
Source Code Transformation
based on Software Cost Analysis �

Eui-Young Chung
CSL, Stanford Univ., USA

eychung@stanford.edu

Luca Benini
DEIS, Univ. di Bologna, Italy

lbenini@deis.unibo.it

Giovanni De Micheli
CSL, Stanford Univ., USA

nanni@stanford.edu

ABSTRACT
This paper presents a model and a strategy for source-code
transformation applied to software application programs to
reduce their energy cost. We propose a
exible performance
and energy model for a processor-memory system. The
bene�t of the model is generality (it is not tied to a sin-
gle memory and processor architecture) and e�ectiveness of
evaluation. With this model, we �rst estimate the e�ects
of source-code transformations (called transformation cost),
representing the improvement ratios of processor cycles, I-
cache misses, and D-cache misses. Next, we combine the
transformation cost model with hardware parameters to es-
timate the actual e�ect of a transformation on performance
and energy. The model can be used to guide software trans-
formation selection for power and performance. The exper-
imental results show that the proposed approach �nds the
optimal transformation in 95% of the cases, and that the
penalty when the non-optimal transformation is selected is
within 5%.

1. INTRODUCTION
Most electronic systems execute software programs on

processor chips or cores. Energy-eÆciency of the overall
system depends heavily on software design [4]. Low-energy
software design can be achieved in di�erent ways, namely by
energy-aware selection of the algorithms [15], code restruc-
turing [7, 8] and instruction-level optimizations [3]. While
algorithm selection has the highest potential, it is hard to
automate, and its impact strongly depends on programmer's
ingenuity. In contrast, instruction-level approaches can be
automated (performance-oriented optimizations are avail-
able in the back-end of most compilers), but their impact
on energy is local, and strongly tied to a given target ar-
chitecture. Code restructuring techniques lie in between,
since they can be automated to some degree [12], but they
have global impact and they are not strictly architecture-
dependent. This paper addresses strategies for source-code
restructuring. The critical issue in code restructuring for low
energy is the estimation of the impact of a given transforma-
tion. A straightforward approach (which we call iterative-
ISS) is to compile the restructured code, generate an exe-
cutable and run it either on the target hardware, or on a

�This work was supported by NSF (CCR-9901190),
MARCO, ARPA, and GSRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

power-aware instruction simulator [14], to measure energy
savings. This estimation
ow goes through several time-
consuming steps and it ultimately prevents fast, iterative ex-
ploration of many alternative transforms. Hence, more ab-
stract and computationally-eÆcient energy estimation met-
rics are needed to support optimization.
A traditional abstract code metric is compactness. The

most compact code for a program uses the least instruction
memory. Moreover, if the program represents pure data

ow, (i.e., no branching and iteration is involved), it ex-
ecutes in the shortest time and consumes the least energy.
(This holds under the assumptions of constant energy cost of
the instructions and if we neglect speci�c architectural fea-
tures of processors, that may favor some instructions over
some others.) This argument breaks down when consider-
ing processor-memory systems, and in particular the fact
that accessing memory may consume a signi�cant amount
of energy. More re�ned abstract metrics rely on pro�ling[1,
2]. In these cases, the e�ects of branching/iteration may
have signi�cant impact on performance/energy. However,
pro�ling relies on instruction simulation, which is too time
consuming to be repeated for every possible transformation.
In previous work on source-code transformations, the es-

timation issue has been partially bypassed by focusing on
hardware targets and application domains where some sim-
plifying assumptions hold. Catthoor and coauthors [8], as-
sume that the data memory access cost is the dominant
factor for both energy and performance. Therefore, they
apply extensive loop transformations for reducing data ac-
cesses and improving their locality. Other approaches [7]
focused instead on the number of processor cycles, implic-
itly assuming that the processor is the most energy-critical
system component. Thus, loop unrolling and procedure in-
lining were used to reduce the number of processor cycles,
while data locality was improved by cache size optimization.
Several papers have addressed the problem of assessing the
impact of source code transformations on families of hard-
ware architectures [5, 6, 7]. In these works, instruction-level
simulation is employed to measure the e�ects of code trans-
formation on energy. Without exception, these works have
concluded that the optimal transformation depends on the
characteristics of the processor and of the memory system.
On the other hand, pure analytical models were proposed

