
1

High-Level Optimization of energy consumed by real-time applications
embedded into DSP systems.

Sébastien PIGNOLO, E. Martin, B. Saget, N. Julien, E. Senn

Lab LESTER, Univ South Bretany France
MATRA BAe Dynamics France

Abstract

This paper deals with Energy Consumption of Real-time
applications running on embedded systems.
Assumed that a significant part of the power dissipated
by systems is due to Input / Output made between all the
chips and especially between data-cacheless Digital
Signal Processors shipped with tiny internal scratchpad
data-memories and compared to huge external memories,
it is worth settling a strategy to reduce their transfers by
keeping inside the processor the more interesting data
that yield to minimize the consumption. Our method is
based on a data density criteria and on the modeling of
the C source application into two Dependence Graphs of
Data and Expression that give information about the
behavioral of the data, their precise moments of use and
the best instruction scheduling so that data reuse is
maximal. First results show that by our method it is
possible to reduce by 70 % the energy of some
applications.

Key words: Power optimization, dependence graph,
cache, Input / Output access, memory management

1. Introduction

This article tackles the problem of minimizing the energy
consumed by Real-time software embedded on data-
cacheless Digital Signal Processor. Assumed that a
significant part of the power dissipated by systems is due
to Input/Output made between all the chips and
especially between DSPs and their associates internal-
external data memories, it is worth settling a strategy to
decrease the number of the transfers of such a system. In
addition, DSPs are not shipped with Data Cache but with
scratch pad internal memory because constructors assume
that there is no guarantee of locality in the use of data. At
same time compilers only work on local optimization
(like registers use) that yield to poor results.

We tackle the energy problem by reducing at high level
(C source code) the bandwidth (by managing the internal
data memory explicitly like a kind of cache) between the
DSP and its external memories by keeping inside the
processor the more interesting data that will yield to
minimize the power consumed by the peripherals (like
DMA, EMIF, Serial Controller), the external bus and
external memory. Our method analyzes lifetime of Data
and expression dependency all over the application to

enhance locality and reusing. First results show that by
our method it is possible to reduce by 70 % the energy of
some applications.

This paper is divided as follow; first part presents the two
graphs used to model the application, then a second part
define the density criteria to choose further the “best”
data to keep inside the internal memory. A third part
indicates the strategy to retrieve from the two graphs and
with the help of the density criteria, the best schedule of
expressions that give the highest rate of reuse i.e the
highest density for a certain set of Structures (big data).
At last we present first results of the use of our method
on a Hadamard transform.

2. High-Level Representation of the
source code: the Structure and
Expressions Dependence Graphs

Unlike the former studies on Power optimization made at
low-level [7][9], the originality of our method is based on
the high-level modeling, transformations and
optimization of the C source of the software into two
graphs. One Graph represents the Dependence between
Expressions DEG while the other one represents
Dependence between Structures DSG (cf fig.1) (we call
“Structure” a data of big size that it is worth optimizing
the memory mapping like vectors, arrays). The use of a
DEG allow us to schedule expressions without changing
the functionality of the application. The DSG shows the
link existing between Structures.
DEG = {N,A} where N is the set of the nodes Ni so that
Ni is an expression handling a Structure, Ai are the arcs
linking the nodes holding the name of the Data that lead
the dependence.

A

B C

E2
E1

F
E9

G

E8

Fig.1 Dependence Structure Graph DSG :
 for instance Structure A is used by G through (E8)

 pseudo code
…
(E1):A = 2*B ;
(E2):C = f(A);
…
(E8):G= g(A);
(E9): F=h(A);

2

DSG = {N,A} where N is the set of the nodes Ni so that
Ni is a Structure, A i are the arcs linking the nodes holding
the name of the expression using it.

3. Density Criteria

Once a set of Structures is selected, we need a criteria to
choose among them those that represent the best benefit
keeping inside the internal memory.
Density (example fig 2) represents how often the
elements of a Structure are used in a certain number of
expressions (called Observation Window).

