account for the contribution
of black–box portions of the specification, such as precompiled libraries.

REFERENCES

Benini, L. and Micheli, G. D. 2000. System–level power optimization: techniques and tools.
ACM Transaction on Deasign Automation of Electronic Systems 5, 2 (Apr.), 115–192.

C.Brandolese, W.Fornaciari, F.Salice, and D.Sciuto. 2000. An instruction–level
functionality–based energy estimation model for 32-bits microprocessors. In Proceedings of
the IEEE Design Automation Conference. IEEE, Los Angeles (CA), 346–351.

C.Brandolese, W.Fornaciari, F.Salice, and D.Sciuto. 2001. Source–level execution time
estimation of c programs. In Proceedings of the IEEE/ACM International Symposium on
Hardware/Software Codesign. IEEE, Los Angeles (DK), 98–103.

Dadomo, M. 2002. Estimation of the energy/timing characteristics of source–level c code. M.S.
thesis, CEFRIEL Research Centre. Technical Report, N. 02002.

Giusto, P., Martin, G., and Harcourt, E. 2001. Reliable estimation of execution time of em-
bedded software. In Proceedings of the IEEE International Conference on Design, Automation
and Test in Europe. IEEE, Munich (D), 580–588.

Hsieh, C.-T. and Pedram, M. 1998. Microprocessor power estimation using profile–driven pro-
gram synthesis. Transaction on CAD 17, 11 (Nov.), 1080–1089.

Landman, P. and Rabaey, J. 1993. Power estimation for high level synthesis. In Proceedings of
the IEEE EDAC-EUROASIC. IEEE, Paris (F), 361–366.

Lazarescu, M. T., Bammi, J. R., Harcourt, E., Lavagno, L., and Lajolo, M. 2000.
Compilation–based software performance estimation for system level design. In Proceedings
of the IEEE International High–Level Design Validation and Test Worksop. IEEE, Berkeley
(CA), 167–172.

Macii, E., Pedram, M., and Somenzi, F. 1998. High–level power modeling, estimation and
optimization. IEEE Transaction on CAD 17, 11 (Nov.), 1061–1079.

Malik, S., Martonosi, M., and Li, Y. 1997. Static timing analysis of embedded software. In
Proceedings of the IEEE Design Automation Conference. IEEE, Anaheim (CA), 147–152.

Mehta, H., Owens, R., and Irwin, M. 1996. Instruction level power profiling. In Proceedings of
the IEEE ICASSP. IEEE, Atlanta (GA), 3326–3329.

Russell, J. T. and Jacome, M. F. 1998. Software power estimation and optimization for high
performance, 32-bit embedded processors. In Proceedings of the IEEE International Conference
on Computer Design. IEEE, Austin (TX), 328–333.

Tiwari, V., Malik, S., Wolfe, A., and Lee, M. T.-C. 1996. Instruction level power analysis and
optimization of software. Kluwer Academic Publisher Journal of VLSI Signal Processing 13, 1-
2, 223–233.

Transactions on Embedded System Computing, Vol. TBD, No. TDB, Month Year