especially for memory oriented transformations [9, 16]. These
approaches estimate the e�ect of transformation very fast,
but the accuracy is lower than the iterative-ISS approaches.
This paper introduces an abstract hardware model that

makes it possible to take into account hardware characteris-
tics when assessing the e�ectiveness of code transformations,
at a fraction of the computational e�ort that would be re-
quired by the straightforward iterative-ISS approach. Bene-

153

�ts of using this model include generality and speed of evalu-
ation, since a drastically reduced number of instruction-level
simulations is required. Thus, our work is in the middle of
the previous two approaches - iterative ISS approaches and
pure analytical approaches.
We apply our techniques to tune and select two well-

known transformations, namely loop unrolling and loop block-
ing for several target programs. Results show that our tech-
nique is accurate in predicting the impact of code transfor-
mations. Interestingly, our analysis also demonstrates that
a program should be transformed in di�erent ways depend-
ing on the target cost metrics (energy and performance) as
well as on hardware con�guration (processor and memory).
As a consequence, we give further evidence of the fact that
energy and performance are not always optimized jointly.

2. SOFTWARE COST MODEL AND OVER-
ALL FLOW

In this section, we introduce the abstract system perfor-
mance and energy model at the basis of our approach, and
we describe a computationally-eÆcient estimation
ow for
transformation analysis and exploration. It is important to
stress that the abstract model should not be used for esti-
mating power and performance of a program in an absolute
sense, but it should be intended as a selection criterion to
choose among alternatives. Thus, the emphasis is not on
absolute accuracy, but on reliable selection guidance.

2.1 System Model
The proposed technique adopts a general system model

which consists of a processor and an external memory. The
processor is modeled as three major components - processor
core, I-cache, and D-cache. The processor core includes all
other components such as ALU, branch prediction unit, etc.
Based on this simple system model, we relate the software

behavior to component usage. In other words, during soft-
ware execution, the system is in one of three possible states:
i) only processor is in working state (the processor is process-
ing instructions and data stored in caches or registers), ii)
only memory system is in working state (the processor stalls
while external memory is accessed), iii) both processor and
memory system are in working state (the processor does not
immediately stall during external memory accesses). The
third state can be omitted for simple processors which are
completely stalled during memory access. For the memory
system, we consider two di�erent sub-states of its working
state to distinguish its triggering sources - I-cache or D-cache
misses.

2.2 Simplified Software Cost Model
For the sake of explanation, in this section we describe a

simpli�ed system model, assuming that - i) processor cycle
and memory activity are completely non-overlapping. ii)
the memory accesses are mostly due to D-cache miss, i.e.
I-cache miss is negligible compared to D-cache miss. These
simplifying assumptions will be removed in Section 2.4. The
hardware parameters used in our cost model are shown in
Table 1. For the given system, we perform instruction-level
simulation for the target software to obtain the usage of each
component. We denote the number of clock cycles devoted
to processor as Np and the number of accesses to memory
system as Nm. Thus, execution time of the target program

parameter meaning
Tp processor cycle time
Tm memory cycle time
Pap average active power of processor
Pip average idle power of processor
Pam average active power of memory
Pim average idle power of memory

Table 1: Hardware parameters of the system model

1

10

Original Program

2

2

r

rp

m

decision line

Energy Eqaution
Execution Time Equation

Figure 1: 2D representation of Equation 5 and 6

can be simply represented as Equation 1.