Number of memory-points used

Sequential execution of the source

A A

B B

Fig.2 Density of a Structure

A

2 reread of Struct A

D(SA)= 2* Size (A) / {observed window)
D(SB)= 1* Size (B) / {observed window)
here SA has got the priority to enter in internal memory

Thus the source code is divided into observation
windows of variable size (fig. 2-bis) where groups of
Structures are chosen due to the highest density criteria:
given the k reread Structures of the application (split in
observation windows), we have to choose k’ (k’≤ k) that
contain into the internal memory and that give the highest
rate of reuse.

Then the C source code is re-written with the help of
compiler-compiler tool like SUIF [3] to implement a new
memory mapping yielding to a brand new source code
handling data with respect of our optimizations.

4. Optimization Strategy

1. Check whether the application is determinist
otherwise it is necessary to get information from the

programmer or by getting traces from simulations
[8][10] to get the results of the conditional branches

2. Get from the C source code the Dependence Graph
of Expressions

3. Get from the C source code the Dependence Graph
of Structures

4. Increase the mobility of the expressions on DGE by
using an anti-dependence skill [12] to remove anti-
dependences.

5. PHASE 5 is the stage of optimization, it uses both
graphs to find optimal scheduling of expressions and
to determine optimal windows that split the code. It
uses also criteria like Density to sort Structures that
give the best optimization. The size of the window is
critical [4] and so influences the quality of the
optimization.

6. Modify the C code with SUIF to get a new C source
code that implements the mapping of the data in the
memories

7. Optimization PHASE 5

This phase takes advantage from both graphs GDE and
GDS to determine for every Structure the set of
expressions that manipulate the Structure (fig 3).

We also determine from DSG and DEG (fig. 5)for every
Structure Si the Extended Window where the Structure Si

is best used. Ext. Window contains all the instructions
that manipulate Si extended by including other
expressions needed to compute the set of Structures Sk so
that it is worth grouping them in a local execution (fig 4).

density is defined as :

D(Si)=
windownobservatio

SStructfromrereadelementsofnumber i

_

 Fig 3. expressions handling Structure S
i

E2 E12E8

Use of S i on the
expression E2

S iS i

Sequential
Execution of the
application

F o r (i = 0 ; i<M A X , i + +) {
…
A (i) = B (i) + 3 ;
C (i) = B (i) + 2 ;
B (i) = A (i) + E (i) ;
x = 3 + z ;
y = A (i) + z ;
F (i) = F (i) + x ;
…
} F i g 2 - b i s : O b s e r v a t i o n W i n d o w

O b s e r v a t i o n
w i n d o w

Sj

SR1
SR2

SR’

SR’’

produces
produces

produces

produces
consumes

consumes

Ep

Ep

E j
Ej

En

Em

 Expressions that
 produce SR2

Fig. 5 Retrieving of the expressions that forms the
Extended Window

3

Due to the other “residual” expressions embedded in the
Extended Window that do not manipulate Si we also have
to consider the fact where the different uses of Si are too
far from each other, thus there are some lacks in the use
of the internal memory (fig 6) that yield to sub-
utilization.

To avoid the problem of sub-utilization of internal
memory we calculate the benefit to let Structure Si inside
the internal memory instead of flushing the memory
place it has taken to replace by new Structures with less
density.

8. Boundary-Effect

Boundary-effect represents how an optimized window
can influence the choice of Structures in its
neighborhood.

For instance let’s say that ExtW1 is the Extended
Window of a Structure S1, S1 has got its best Density on
this optimal Extended Window. S1 also uses several other
Structures Sn. Because of the partial order between all the
expressions, Sn has also an optimal Extended Window
included, part or all, in the ExtW1 :

{ ExtWSn } ⊆ {ExtWS1}

The presence of Sn in ExtW(S1) yield to a potential reuse
if we consider that ExtW(Sn) is around of ExtW(S1) by
considering the first use of Sn in the following
Observation Window (cf Fig 7) as a reread component
(and not only if more than two instances occur) that will
increase the density of Sn in F2.

So, when calculating the density of a set of Structures in
the brand new Window F2 we have to consider the
previous uses of all the Structures in the neighborhood.

9. Global optimization of the
application:

The application is split into sub-optimal windows. Each
window optimizes a group of Structures for a set of
expressions by overlapping Extended-Windows to find
the best density on common uses of expressions (fig 8).

