
To appear in IEEE Journal of Solid State Circuits 1996

CACTI: An Enhanced Cache Access and Cycle Time Model

Steven J.E. Wilton
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada M5S 1A4

(416) 978-1652
wilton@eecg.toronto.edu

Norman P. Jouppi
Digital Equipment Corporation Western Research Lab

250 University Avenue
Palo Alto, CA 94301

(415) 617-3305
jouppi@pa.dec.com

May 14, 1996

Abstract

This paper describes an analytical model for the access and cycle times of on-chip direct-
mapped and set-associative caches. The inputs to the model are the cache size, block size,
and associativity, as well as array organization and process parameters. The model gives
estimates that are within 6% of Hspice results for the circuits we have chosen.

This model extends previous models and �xes many of their major shortcomings. New
features include models for the tag array, comparator, and multiplexor drivers, non-step
stage input slopes, rectangular stacking of memory subarrays, a transistor-level decoder
model, column-multiplexed bitlines controlled by an additional array organizational param-
eter, load-dependent size transistors for wordline drivers, and output of cycle times as well
as access times.

Software implementing the model is available via ftp.

1

To appear in IEEE Journal of Solid State Circuits 1996

1 Introduction

Most computer architecture research involves investigating trade-o�s between various al-

ternatives. This can not be done adequately without a �rm grasp of the costs of each

alternative. For example, it is impossible to compare two di�erent cache organizations

without considering the di�erence in access or cycle times. Similarly, the chip area and

power requirements of each alternative must be taken into account. Only when all the costs

are considered can an informed decision be made.

Unfortunately, it is often di�cult to determine costs. One solution is to employ ana-

lytical models that predict costs based on various architectural parameters. In the cache

domain, both chip area models [1] and access time models [2] have been published.

In [2], Wada et al. present an equation for the access time of an on-chip cache as

a function of various cache parameters (cache size, associativity, block size) as well as

organizational and process parameters. Unfortunately, Wada's access time model has a

number of signi�cant shortcomings. For example, the cache tag and comparator in set-

associative memories are not modeled, and in practice, these often constitute the critical

path. Each stage in their model (e.g., bitline, wordline) assumes that the inputs to the

stage are step waveforms; actual waveforms in memories are far from steps and this can

greatly impact the delay of a stage. In the Wada model, all memory subarrays are stacked

linearly in a single �le; this can result in aspect ratios of greater than 10:1 and overly

pessimistic access times. Wada's decoder model is a gate-level model which contains no

wiring parasitics. In addition, transistor sizes in Wada's model are �xed independent of the

load. For example, the wordline driver is always the same size independent of the number

of cells that it drives. Finally, Wada's model predicts only the cache access time, whereas

both the access and cycle time are important for design comparisons.

This paper describes a signi�cant improvement and extension of Wada's access time

model. The enhanced model is called CACTI. Some of the new features are:

� a tag array model with comparator and multiplexor drivers

� non-step stage input slopes

� rectangular stacking of memory subarrays

� a transistor-level decoder model

� column-multiplexed bitlines and an additional array organizational parameter

2

To appear in IEEE Journal of Solid State Circuits 1996

� load-dependent transistor sizes for wordline drivers

� cycle times as well as access times

The enhancements to Wada's model can be classi�ed into two categories. First, the

assumed cache structure has been modi�ed to more closely represent real caches. Some

examples of these enhancements are the column multiplexed bitlines and the inclusion of

the tag array. The second class of enhancements involve the modeling techniques used to

estimate the delay of the assumed cache structure (e.g. taking into account non-step input

rise times). This paper describes both classes of enhancements. After discussing the overall

cache structure and model input parameters, the structural enhancements are described

in Section 4. The modeling techniques used are then described in Section 5. A complete

derivation of all the equations in the model is far beyond the scope of a journal paper but

is available in a technical report [3].

Any model needs to be validated before the results generated using the model can be

trusted. In [2], a Hspice model of the cache was used to validate the authors' analytical

model. The same approach was used here; Section 6 compares the model predictions to

Hspice measurements. Of course, this only shows that the analytical model matches the

Hspice model; it does not address the issue of how well the assumed cache structure (and

hence the Hspice model) reects a real cache design. When designing a real cache, many

di�erent circuit implementations are possible. In architecture studies, however, the relative

di�erences in access/cycle times between di�erent cache sizes or con�gurations are usually

more important than absolute access times. Thus, even though our model predicts absolute

access times for a speci�c cache implementation, it can be used in a wide variety of situations

when an estimate of the cost of varying an architectural parameter is required. Section 7

gives some examples of how the model can be used in architectural studies.

The model described in this paper has been implemented, and the software is available

via ftp. Appendix A explains how to obtain and use the CACTI software.

2 Cache Structure

Figure 1 shows the organization of the SRAM cache being considered. The decoder �rst

decodes the address and selects the appropriate row by driving one wordline in the data

array and one wordline in the tag array. Each array contains as many wordlines as there

3

To appear in IEEE Journal of Solid State Circuits 1996

DATA
ARRAY

TAG
ARRAY

DECODER

COMPARATORS

COLUMN
MUXES

OUTPUT
DRIVERS

SENSE
AMPS

SENSE
AMPS

COLUMN
MUXES

MUX
DRIVERS

ADDRESS
 INPUT

BIT LINES

WORD
LINES

BIT LINES

WORD
LINES

VALID OUTPUT

DATA OUTPUT

OUTPUT
DRIVER

Figure 1: Cache structure

are rows in the array, but only one wordline in each array can go high at a time. Each

memory cell along the selected row is associated with a pair of bitlines; each bitline is

initially precharged high. When a wordline goes high, each memory cell in that row pulls

down one of its two bitlines; the value stored in the memory cell determines which bitline

goes low.