Texe = Np � Tp +Nm � Tm (1)

Similarly, the energy consumption is:

E = (Pap + Pim) �Np � Tp + (Pip + Pam) �Nm � Tm (2)

Suppose we have a set of transformation techniques, Ti; i =
0; 1; � � � ; K � 1, and each of them changes Np and Nm to
rp(i)�Np and rm(i)�Nm, respectively. We call rp(i) (rm(i))
transformation cost of processor cycle (memory access) ra-
tio of transformation Ti. Thus, Equation 1 and 2 can be
rewritten as Equation 3 and 4, respectively to consider the
e�ect of the transformation.

T (i)exe = rp(i) �Np � Tp + rm(i) �Nm � Tm (3)

E(i) =(Pap + Pim) � rp(i) �Np � Tp

+ (Pip + Pam) � rm(i) �Nm � Tm
(4)

where, T (i)exe and E(i) represent the execution time and
energy consumption of the code transformed by Ti.
Obviously, Ti is only e�ective when Texe > T (Ti)exe if the

target objective is performance. Similarly, it is only e�ective
when E > E(Ti) if the target objective is energy. These two
inequalities can be rearranged with respect to rp and rm as
shown in next.

(rm(i)� 1) � (1� rp(i)) �
Np � Tp
Nm � Tm

(5)

(rm(i)� 1) � (1� rp(i)) �
Np � Tp
Nm � Tm

�
Pap + Pim
Pam + Pip

(6)

These two equations characterize the software cost (energy
and performance) relations in terms of rm and rp when a
general transformation technique is applied. Each equation
is represented as a line in a two-dimensional space, as shown
in Figure 1. First, each equation de�nes the boundary con-
ditions for rp and rm that can be acceptable after the trans-
formation. Only when rp and rm are in the region below the
line (the triangle formed by two axes and the line itself), the
transformation is e�ective for the given cost metric. We call
this region e�ective region.

154

Original C code

Instruction−level Simulation

Memory
Information code

generator

Transformation A

 code
generator

Transformation Z......

Transformed code A

Transformed code Z

......Transformation Selection

Set of Transformations

N and Nmp
Processor Info.

Loop overhead cost
 min/max cost

 cost
estimation

 cost
estimation

Figure 2: Overall transformation
ow

Second, the slope of the line indicates the relative impor-
tance of rp and rm. In detail, rp (rm) is more important
than rm (rp) if the slope is greater (smaller) than 1 (the
slope of decision line) because the given cost metric is more
heavily a�ected by rp(rm). Thus, performance and energy
may require di�erent transformations.
Both equations can be generalized to directly compare two

arbitrary transformations - Ti and Tj as follows.

(rm(i)� rm(j)) � (rp(j)� rp(i)) �
Np � Tp
Nm � Tm

(7)

(rm(i)�rm(j)) � (rp(j)�rp(i)) �
Np � Tp
Nm � Tm

�
Pap + Pim
Pam + Pip

(8)

The condition which minimizes the energy-delay product
can be simply obtained by multiplying Inequalities 7 and 8
because each of them is the condition for execution time
and energy, respectively. Also, notice that the left hand side
terms of Inequalities 7 and 8 are identical, thus they always
have the same polarity and the right hand side terms of these
two equations are always positive. Thus, the inequality for
energy-delay product is:

(rm(i)�rm(j)) � (rp(j)�rp(i)) �
Np � Tp
Nm � Tm

�

s
Pap + Pim
Pam + Pip

(9)

For each inequality (7, 8, 9), if the condition is satis�ed, then
Ti is superior to Tj for the corresponding cost metric. Other-
wise, Tj improves the original program more than Ti. Note
that for each transformation Ti we need to provide a value
for the transformation cost rp(i) and rm(i). Estimation of
transformation cost is discussed in Section 3.
We can use these inequalities for two di�erent purposes.

First, for a system with a �xed external memory, we use
these inequalities to �nd the optimal transformation among
a set of transformations by estimating rm(i) and rp(i) of
each transformation. Second, when there exist multiple
choices of external memories, we can �nd the optimal trans-
formation for various external memory con�gurations. Then,
the impact of external memory selection and optimal trans-
formation can be evaluated by Equation 3 and 4, thus op-
timal pair of external memory and transformation can be
obtained.