Overlapping (Fig 8) with the Extended Windows of the
reference Structure S1 used with S2, S3 and S4. S4’, S4’’
and so on are used to generate S4, S3 and S2. Structures
SR are residual Structures that belong to the Extended
Windows for S4’, S4’’and so on.

Once a set of expressions is reordered, we have to
consider the other expressions as mobile around the
windows already placed. Once an execution window has
been optimized, it can’t be changed anymore, but it can
influence another window not yet optimized (boundary
effect). An execution window is complete when the set of
chosen Structures has the size of the internal memory
because no other Structure can contain on it.
By a glutton-algorithm approach the application is
optimized onto successive execution windows.

10. First Results

We tried our method on the matrix multiplication for the
Hadamard Transform. Our original caching of Structures

SnSn SjSj

Fig 7. Sn in F1 belongs contributes to F2 by enhancing
density of Sn in F2 if F1 and F2 are consecutive windows

F1 F2

S 1

S 3

S 4

S 2

S R4’

SR4’’

S4’

S3’

S4’’

S2’

S R3’

E i

E j

Ek

Ek

Em

Em

E m

Ep

Ef

Eh

Ef SR2’

α

β

S α

Sβ

S Rβ

Eα

Eβ

Eβ

Eα

Fig 8. Graphs Overlapping for the Extended Windows of the Residual
Structures

Number of m emory-points used

Sequential execution of the
source

A A
B B

||w||

Fig.6 Evaluation of the access-gain
with the size of ||w||

E2 E14E8

Fig.4 expressions grouping leading toExt. Window

Si Si Si
Sj Sl SmSj

4

was tested on a Texas Instrument C6201B DSP
evaluation board that we modified to be able to measure
with a probe the current that feeds the core processor [6].
We measure on two scenarios the consumption of
different strategies.

The Hadamard transformation is given by :

[X] := [H].[x][H]

⇒ Hadamard matrix H is (n,n) dimension, it contains
only elements +1 or -1

⇒ x is the image to be transformed
⇒ X is the transformed image

This transformation only needs additions or subtractions
conditioned to the signs of the elements of the Hadamard
matrix H.
The Hadamard –Tansform (i) can be decomposed [11]
into X = H.A :

with X as the result matrix and A is the
intermediate matrix A=x.H

In the case where the matrix H and X cannot fit in the
internal memory we rewrite the product of 2 matrix into 9
sub-products of sub-matrix :

()















=

















333231

232221

131211

321.

3

2

1

AAA

AAA

AAA

HHH

x

x

x

with x1, x2 et x3 are sub-matrix of dimensions (n / 3)x n
and H1,H2, H3 are sub-matrix of dimensions n x (n / 3)

We tried our method on matrix of 255 elements (75
elements per x, H matrix), although these matrix contain
in the internal memory (internal memory is saturated with
two 32ko sub-matrix) these experiments show well the
benefit of our method.

The result matrix Aij is always stored outside the
processor to get closed with the philosophy of cache
(internal memory is the copy of the highest level of
memory).

Fig 10b shows the schedule resulting of our optimizations
and fig 10c indicates the Ext-Window of the Structures
onto we performed scheduling, density computation and
boundary effect.

Experiment Case 1: All the computations are made in a
random order, it may not exist local reuse so we place all
the matrix outside the processor, it represents the worst
case of computation.

Experiment Case 2: Our method is applied, chosen
Structures are copied dynamically to enhance reusing.
The matrix result is still in the external memory.

Case Version 1 Version2 (optimized)

Execution Time :
T= 5,13 ms

Execution Time :
T= 4,89 ms

CPUCore Consumption:
 I moy = 589 mA

CPUCore Consumption:
 I moy = 630 mA

Total_Consumption (J) :

Ptot=P(core+E/S+extern
devices +SDRAM). T

Total Consumption
(Joules) :

V2= 30 % V1

With:
• SDRAM @ 66,5 MHz
• 1 SDRAM access consummes 120 mA under 3,3 V
• DSP C6x is feeded under 2,5 V @133Mhz
• Internal memory is 64ko wide
Tree Clock consumption is 530mA average