Each sense ampli�er monitors a pair of bitlines and detects when one changes. By

detecting which line goes low, the sense ampli�er can determine the contents of the selected

memory cell. It is possible for one sense ampli�er to be shared among several pairs of

bitlines. In this case, a multiplexor is inserted before the sense amps; the select lines of the

multiplexor are driven by the decoder. The number of bitlines that share a sense ampli�er

depends on the layout parameters described in the next section.

The information read from the tag array is compared to the tag bits of the address. In an

A-way set-associative cache, A comparators are required. The results of the A comparisons

are used to drive a valid (hit/miss) output as well as to drive the output multiplexors.

These output multiplexors select the proper data from the data array (in a set-associative

cache or a cache in which the data array width is larger than the output width), and drive

4

To appear in IEEE Journal of Solid State Circuits 1996

the selected data out of the cache.

3 Cache and Array Organization Parameters

Table 1 shows the �ve model input parameters.

Parameter Meaning

C Cache size in bytes

B Block size in bytes

A Associativity

bo Output width in bits

baddr Address width in bits

Table 1: CACTI input parameters

In addition, there are six array organization parameters that are used to estimate the

cache access and cycle time. In the basic organization discussed by Wada [2], a single

set shares a common wordline. Figure 2-a shows this organization, where B is the block

size (in bytes), A is the associativity, and S is the number of sets (S = C
B�A

). Clearly,

such an organization could result in an array that is much larger in one direction than the

other, causing either the bitlines or wordlines to be very slow. To alleviate this problem,

Wada describes how the array can be broken horizontally and vertically and de�nes two

parameters, Ndwl and Ndbl, which indicates to what extent the array has been divided.

Figure 2-b introduces another organization parameter, Nspd. This parameter indicates how

many sets are mapped to a single wordline, and allows the overall access time of the array

to be changed without breaking it into smaller subarrays. The optimum values of Ndwl,

Ndbl, and Nspd depend on the cache and block sizes, as well as the associativity.

We assume that the tag array can be con�gured independently of the data array. Thus,

there are also three tag array parameters: Ntwl, Ntbl, and Ntspd.

4 Model Components

This section gives an overview of key portions of the cache read access and cycle time

model. The access and cycle times were derived by estimating delays due to the following

components:

5

To appear in IEEE Journal of Solid State Circuits 1996

8xBxA

S S/2

16xBxA

b) Nspd = 2a) Original Array

Figure 2: Cache organization parameter Nspd

� decoder

� wordlines (in both the data and tag arrays)

� bitlines (in both the data and tag arrays)

� sense ampli�ers (in both the data and tag arrays)

� comparators

� multiplexor drivers

� output drivers (data output and valid signal output)

The delay of each these components is estimated separately and the results combined

to estimate the access and cycle time of the entire cache. A complete description of each

component can be found in [3]. In this paper, we focus on those parts that di�er signi�cantly

from Wada's model.

4.1 Decoder

Wada's model contains a gate-level decoder model without any parasitic capacitances or

resistances. It also assumes all memory sub-arrays are stacked single �le in a linear array.

We have used a detailed transistor-level decoder that includes both parasitic capacitances

and resistances. We have also assumed that sub-arrays are placed in a two-dimensional

array to minimize critical wiring parasitics.

Figure 3 shows the logical structure of the decoder architecture used in this model. The

decoder in Figure 3 contains three stages. Each block in the �rst stage takes three address

bits (in true and complement), and generates a 1-of-8 code, driving a precharged decoder

bus. These 1-of-8 codes are combined using NOR gates in the second stage. The �nal

6

To appear in IEEE Journal of Solid State Circuits 1996

3
to
8

3
to
8

WORDLINE
DRIVER

Word
Lines

Address

Figure 3: Single decoder structure

stage is an inverter that drives each wordline driver. We also model separate decoder driver

bu�ers for driving the 3-to-8 decoders of the data arrays and the tag arrays.

Estimating the wire lengths in the decoder requires knowledge of the memory tile layout.

As mentioned in Section 3, the memory is divided into Ndwl �Ndbl subarrays; each of these

arrays is
8BANspd

Ndwl
cells wide. If these arrays were placed side-by-side, the total memory

width would be 8 � B �A �Ndbl �Nspd cells. Instead, we assume they are grouped in two-

by-two blocks, with the 3-to-8 predecode NAND gates at the center of each block; Figure 4

shows one of these blocks. This reduces the length of the connection between the decoder

driver and the predecode block to approximately one quarter of the total memory width,

or 2 �B � A �Ndbl �Nspd. The length of the connection between the predecode block and

the NOR gate is then (on average) half of the subarray height, which is C
BANdblNspd

cells.

In large memories with many groups the bits in the memory are arranged so that all bits

driving the same data output bus are in the same group, shortening the data bus.

4.2 Variable Size Wordline Driver

The size of the wordline driver in Wada's model is independent of the number of cells

attached to the wordline; this severely overestimates the wordline delay of large arrays.