2.3 Overall Transformation Flow
The proposed transformation
ow is illustrated in Fig-

ure 2. The
ow requires a single instruction-level simula-

r

r

r

p

im

dm

Execution time plane

Energy Plane

Figure 3: 3D representation of critical parameters

tion for the original source code, before transformations,
to extract parameters useful for both transformation and
cost estimation such as Np, Nm, Pap, Pip. Currently, the
WATTCH simulator [14] is used in the initial instruction-
level simulation step. Also, Pam and Pim can be obtained
from the data book or real measurement.
The transformation costs (rp and rm) are estimated by

the dedicated cost estimators of each transformation. Each
cost estimator requires additional information such as loop
overhead and min/max operation cost which are indepen-
dent of the characteristics of each program. Techniques for
cost estimation, and their computational cost, are described
in Section 3.
In the transformation selection phase, we evaluate two

well-known high-level transformation techniques - loop un-
rolling and loop blocking. Loop unrolling is implemented
under SUIF environment and loop blocking is performed by
another SUIF package called skweel [13]. Notice that our
framework can encapsulate any other class of transforma-
tions, provided that a cost estimator is available. In the
next section, we illustrate the cost estimators we developed
for loop unrolling and loop blocking.

2.4 General Cost Model
In Section 2.2, we ignored the e�ect of I-cache. Also,

we assumed external memory accesses are never overlapped
with processor cycles. We now extend the simpli�ed model
to consider these e�ects.
I-cache e�ects can be simply considered by breaking Nm

into Ndm +Nim which are number of memory accesses due
to D-cache miss and I-cache miss respectively. The graph
shown in Figure 1 becomes 3-dimensional as shown in Fig-
ure 3. We can still use the inequalities introduced in Sec-
tion 2.2 by choosing the most critical plane. The most criti-
cal plane has the smallest e�ective region and the parameters
consisting of the plane replace the parameters appearing in
each equation.
Finally, the overlapping between memory access and pro-

cessor operation for processors with non-blocking caches is
considered by scaling the memory cycle time. The scaling
factor can be achieved by performing instruction-level sim-
ulation twice. The �rst simulation is performed with zero-
latency (ideal) memory system and the second simulation is
performed with non-ideal memory system. The scaling fac-
tor is the di�erence in execution time divided by the product
of the latency of the non-ideal memory system and Nm. It
is a measure of the aggressiveness of the non-blocking cache
implementation, rather than a property of software execu-
tion. Thus, we compute the factor for a set of programs and
use the average value for all other programs.

155

for (i = 0; i < TC; i++)
X[i] = Y[i]*Z[i];

(a) Original version

for (i = 0; i < TC-1; i++) f
X[i] = Y[i]*Z[i];
i++;
X[i] = Y[i]*Z[i];

g
for (; i < TC; i++)

X[i] = Y[i]*Z[i];

(b) Unrolled version (u = 2)

Figure 4: An example of loop unrolling

Ideal case

actual case

unrolling factor

gain
TC is multiple of u

Figure 5: Gain variation with unrolling factor

3. TRANSFORMATION COST ANALYSIS
In this section, we describe the cost estimators of the

transformation techniques which estimate rp and rm. We
consider two well-known transformation techniques - loop
unrolling and loop blocking(tiling). Loop unrolling aims at
reducing the number of processor cycles by eliminating the
loop overheads. Also, it provides a better starting point to
the conventional optimization techniques by enlarging the
basic block size. This technique improves the number of
processor cycles (Np), but it also increases I-cache misses
(Nim). Ndm is rarely sensitive to this technique because it
does not change the data access behavior.

Loop blocking breaks large arrays into several pieces (tiles
smaller than cache size) and reuses each piece without self-
interference. Thus Ndm can be e�ectively reduced. But
it may cause signi�cant increase of Np because the depth
of loop nesting is increased and min/max operations are
required to compute the lower and upper bounds of the
blocked loop. The variation of Nim can be ignored in this
approach because the code size increase is marginal.