Expressions Transfers Internal Memory Content
(E1) :A11= x1.H1 x1,H1, A11 X1, H1 :

 (E2) :A12= x1.H2 H2, A12 X1, H1*, H2 : data from H1
erased

(E3) :A13= x1.H3 H3, A13 X1, H2*, H3
(E4) :A23= x2.H3 x2, A23 X1*, x2, H3
(E5) :A22= x2.H2 H2, A22 X2, H2, H3*
(E6) :A21= x2.H1 H1, A21 X2, H1, H2*
(E7) :A31= x3.H1 x3, A31 X2*, x3, H1
(E8) :A32= x3.H2 H2, A32 X3, H1*, H2
(E9) :A33= x3.H3 H3, A33 X3, H2*, H3

x1, H1 x1, H2 x1, H3

E1 E5 E7

H3, x3 H3, x2 H3,x1

E4 E7 E8

x2, H2 x2, H1 x2, H3

E8 E6 E3

Fig 10c: Ext. Window of Structures x1, x2, H3

A11

H 1

A31

x3

A21

x1

H 2

A13

H 3

A32
A33

A12

A23

A22

x2

E1
E1E7

E7

E2
E3

E8

E9

E5

E9

E8

E4

E3
E6

E5

Fig 10b:schedule of the matrix multiplication

5

With our method, according to the product Time *Watt
case 2 consumes 70% less power than in case 1
(consumption divided by 4).
V2 solution consumes a little bit more current for the
core processor but is faster. External Memory and I/O
buffers consume fare more power than the DSP does, so
the economy of energy is immediate when Structures
reusing is applied.

11. Conclusion

We are currently trying and experimenting our method on
new algorithms like LMS-echo-chancellor algorithm and
on a Kalman Filtering. First results show that the more
the application is complex (in terms of number of
different Structures present in the source code) and
handle big-size Structures the more it is possible to
optimize the energy. The number of additional source
lines and the additional time taken to compute new
addresses for memory allocation are compensated by the
optimization gain when Structures become bigger.
By using a high-level representation of the source-C it is
possible to optimize in a very quick way C source
without disabling DSP compilers local optimizations [7]
[8]. Thus our method is DSP architecture independent.
We handle data with explicit addresses so that it is still
possible after our optimization to use local classical
optimizations. We gave a High Level representation and
coarse grain optimization to get a global view of the
Structures uses, so that it is possible to schedule
expressions and to choose the best Structures that will
yield to power savings.

Bibliography

[1] K. Castille, “TMS320C6201 Power Consumption
Summary”, Texas Instrument, doc SPRA486B,
Application Report : Preliminary of 06/26/1998

 [2] Carla Schlatter Ellis, « The Case for Higher-level
power Management », Duke university

[3] Stanford University Intermediate Format
http://suif.stanford.edu

[4]Dan Nam Truong, “Software Optimility of locality:
the precise inplace of data in memory”, 09/21/1999,
Research report IRISAhttp:www.irisa.fr

[5] IMEC, http://www.imec.be
“ATOMIUM project”

[6] Johann Laurent, Eric Martin, Nathalie Julien (lab LESTER,
South Bretany), “High Level Power Estimation for DSP”, Conf
SESAM 2000, Sophia Antipolis Forum on MicroElectronics

[7]Bacon, Graham,Sharp, “Compiler Transformations for
High Performance Computing ”, ACM Computing
Surveys,Vol. 26, No4, december 1994

[8]Gupta, Miranda, Catthoor, “Analysis of High Level
Code Transformation for Programmable Processors”
IMEC

[9]Vivek Tiwari, “Logic and System Design for Low
Power Consumption ”, PhD Thesis, Princeton University;
Nov 1996

[10] Cheng-Ta Hsieh, Massoud Pedram, “Microprocessor
Power Estimation Using Profile-driven Program
Synthesis ”, IEEE transactions on computer-aided design
of integrated circuits and systems

[11]E. Martin, J-L Philippe, “Ingénierie des systems à
microprocesseurs, application au traitement du signal et
de l’image”, edition Masson

[12]Calland, Darte, Robert, Vivien, “On the removal of
anti and output dependences ”, Research Report INRIA,
Nº2800, February 1996