Our model assumes a variable-sized wordline driver. Normally, a cache designer would

choose a target wordline rise time, and adjust the driver size appropriately. Rather than

7

To appear in IEEE Journal of Solid State Circuits 1996

Pre-
decode

Address in
from driver

Predecoded
address

Channel for data output bus

Figure 4: Memory block tiling assumptions

assuming a constant rise time for caches of all sizes, however, we assume the desired rise

time (to a 50% word line swing) is:

desired rise time = krise � ln(cols) � 0:5

where

cols =
8BANspd

Ndwl

and krise is a constant that depends on the implementation technology. To obtain the

transistor size that would give this rise time, it is necessary to work backwards, using an

equivalent RC circuit to �nd the required driver resistance, and then �nding the transistor

width that would give this resistance. This is described in Section 5.5.

4.3 Bitlines and Sense Ampli�ers

Wada's model does not apply to memories with column multiplexing. Our model allows

column multiplexing using NMOS pass transistors between several pairs of bitlines and a

shared sense amp. In our model, the degree of column multiplexing (number of pairs of

bitlines per sense amp) is Nspd �Ndbl.

Although we use the same sense amp as Wada's model, we precharge the bitlines to

two NMOS diodes less than Vdd since the sense amp performs poorly with a common-mode

8

To appear in IEEE Journal of Solid State Circuits 1996

a0

0
b

a0

0
b b

a

b

a

b

a

b

1

1 1

a1 n

n

n

n

Vdd

PRECHARGE

OUT

large n

small pFrom
dummy
row
sense
amp
in tag
array

EVAL

Figure 5: Comparator

voltage of Vdd.

4.4 Comparator

Although Wada's model gives access times for set-associative caches, it only models the data

portion of a set-associative memory. However, the tag portion of a set-associative memory

is often the critical path. Our model assumes the tag memory array circuits are similar to

those on the data side with the addition of comparators to choose between di�erent sets.

The comparator that was modeled is shown in Figure 5. The outputs from the sense

ampli�ers are connected to the inputs labeled bn and bn-bar. The an and an-bar inputs are

driven by tag bits in the address. Initially, the output of the comparator is precharged high;

a mismatch in any bit will close one pull-down path and discharge the output. In order to

ensure that the output is not discharged before the bn bits become stable, node EVAL is

held high until roughly three inverter delays after the generation of the bn-bar signals. This

is accomplished by using a timing chain driven by a sense amp on a dummy row in the tag

array. The output of the timing chain is used as a \virtual ground" for the pull-down paths

of the comparator. When the large NMOS transistor in the �nal inverter in the timing

chain begins to conduct, the virtual ground (and hence the comparator output if there is a

mismatch) begins to discharge.

9

To appear in IEEE Journal of Solid State Circuits 1996

4.5 Set Multiplexor and Output Drivers

In a set-associative cache, the result of the A comparisons must be used to select which

of the A possible data blocks are to be sent out of the cache. Since the width of a block

(8B) is usually greater than the cache output width (bo), it is also necessary to choose part

of the selected block to drive the output lines. An A-way set-associative cache contains

A multiplexor driver blocks, as shown in Figure 6. Each multiplexor driver uses a single

comparator output bit, along with address bits, to determine which bo data array outputs

drive the output bus.

bo
bo

8B
bo

Mux driver circuit

bo
bo

8B
bo

Mux driver circuit

A

bo
data
bus
outputs

1

Figure 6: Overview of data bus output driver multiplexors

5 Model Derivation

The delay of each component was estimated by decomposing each component into several

equivalent RC circuits, and using simple RC equations to estimate the delay of each stage.

This section shows are resistances and capacitances were estimated, as well as how they

were combined and the delay of a stage calculated. The stage delay in our model depends

on the slope of its inputs; this section also describes how this was done.

5.1 Estimating Resistances

To use the RC approximations described in Sections 5.5 and 5.6, it is necessary to estimate

the full-on resistance of a transistor. The full-on resistance is the resistance seen between

drain and source of a transistor assuming the gate voltage is constant and the gate is fully

conducting. This resistance can also be used for pass transistors that (as far as the critical

path is concerned) are fully conducting.

It is assumed that the equivalent resistance of a conducting transistor is inversely pro-

10

To appear in IEEE Journal of Solid State Circuits 1996

portional to the transistor width (only minimum-length transistors were used). Thus,

equivalent resistance =
R

W

where R is a constant (di�erent for NMOS and PMOS transistors) and W is the transistor

width.

5.2 Estimating Gate Capacitances

The RC approximations in Section 5.5 and 5.6 also require an estimation of a transistor's

gate and drain capacitances. The gate capacitance of a transistor consists of two parts: the

capacitance of the gate itself, and the capacitance of the polysilicon line going into the gate.

If Le� is the e�ective length of the transistor, Lpoly is the length of the poly line going into

the gate, Cgate is the capacitance of the gate per unit area, and Cpolywire is the poly line

capacitance per unit area, then a transistor of width W has a gate capacitance of:

gatecap(W) = W �Le� � Cgate + Lpoly � Le� � Cpolywire

The same formula holds for both NMOS and PMOS transistors.

The value of Cgate depends on whether the transistor is being used as a pass transistor,

or as a pull-up or pull-down transistor in a static gate. Thus, two di�erent values of Cgate

are required.

5.3 Drain Capacitances

Figure 7 shows typical transistor layouts for small and large transistors. We have assumed

that if the transistor width is larger than 10�m, the transistor is split as shown in Figure 7-b.