3.1 Loop Unrolling
Loop unrolling is controlled by the unrolling factor, u

which is the number of duplications of the body statements
inside the loop. If u = 1, the original loop is kept without
any change. Even though it is well-known that loop un-
rolling is e�ective to reduce Np, there is no obvious method
to determine this factor. Thus, typically iterative-ISS is re-
quired with the change of the unrolling factor to �nd the
optimal one. We propose a new unrolling strategy to �nd
the optimal unrolling factor with a single ISS.
An example of loop unrolling is shown in Figure 4 (u = 2).

The gain of loop unrolling is achieved by the �rst loop of
Figure 4 (b), while the second loop is same to the original
loop and its number of iterations is (TC modulo u).
We denote the gain of loop unrolling as gain(u) when

the unrolling factor is u. The gain(u) can be graphically
represented as shown in Figure 5. In Figure 5, the solid
line (actual case) is when the number of loop iterations is
limited to integer numbers (the second loop in Figure 4 (b)

is iterated by (TC modulo u) times), while the dotted line
(ideal case) is when the number of loop iterations can be
non-integer numbers, which is not possible in practice (the
second loop in Figure 4 (b) is never executed) . Thus, when
u is selected as a multiple of TC, the unrolling e�ect becomes
as same as the ideal case. Also, u should be selected as large
as possible to maximize the gain. But, as u increases, the
I-cache miss rate also increases and will eventually decrease
the gain achieved by loop unrolling.
Without the estimations of both gain and I-cache miss

rate, it is unavoidable to perform iterative-ISS with the
change of u.
Instead of measuring I-cache miss rate directly, we esti-

mate the code size increased by loop unrolling. Based on
the code size estimation, we decide the maximum unrolling
factor, umax. umax is the largest unrolling factor not to in-
crease code size larger than I-cache size and is shown next.

umax =
size of instruction cache

Iorg � size of instruction
(10)

where, Iorg is the number of instructions of the loop body
and is estimated in either front-end (SUIF) or back-end part.
Thus, the optimal unrolling factor uopt is the greatest di-

visor of TC, but smaller than umax. By �nding uopt, we can
replace iterative-ISS by single ISS to obtain gain(uopt).
The transformation costs of loop unrolling are computed

using uopt and shown next.

rp = (Np � gain(uopt))=Np

rim = (Nim + (Iorg � uopt))=Nim

rdm = 1 (11)

Notice that rdm is set to 1 without loss of generality be-
cause its e�ect on data access behavior is relatively small.

3.2 Loop Blocking
This technique is very e�ective to reduce the number of

D-cache misses, but it often increases Np largely due to
the overhead of loop bound decision. To estimate rdm, we
propose an estimation technique for the number of misses
caused by loop blocking. An example of loop blocking is
shown in Figure 6. Two innermost loops (loop k and j)
in the original version are blocked to avoid self-interference
and the graphical representation is shown in Figure 7. One
tile of array Z (BxB words) is fully used during the iteration
of two innermost loops in the tiled version (loop k and j),
whereas only B words of array Y and X are used, respec-
tively. Also, loop i uses the same tile of array Z used in two
innermost loops, while each iteration uses di�erent B words
of array X and Y. Therefore, unavoidable misses to complete
one iteration of loop i, namely intrinsic misses are:

Mintrinsic=
B2

CL
(array Z) + 2

N � B

CL
(array X and Y) (12)

where CL is the cache line size in terms of words.
Notice that the tile size B can be chosen such that there

is no self-interference using the tile size selection algorithms
presented in [9, 10, 11]. Among them, we use the algorithm
proposed in [10].
The misses due to cross interference can be estimated us-

ing the footprint of arrays in loop k. The ratio of the space
occupied by array Z over the cache size, CS is B � B=CS.