The drain capacitance is composed of both an area and perimeter component. Using

the geometries in Figure 7, the drain capacitance for a single transistor can be obtained. If

the width is less than 10�m,

draincap(W) = 3Le� �W � Cdi�area + (6Le� +W) � Cdi�side +W �Cdi�gate

where Cdi�area, Cdi�side, and Cdi�gate are process dependent parameters (there are two

values for each of these: one for NMOS and one for PMOS transistors). Cdi�gate is the

11

To appear in IEEE Journal of Solid State Circuits 1996

GATE

Leff

W

3 x Leff 3 x Leff

SOURCEDRAIN

GATE

Leff

3 x Leff 3 x Leff

SOURCEDRAIN

3 x Leff

SOURCE

W/2

a) width < 10�m b) width � 10�m

Figure 7: Transistor Geometries

sum of the junction capacitance due to the di�usion and the oxide capacitance due to the

gate/source or gate/drain overlap.

If the width is larger than 10�m, we assume the transistor is folded (see Figure 7-b),

reducing the drain capacitance to:

draincap(W) = 3Le� �
W

2
� Cdi�area + 6Le� � Cdi�side +W � Cdi�gate

Now, consider two transistors (with widths less than 10�m) connected in series, with

only a single Le� � W wide region acting as both the source of the �rst transistor and

the drain of the second. If the �rst transistor is on, and the second transistor is o�, the

capacitance seen looking into the drain of the �rst is:

draincap(W) = 4Le� �W � Cdi�area + (8Le� +W) � Cdi�side + 3W � Cdi�gate

Figure 8 shows the situation if the transistors are wider than 10�m. In this case, the

capacitance seen looking into the drain of the inner transistor (x in the diagram) assuming

it is on but the outer transistor is o� is:

draincap(W) = 5Le� �
W

2
� Cdi�area + 10Le� � Cdi�side + 3W � Cdi�gate

12

To appear in IEEE Journal of Solid State Circuits 1996

x

3xLeff

Leff

3xLeff

W/2

Leff

3xLeff

Figure 8: Two stacked transistors if each width � 10�m

5.4 Other parasitic e�ects

Parasitic resistances and capacitances of the bitlines, wordlines, predecode lines, and various

other signals within the cache are also modeled. These resistances and capacitances are �xed

values per unit length; the capacitance includes an expected value for the area and sidewall

capacitances to the substrate and other layers.

5.5 Simple RC Circuits

Each component described in Section 4 can be decomposed into several �rst or second

order RC circuits. Figure 9-a shows a typical �rst-order circuit. The time for node x to rise

or fall can be determined using the equivalent circuit of Figure 9-b. Here, the pull-down

path (assuming a rising input) of the �rst stage is replaced by a resistance, and the gate

capacitances of the second stage and the drain capacitance of the �rst stage are replaced by

a single capacitor. The resistances and capacitances are calculated as shown in Sections 5.1

to 5.3. In stages in which the two gates are separated by a long wire, parasitic capacitances

and resistances of the wire are included in Ceq and Req.

The delay of the circuit in Figure 9 can be estimated using an equation due to Horowitz [4]

(assuming a rising input):

delay = tf �

s�
log

�
vth
Vdd

��
2

+ 2triseb

�
1�

vth
Vdd

�
=tf

where vth is the switching voltage of the inverter, trise is the input rise time, tf is the output

13

To appear in IEEE Journal of Solid State Circuits 1996

x CeqReq

x

a) schematic b) equivalent circuit

Figure 9: Example Stage

time constant assuming a step input (tf = Req � Ceq), and b is the fraction of the input

swing in which the output changes (we used b = 0:5). For a falling input with a fall time of

tfall, the above equation becomes:

delay = tf �

s�
log

�
1�

vth
Vdd

��
2

+
2tfall � b � vth

tf � Vdd

In this case, we used b = 0:4.

The delay of a gate is de�ned as the time between the input reaching the switching

voltage (threshold voltage) of the gate, and the output reaching the threshold voltage of

the following gate. If the gate drives a second gate with a di�erent switching voltage, the

above equations need to be modi�ed slightly. If the switching voltage of the switching gate

is vth1 and the switching voltage of the following gate is vth2, then:

delay = tf �

s�
log

�
vth1
Vdd

��
2

+ 2triseb

�
1�

vth1
Vdd

�
=tf + tf

�
log

�
vth1
Vdd

�
� log

�
vth2
Vdd

��

for a rising input, and

delay = tf �

s�
log

�
1�

vth1
Vdd

��
2

+
2trise � b � vth1

tf � Vdd
+ tf

�
log

�
1�

vth1
Vdd

�
� log

�
1�

vth2
Vdd

��

for a falling input.

As described in Section 4.2, the size of the wordline driver depends on the number of

cells being driven. For a given array width, the capacitance driven by the wordline driver

can be estimated by summing the gate capacitance of each pass transistor being driven by

the wordline, as well as the metal capacitance of the line. Using this, and the desired rise

14

To appear in IEEE Journal of Solid State Circuits 1996

time, the required pull-up resistance of the driver can be estimated by:

Rp =
�desired rise time

Ceq � ln(0:5)

(recall that the desired rise time is assumed to be the time until the wordline reaches 50%

of its maximum value).

Once Rp is found, the required transistor width can be found using the equation in

Section 5.1. Since this \backwards analysis" did not take into account the non-zero input

fall time, we then use Rp and the wordline capacitance and calculate the adjusted delay

using Horowitz's equations as described earlier. These transistor widths are also used to

estimate the delay of the �nal gate in the decoder.

5.6 RC-Tree Solutions

All but two of the stages along the cache's critical path can be approximated by simple

�rst-order stages as in the previous section. The bitline and comparator equivalent circuits,

however, require more complex solutions. Figure 10 shows an equivalent circuit that can

be used for the bitline and comparator circuits. From [5], the delay of this circuit can be

written as:

Tstep = [R2C2 + (R1 +R2)C1] ln

�
vstart
vend

�

where vstart is the voltage at the beginning of the transistion, and vend is the voltage at

which the stage is considered to have \switched" (vstart > vend). For the comparator, vstart

is Vdd and vend is the threshold voltage of the multiplexor driver. For the bitline subcircuit,

vstart is the precharged voltage of the bitlines (vpre), and vend is the voltage which causes

the sense ampli�er output to fully switch (vpre � vsense).

C R

C1

R1

2 2

Figure 10: Equivalent circuit for bitline and comparator

15

To appear in IEEE Journal of Solid State Circuits 1996

When estimating the bitline delay, a non-zero wordline rise time is taken into account

as follows. Figure 11 shows the wordline voltage as a function of time for a step input. The

time di�erence Tstep shown on the graph is the time after the input rises (assuming a step

input) until the output reaches vpre�vsense (the output voltage is not shown on the graph).

An equation for Tstep is given above. During this time, we can consider the bitline being

\driven" low. Because the current sourced by the access transistor can be approximated as

i � gm(Vgs � Vt)

the shaded area in the graph can be thought of as the amount of charge discharged before

the output reaches vpre � vsense . This area can be calculated as:

area = Tstep � (Vdd � Vt)

(Vt is the voltage at which the NMOS transistor begins to conduct).

t

T
step

t

Vdd
input
voltage

V

Figure 11: Step input

If we assume that the same amount of \drive" is required to drive the output to vpre �

vsense regardless of the shape of the input waveform, then we can calculate the output delay

for an arbitrary input waveform. Consider Figure 12-a. If we assume the area is the same

as in Figure 11, then we can calculate the value of T (delay adjusted for input rise time).

Using simple algebra, it is easy to show that

T =

s
2 � Tstep � (Vdd � Vt)

m

where m is the slope of the input waveform (this can be estimated using the delay of the

previous stage). Note that the bitline delay is measured from the time the wordline reaches

16

To appear in IEEE Journal of Solid State Circuits 1996

t

slope = m

t

vdd area = T
step

(V
dd −v

t
)

input
voltage

T

V
t

slope = m

area = T
step

(V
dd

−v t)

T

t

V
dd input

voltage

V

a) Slow-rising input b) Fast-rising input

Figure 12: Non-zero input rise time

Vt. Unlike the version of the model described in [3], the wordline rise time in this model

is de�ned as the time until the bitlines begin to discharge; this happens when the wordline

reaches Vt.

If the wordline rises quickly, as shown in Figure 12-b, then the algebra is slightly di�erent.

In this case,

T = Tstep +
Vdd � Vt
2m

The cross-over point between the two cases for T occurs when:

m =
Vdd � Vt
2Tstep

The non-zero input rise time of the comparator can be taken into account similarly.

The delay of the comparator is composed of two parts: the delay of the timing chain and

the delay discharging the output (see Figure 5). The delay of the �rst three inverters in

the timing chain can be approximated using simple �rst-order RC stages as described in

Section 5.5. The time to discharge the comparator output through the �nal inverter can

be estimated using the equivalent circuit of Figure 10 and taking into account the non-zero

input rise time using the same technique that was used for the bitline subcircuit. In this

case, the \input" is the output of the third inverter in the timing chain (we assume the

timing chain is long enough that the an and bn lines are stable). The discharging delay of

the comparator output is measured from the time the input reaches the threshold voltage

of the �nal timing chain inverter. The equations for this case can be found in [3].

17

To appear in IEEE Journal of Solid State Circuits 1996

6 Total Access and Cycle Time

This section describes how delays of the model components described in Section 4 are

combined to estimate the cache read access and cycle times.

6.1 Access Time

There are two potential critical paths in a cache read access. If the time to read the tag

array, perform the comparison, and drive the multiplexor select signals is larger than the

time to read the data array, then the tag side is the critical path, while if it takes longer to

read the data array, then the data side is the critical path. In many cache implementations,

the designer would try to margin the cache design such that the tag path is slightly faster

than the data path so that the multiplexor select signals are valid by the time the data

is ready. Often, however, this is not possible. Therefore, either side could determine the

access time, meaning both sides must be modeled in detail.

In a direct-mapped cache, the access time is the larger of the two paths:

Taccess dm = max(Tdataside + Toutdrive data; Ttagside dm + Toutdrive valid)

where Tdataside is the delay of the decoder, wordline, bitline, and sense ampli�er for the

data array, Ttagside dm is the delay of the decoder, wordline, bitline, sense ampli�er, and

comparator for the tag array, Toutdrive dm is the delay of the cache data output driver, and

Toutdrive valid is the delay of the valid signal driver.

In a set-associative cache, the tag array must be read before the data signals can be

driven. Thus, the access time is:

Taccess;sa = max(Tdataside; Ttagside sa) + Toutdrive data

where Ttagside sa is the same as Ttagside dm, except that it includes the time to drive the

select lines of the output multiplexors.

Figures 13 to 16 show analytical and Hspice estimations of the data and tag sides for

direct-mapped and 4-way set-associative caches. A 0:8�m CMOS process was assumed [6].