156

for (i = 0; i < N; i++)
for (k = 0; k < N; k++)

r0 = Y[i][k];
for (j = 0; k < N; k++)

X[i][j] += r0*Z[k][j];

(a) Original version

for (kk = 0; kk < N; kk+=B)
for (jj = 0; jj < N; jj+=B)
for (i = 0; i < N; i++)

for (k = max(0, kk) < min(N, kk+B-1); k++)
if (jj = 0)

r0 = Y[i][k];
for (j = max(0, jj); j < min(N, jj+B-1); j++)

X[i][j] += r0*Z[k][j];

(b) Tiled version

Figure 6: An example of loop blocking (Tiling)

loop k, j
loop j

loop k

loop i loop i

loop i, j, k

array X array Y array Z

Figure 7: Data access pattern of loop blocking

Similarly, the ratio for array X and Y over the cache size is
commonly B=CS. Thus, the probability that two or more
references will access the same cache line is:

Pcross =
2 � B2

CS
�

B

CS
+ (

B

CS
)2 +

B2

CS
� (

B

CS
)2 (13)

and total cross-interference occurred per iteration of loop i
is Mcross = Pcross � B

2, where B is the trip count of loop
k and j. Therefore, total misses to complete the whole loop
nest is shown next and rdm is simply Mtotal block=Ndm.

Mtotal block = (Mintrinsic +Mcross �N) � (
N

B
)2 (14)

On the other hand, rim can be set to 1 because the code
size increase is trivial, but rp should be carefully analyzed.

Np(blocking) = Np +

NX
i=0

(

kY
l=0

TCl � Tmo) (15)

where, N is the total number of min and max operations
appearing in the tiled version and k is the loop level that
each min or max operation can be moved without destroy-
ing the dependency. Also, Tmo is the cost of min or max
operation. Notice that the cost of min=max operation can
be characterized by simulating a simple program which only
includes min=max operation and the cost can be generally
used for all other programs.
In Figure 6 the min and max operations in level j can

be moved up to level jj, thus its impact on Np is marginal.
But if the tiled version is skewed or has triangle-shape tile,
these operations cannot be moved, thus its impact cannot
be neglected. Finally, rp is simply Np(blocking)=Np.

4. EXPERIMENTAL RESULTS
The experiment was conducted based on WATTCH sim-

ulator. The processor was con�gured such that it had one
arithmetic unit for both integer and
oating point operation

external memory latency power
M1 30 0.1
M2 50 0.1
M3 30 0.5
M4 50 0.5

Table 2: Four di�erent memory con�gurations

M pgm cost metrics
performance energy perf. * energy
unroll block unroll block unroll block

1 m100 0.82 0.75* 0.80* 0.91 0.66 0.68+
1 m200 0.85 0.74* 0.80* 0.90 0.68 0.67*
1 l100 0.82* 0.89 0.81* 1.00 0.66* 0.89
1 l200 0.84* 0.90 0.84* 0.96 0.73* 0.86
1 sub 0.88* 1.02 0.77* 1.02 0.68* 1.04
1 idct 0.82* 1.06 0.69* 1.06 0.56* 1.12
2 m100 0.85 0.63* 0.82 0.82* 0.70 0.52*
2 m200 0.85 0.62* 0.82 0.82* 0.70 0.51*
2 l100 0.85 0.80* 0.82* 0.93 0.70* 0.74
2 l200 0.89 0.83* 0.87* 0.96 0.77* 0.80
2 sub 0.91* 1.01 0.80* 1.00 0.73* 1.01
2 idct 0.85* 1.07 0.72* 1.07 0.61* 1.12
3 m100 0.82 0.75* 0.83 0.78* 0.71 0.59*
3 m200 0.85 0.74* 0.83 0.78* 0.71 0.58*
3 l100 0.82* 0.89 0.84* 0.95 0.70* 0.76
3 l200 0.84* 0.90 0.85* 0.93 0.72* 0.84
3 sub 0.88* 1.02 0.82* 1.02 0.72* 1.04
3 idct 0.82* 1.06 0.72* 1.06 0.59* 1.12
4 m100 0.85 0.63* 0.86 0.67* 0.73 0.42*
4 m200 0.85 0.62* 0.86 0.67* 0.73 0.42*
4 l100 0.85 0.80* 0.85 0.84* 0.72 0.67*
4 l200 0.86 0.83* 0.87 0.85* 0.75 0.71*
4 sub 0.91* 1.01 0.85* 1.00 0.77* 1.01
4 idct 0.85* 1.07 0.77* 1.01 0.77* 1.08