To gather these results, the model was �rst used to �nd the array organization parameters

which resulted in the lowest access time via exhaustive search for each cache size. These

18

To appear in IEEE Journal of Solid State Circuits 1996

Data Side
(including

output
driver)

Cache Size in bytes (B=16 bytes, A=1)

2048 8192 32768 131072

0ns

1ns

2ns

3ns

4ns

5ns

6ns

7ns

8ns

9ns

10ns

11ns

12ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

2:4:1
1:2:2

g

g

2:2:1
1:2:2

g

1:4:1
1:2:4

g

2:4:2
1:2:4 g

2:4:4
1:4:4

g

2:4:4
1:4:4 g

1:8:4
1:4:8

g
g

g

g

g

g

g

Figure 13: Direct mapped: Tdataside + Toutdrive data

Tag
Side

Cache Size in bytes (B=16 bytes, A=1)

2048 8192 32768 131072

0ns
1ns
2ns
3ns
4ns
5ns
6ns
7ns
8ns
9ns

10ns
11ns
12ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

2:4:1
1:2:2

g

g

2:2:1
1:2:2 g

1:4:1
1:2:4 g

2:4:2
1:2:4

g

2:4:4
1:4:4

g

2:4:4
1:4:4

g

1:8:4
1:4:8

g

g

g

g

g

g

g

Figure 14: Direct mapped: Ttagside dm

optimum parameters are shown in the �gures (the six numbers associated with each point

correspond to Ndwl, Ndbl, Nspd, Ntwl, Ntbl, and Ntspd in that order). The parameters were

then used in the Hspice model. As the graphs show, the di�erence between the analytical

and Hspice results is less than 6% in every case.

6.2 Cycle Time

The di�erence between the access and cycle time of a cache varies widely depending on

the circuit techniques used. Usually the cycle time is a modest percentage larger than the

access time, but in pipelined or post-charge circuits [7, 8] the cycle time can be less than

19

To appear in IEEE Journal of Solid State Circuits 1996

Data Side
(plus output

driver)

Cache Size in bytes (B=16 bytes, A=4)

2048 8192 32768 131072

0ns

1ns

2ns

3ns

4ns

5ns

6ns

7ns

8ns

9ns

10ns

11ns

12ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

4:1:1
1:1:1

g

g

4:2:1
1:2:1

g

4:2:1
1:2:1

g

4:1:1
1:2:1 g

2:2:1
1:4:1

g

2:4:1
1:4:2 g

1:8:1
1:4:2

g

g

g

g
g

g

g

Figure 15: 4-way set associative: Tdataside + Toutdrive data

Tag
Side

Cache Size in bytes (B=16 bytes, A=4)

2048 8192 32768 131072

0ns
1ns
2ns
3ns
4ns
5ns
6ns
7ns
8ns
9ns

10ns
11ns
12ns
13ns
14ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

4:1:1
1:1:1

g
g

4:2:1
1:2:1 g

4:2:1
1:2:1 g

4:1:1
1:2:1 g

2:2:1
1:4:1

g

2:4:1
1:4:2

g

1:8:1
1:4:2

g
g

g
g

g

g

g

Figure 16: 4-way set associative: Ttagside;sa

the access time. We have chosen to model a more conventional structure with the cycle

time equal to the access time plus the precharge.

There are three elements in our assumed cache organization that need to be precharged:

the decoders, the bitlines, and the comparator. The precharge times for these elements

are somewhat arbitrary, since the precharging transistors can be scaled in proportion to

the loads they are driving. We have assumed that the time for the wordline to fall and

bitline to rise in the data array is the dominant part of the precharge delay. Assuming

properly ratioed transistors in the wordline drivers, the wordline fall time is approximately

the same as the wordline rise time. It is assumed that the bitline precharging transistors are

20

To appear in IEEE Journal of Solid State Circuits 1996

scaled such that a constant (over all cache organizations) bitline charge time is obtained.

This constant will, of course, be technology dependent. In the model, we assume that this

constant is equal to four inverter delays (each with a fanout of four). Thus, the cycle time

of the cache can be written as:

Tcache = Taccess + Twordline delay + 4 � (inverter delay)

7 Applications of the Model

This section gives examples of how the analytical model can be used to quickly gather data

that can be used in architectural studies.

7.1 Cache Size

First consider Figure 17. These graphs show how the cache size a�ects the cache access

and cycle times in a direct-mapped and 4-way set-associative cache. In these graphs (and

all graphs in this report), bo = 64 and baddr = 32. For each cache size, the optimum array

organization parameters were found (these optimum parameters are shown in the graphs

as before; the six numbers associated with each point correspond to Ndwl, Ndbl, Nspd, Ntwl,

Ntbl, and Ntspd in that order), and the corresponding access and cycle times were plotted.

In addition, the graph breaks down the access time into several components.

There are several observations that can be made from the graphs. Starting from the

bottom, it is clear that the time through the data array decoders is always longer than the

time through the tag array decoders. For all but one of the organizations selected, there

are more data subarrays (Ndwl �Ndbl) than tag subarrays (Ntwl �Ntbl). This is because the

total tag storage is usually much less than the total data storage.

In all caches shown, the comparator is responsible for a signi�cant portion of the access

time. Another interesting trend is that the tag side is always the critical path in the

cache access. In the direct-mapped cases, organizations are found which result in very

closely matched tag and data sides, while in the set-associative case, the paths are not

matched nearly as well. This is due primarily to the delay driving select lines of the output

multiplexor.

21

To appear in IEEE Journal of Solid State Circuits 1996

Time

Cache Size in bytes (B=16 bytes, A=1)

4096 16384 65536 262144

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Data side
Tag side
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

`

`

`

`

`

`

2:4:1
1:2:2

g

g

2:2:1
1:2:2

g

1:4:1
1:2:4 g

2:4:2
1:2:4

g

2:4:4
1:4:4

g

2:4:4
1:4:4

g

1:8:4
1:4:8

† † †

† †

†
†

†.†.†.†.†.†.†

∗ ∗ ∗

∗
∗

∗
∗

∗.∗.∗.∗.∗.∗.∗

f

f
f

f
f

f

f

f.f.f.f.f.
. .

. .
. .

. .
. .

.f.f

∇.∇.∇.∇.∇.∇..
..

..
..

..
..

.∇

`

`
`

`

`

`

`

.̀̀.̀.̀.̀.̀. .
..

..
..

..
..

.̀

Time

Cache Size in bytes (B=16 bytes, A=4)

4096 16384 65536 262144

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Mux drv & sel inv
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`
`

`

`

`

`

`

4:1:1
1:1:1

g

g

4:2:1
1:2:1

g

4:2:1
1:2:1 g

4:1:1
1:2:1

g

2:2:1
1:4:1

g

2:4:1
1:4:2

g

1:8:1
1:4:2

†

†
†

† †

†
†

†.†.†.†.†.†.†

∗

∗
∗

∗ ∗

∗
∗

∗.∗.∗.∗.∗.∗.∗

f

f

f

f
f

f

f

f.f.f.f.f.f.
. .

. .
. .

. .
. .

.f

∇.∇.∇.∇.∇.∇. . . .
.∇

.̀̀.̀.̀.̀.̀. .
..

..
..

..
..

.̀

a) direct-mapped b) set-associative

Figure 17: Access/cycle time as a function of cache size

7.2 Block Size

Figure 18 shows how the access and cycle times are a�ected by the block size (the cache size

is kept constant). In the direct-mapped graph, the access and cycle times drop as the block

size increases. Most of this is due to a drop in the decoder delay (a larger block decreases

the depth of each array and reduces the number of tags required).

In the set-associative case, the access and cycle time begins to increase as the block size

gets above 32. This is due to the output driver; a larger block size means more drivers

share the same cache output line, so there is more loading at the output of each driver.

This trend can also be seen in the direct-mapped case, but it is much less pronounced. The

number of output drivers that share a line is proportional to A, so the proportion of the

total output capacitance that is the drain capacitance of other output drivers is smaller in

a direct-mapped cache than in the 4-way set associative cache. Also, in the direct-mapped

case, the slower output driver only a�ects the data side, and it is the tag side that dictates

22

To appear in IEEE Journal of Solid State Circuits 1996

Time

Block Size in bytes (C=16 Kbytes, A=1)

4 8 16 32 64

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Data side
Tag side
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

`

`

`

`

2:4:2
1:4:4

g

g

2:4:2
1:2:4

g

1:4:1
1:2:4

g

2:2:1
1:2:2

g

1:4:1
1:2:2

†

†

† †

†

†.†.†.†.†

∗

∗

∗ ∗
∗

∗.∗.∗.∗.∗

f

f

f f

f

f.f.f.f.f

∇.∇.∇.∇.∇

`

`

` `

`

.̀̀.̀.̀.̀

Time

Block Size in bytes (C=16 Kbytes, A=4)

4 8 16 32 64

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Mux drv & sel inv
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`
` ` `

`

4:2:1
1:4:1

g
g

8:1:1
1:4:1

g

4:2:1
1:2:1

g

4:2:1
1:2:1 g

4:1:1
1:1:1

† †

†
†

†
†.†.†.†.†

∗ ∗

∗ ∗
∗

∗.∗.∗.∗.∗

f f

f
f

f

f.f.f.f.f

∇.∇.∇.∇.∇

.̀̀.̀.̀.̀

a) direct-mapped b) set-associative

Figure 18: Access/cycle time as a function of block size

the access time in all the organizations shown.

7.3 Associativity

Finally, consider Figure 19 which shows how the associativity a�ects the access and cycle

time of a 16KB and 64KB cache. As can be seen, there is a signi�cant step between a

direct-mapped and a 2-way set-associative cache, but a much smaller jump between a 2-

way and a 4-way cache (this is especially true in the larger cache). As the associativity

increases further, the access and cycle time begin to increase more dramatically.

The real cost of associativity can be seen by looking at the tag path curve in either

graph. For a direct-mapped cache, this is simply the time to output the valid signal, while

in a set-associative cache, this is the time to drive the multiplexor select signals. Also, in

a direct-mapped cache, the output driver time is hidden by the time to read and compare

the tag. In a set-associative cache, the tag array access, compare, and multiplexor driver

23

To appear in IEEE Journal of Solid State Circuits 1996

Time

Associativity (C=16 Kbytes, B=16 bytes)

1 2 4 8 16 32

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Tag Path
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

`
`

`

`

`

1:4:1
1:2:4

g

g

8:1:1
1:2:2 g

4:2:1
1:2:1 g

4:2:1
1:2:1

g

4:1:1
1:1:1

g

8:1:1
1:1:1

†

†

†
†

†

†

†.†.†.†.†.†

∗

∗

∗ ∗
∗

∗

∗.∗.∗.∗.∗. .
. .

. .
. .

. .
. .

. .
.∗f

f

f
f

f

f

f.f.f.f.f.
. .

. .
. .

. .
. .

. .
. .f

∇.∇.∇.∇.∇. .
. .

. .
. .

. .
. .

. .
.∇

.̀̀.̀.̀.̀..
..

..
..

..
..

..
..