Table 3: Decision accuracy of the proposed approach

without L2-cache. Also, both D-cache and I-cache were 4K
and their associativity was 2.
We used four di�erent external memory con�gurations

shown in Table 2. Note that latency is in terms of pro-
cessor cycle and the power consumption is normalized to
the average power consumption of processor.
We applied our technique to two well-known programs

used for loop-blocking - matrix multiplication (m100, m200)
and LU-decomposition (lu100, lu200). Also, it was applied
to two kernels of mp3 decoder - subbandSynthesis (sub) and
inverse discrete cosine transform(idct) [15].
First, instruction-level simulation was performed for each

program to extract necessary parameters -Np, Nm, Pap, and
Pip. Then, each program was transformed into two versions
(unrolled version and tiled version) and transformation cost
was estimated without considering speci�c memory con�g-
uration. Next, we performed the transformation selection
step for each program by applying a set of Inequalities(7,
8, 9) to decide the most e�ective transformation. This step
was repeated four times with four di�erent di�erent external
memories shown in Table 2. To measure the accuracy of the
selection step, the optimal transformation of each program
was searched by performing the simulation for each trans-
formed version. Table 3 shows the comparison between the
decisions made by our technique and simulation results.

157

The numbers in Table 3 were obtained from the simula-
tion and normalized to the original program. Notice that we
marked our decisions with *" and \+" in Table 3. *" rep-
resents the correct decision, while \+" represents the wrong
decision. The proposed technique achieves about 95% accu-
racy and the penalty due to wrong decisions was less than
5% over the correct decisions (For example, a wrong decision
marked by a + sign was the case for the program m100 with
memory con�guration M1 for energy-delay product). Fur-
thermore, our approach found the optimal transformation,
even when the best execution time and best energy con-
sumption were found in di�erent versions (m100 and m200
in M1, l100 and l200 in M2).
Notice that this situation usually happens when the power

consumption ratio of processor over the external memory
is large. In this case, the slope di�erence of energy and
execution time equations in Figure 1 becomes larger and
each equation has di�erent dominant factor.
Two kernels from mp3 decoders were not suitable for loop

blocking due to small array size and complex array indexing,
even though program sub su�ers from data cache misses.
Thus, more aggressive and general transformations for data
locality improvement are required. It is also worthwhile to
mention that the instruction-level simulation was performed
twice (one for parameter extraction, one for loop unrolling)
for each program to make a decision.

0

1

2

3

4

5

6

m100 m200 l100 l200 sub idct

programs

E
rr

o
r

(%
)

rp

rm

0

5

10

15

20

25

m100 m200 l100 m200 sub idct

programs

E
rr

o
r(

%
)

rp

rm

Figure 8: Transformation cost estimation error of
loop unrolling (top) and loop blocking(bottom)

We also show the transformation cost estimation error of
each transformation in Figure 8. On average, the estimation
accuracy of loop unrolling is about 95% for rp and 99% for
rm (almost invisible in Figure 8 (top) because the error is too
small), while the estimation error of loop blocking is about
11:5% for rdm and 4% for rp.