.̀

Time

Associativity (C=64 Kbytes, B=16 bytes)

1 2 4 8 16 32

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g
` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Tag Path
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

` `
`

`

`

2:4:4
1:4:4

g

g

2:4:1
1:4:2

g

2:2:1
1:4:1 g

2:2:1
1:2:1

g

2:1:1
1:2:1

g

4:1:1
1:1:1

†

†

†
†

†
††.†.†.†.†.†

∗
∗

∗
∗ ∗ ∗

∗.∗.∗.∗.∗.∗

f

f

f

f f f

f.f.f.f.f.
.f∇.∇.∇.∇.∇.
.∇

.̀̀.̀.̀.̀. .
. .

. .
. .

. .
. .

. .
.̀

a) 16KB cache b) 64KB cache

Figure 19: Access/cycle time as a function of associativity

must be completed before the output driver can begin to send the result out of the cache.

Looking at the 16KB cache results, there seems to be an anomaly in the data array

decoder at A = 2. This is due to a larger Ndwl at this point. This doesn't a�ect the overall

access time, however, since the tag access is the critical path.

8 Conclusions

In this paper, we have presented an analytical model for the access and cycle time of a

cache. By comparing the model to an Hspice model, CACTI was shown to be accurate to

within 6%. The computational complexity, however, is considerably less than Hspice.

Although previous models have also given results close to Hspice predictions, the under-

lying assumptions in previous models have been very di�erent from typical on-chip cache

memories. Our extended and improved model �xes many major shortcomings of previous

24

To appear in IEEE Journal of Solid State Circuits 1996

models. Our model includes the tag array, comparator, and multiplexor drivers, non-step

stage input slopes, rectangular stacking of memory subarrays, a transistor-level decoder

model, column-multiplexed bitlines, an additional array organizational parameter and load-

dependent transistor sizes for wordline drivers. It also produces cycle times as well as access

times. This makes the model much closer to real memories.

It is dangerous to make too many conclusions directly from the graphs without consid-

ering miss rate data. Figure 19 seems to imply that a direct-mapped cache is always the

best. While it is always the fastest, it is important to remember that the direct-mapped

cache will have the lowest hit-rate. Hit rate data obtained from a trace-driven simulation

(or some other means) must be included in the analysis before the various cache alternatives

can be fairly compared. Similarly, a small cache has a lower access time, but will also have

a lower hit rate. In [9], it was found that when the hit rate and cycle time are both taken

into account, there is an optimum cache size between the two extremes.

Appendix A: Obtaining and Using the CACTI Software

A program that implements the CACTI model described in this paper is available. To

obtain the software, log into gatekeeper.dec.com using anonymous ftp (use \anonymous"

as the login name and your machine name as the password). The �les for the program

are stored together in \/archive/pub/DEC/cacti.tar.Z". Get this �le, \uncompress" it, and

extract the �les using \tar".

The program consists of a number of C �les; time.c contains the model. Transistor

widths and process parameters are de�ned in def.h. A make�le is provided to compile the

program.

Once the program is compiled, it can be run using the command:

cacti C B A

where C is the cache size (in bytes), B is the block size (in bytes), and A is the associativity.

The output width and internal address width can be changed in def.h.

When the program is run, it will consider all reasonable values for the array organization

parameters (discussed in Section 3) and choose the organization that gives the smallest

access time. The values of the array organization parameters chosen are included in the

output report.

25

To appear in IEEE Journal of Solid State Circuits 1996

The extended description of model details is available on the World Wide Web at URL

\http://nsl.pa.dec.com/wrl/techreports/93.5.html#93.5".

Acknowledgements

The authors wish to thank Stefanos Sidiropoulos, Russell Kao, and Ken Schultz for their

helpful comments on various drafts of the manuscript. Financial support was provided

by the Natural Sciences and Engineering Research Council of Canada and the Walter C.

Sumner Memorial Foundation.

References

[1] J. M. Mulder, N. T. Quach, and M. J. Flynn, \An area model for on-chip memories and
its application," IEEE Journal of Solid-State Circuits, Vol. 26, No. 2, pp. 98{106, Feb.
1991.

[2] T. Wada, S. Rajan, and S. A. Przybylski, \An analytical access time model for on-chip
cache memories," IEEE Journal of Solid-State Circuits, Vol. 27, No. 8, pp. 1147{1156,
Aug. 1992.

[3] S. J. Wilton and N. P. Jouppi, \An access and cycle time model for on-chip caches,"
Tech. Rep. 93/5, Digital Equipment Corporation Western Research Lab, 1994.

[4] M. A. Horowitz, \Timing models for mos circuits," Tech. Rep. Technical Report SEL83-
003, Integrated Circuits Laboratory, Stanford University, 1983.

[5] J. Rubinstein, P. Pen�eld, and M. A. Horowitz, \Signal delay in RC tree networks,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.

2, No. 3, pp. 202{211, July 1983.

[6] M. G. Johnson and N. P. Jouppi, \Transistor model for a synthetic 0.8um CMOS pro-
cess," Class notes for Stanford University EE371, Spring 1990.

[7] R. J. Proebsting, \Post charge logic permits 4ns 18K CMOS RAM." 1987.

[8] T. I. Chappell, B. A. Chappel, S. E. Schuster, J. W. Allen, S. P. Klepner, R. V. Joshi, and
R. L. Franch, \A 2ns cycle, 3.8ns access 512kb CMOS ECL RAM with a fully pipelined
architecture," IEEE Journal of Solid-State Circuits, Vol. 26, No. 11, pp. 1577{1585,
Nov. 1991.

[9] N. P. Jouppi and S. J. Wilton, \Tradeo�s in two-level on-chip caching," in Proceedings of
the 21th Annual International Symposium on Computer Architecture, pp. 34{45, April
1994.

26