5. CONCLUSION AND FUTURE WORK
We proposed an abstract software performance and en-

ergy estimation when multiple transformations are avail-
able. This approach greatly reduces the time required for
code quality assessment compared to traditional approaches
by avoiding iterative-ISS. The proposed approach found the
optimal transformation with 95% accuracy and the penalty

when the non-optimal transformation is selected is within
5%. Also, the proposed technique can easily reselect the
optimal transformation when the memory con�guration is
changed. With this strategy, we were able to reduce the en-
ergy consumption in average by 20% and also improve the
performance in average by 21%. It was also shown that both
optimal performance and optimal energy consumption were
not always found by single transformation because their im-
provement ratio is di�erent depending on the power con-
sumption ratio between the processor and memory.
Finally, we would like to address three limitations of our

approach which will be enhanced in the future. First, our
technique is limited to single-stage optimization, namely
each optimization is considered independently. The reason
is that the present tool has as a main objective the compar-
isons of transformations for di�erent hardware parameters.
We will extend our technique to support multi-stage opti-
mization which may provide better quality of transformed
code. Second, there are only two transformations are avail-
able, but we will encapsulate more high-level transforma-
tions such as in-lining in our framework. Third, the met-
ric for the transformation is two-dimensional i.e. processor
cycles and external memory cycles which are known as the
most dominant factors in performance and energy consump-
tion. But our appoarch can be extended to consider another
metric such as on-chip memory cycles (by considering caches
as separate components) using the similar concept.

6. REFERENCES
[1] T. Ball and J. Larus, \Optimally Profiling and Tracing Programs",

Proceedings of the 19th Annual Symposium on Principles of

Programming Languages, Jan., 1992

[2] E.-Y. Chung, L. Benini, and G. De Micheli, \Energy Efficient Source

Code Transformation based on Value Profiling", 1st workshop for Compilers

and Operating Systems for Low-Power, pp. D-1-D.7, Philadelphia, PA, 2000

[3] V. Tiwari, S. Malik, A. Wolfe, \Instruction Level Power Analysis and

Optimization of Software", Journal of VLSI Signal Processing Systems, vol. 13,

pp.223-233, 1996

[4] L. Benini and G. De Micheli, \System-Level Power Optimization

Techniques and Tools", ACM TODAES, vol. 5, issue 2, pp.115-192, Apr.

2000

[5] H. Mehta, R. Owens, M. Irwin, R. Chen, and D. Ghosh, \Techniques for

Low Energy Software", ISLPED, pp.72-75, 1997

[6] G. Esakkimuthu, N. Vijaykrishnan, M. Kandemir, M. Irwin, \Memory

system energy: influence of hardware-software optimizations," ISLPED,

pp. 244-246, 2000.

[7] Y. Li and J. Henkel, \A Framework for Estimating and Minimizing

Energy Dissipation of Embedded HW/SW Systems", Design Automation

Conference, pp.188-193, 1997

[8] F. Cathoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A.

Vandecappelle, Custom Memory Management Methodology: Exploration of

Memory Organization for Embedded Multimedia System Design, Kluwer, 1998

[9] M. Wolfe, High Performance Compilers for Parallel Computing, Addison-Wesley,

1996

[10] M.S. Lam, E.E. Rothberg, and M.E. Wolf, \The Cache Performance and

Optimizations of Blocked Algorithms", ASPLOS, pp. 63-74, 1991

[11] P.Panda, H. Nakamura, N. Dutt, and A. Nicolau, \Augmenting Loop

Tiling with Data Alignment for Improved Cache Performance", IEEE

trans. on Computers, vol. 48, No. 2, pp. 142-148, 1999

[12] D. Bacon, S, Graham, and O. Sharp, \Compiler Transformation for

High-Perforamnce Computing", ACM Computing Surveys, pp.345-420, vol26,

No. 4, Dec. 1994

[13] Stanford Compiler Group, The SUIF Library: A set of core routines for

manipulating SUIF data structures, Stanford University, 1994

[14] D. Brooks, V. Tiwari, and M. Martonosi, \Wattch: a framework for

architectural-level power analysis and optimizations", ISCA, pp. 83-94,

2000

[15] T. Simunic, L. Benini, G. De Micheli, and M. Hans, \Source Code

Optimization and Profiling of Energy Consumption in Embedded

Systems", ISSS, pp. 193-198, 2000.

[16] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in Embedded

Systems-on-Chip: Optimizations and Exploration. Kluwer, 1999.

158

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

