
Array Based Structure Loop Transformations For Cache Miss Reduction

Marian Stanca, Henk Corporaal, Sorin Cotofana, and Stamatis Vassiliadis
Electrical Engineering Department

Delft University of Technology, The Netherlands�
akela, heco, sorin, stamatis � @cardit.et.tudelft.nl

Abstract

This paper is concerned with lowering the power con-
sumption of an algorithm described in a high level lan-
guage, ran on a processor. We are introducing an auto-
mated framework for array based loop transformations. A
cache miss ratio power estimator is the main ingredient for
the statically driven steering mechanism of transforming
the algorithm. The experiments have shown decreases in
cache miss rate up to 35%, and similar figures for the es-
timated energy required by the computation.

1. Introduction

Embedded systems can be characterized as, at least,
mass produced elements of a larger system providing a ded-
icated, possibly time constrained, service to that system.
Additionally, they have a priori known job characteristics, a
small time to market window, and, not in the last place, they
are very much cost sensitive. Until recently, the cost func-
tion has been “area efficient design respecting performance
and design time”. Currently, both performance and power
dissipation have been added to the embedded system per-
formance metric. It is commonly agreed that performance
and low power issues can be addressed through optimiz-
ations at all design hierarchy levels, e.g., implementation,
device, circuit, logic, architecture, algorithm, and system.
In this paper we address the performance and power optim-
ization issue at high level of abstraction. We assume that
the application is described in a high level language and
is meant to be executed on an architecture that includes a
cache memory. Our underlying assumption is that reducing
the cache miss ratio will be beneficial to both power con-
sumption and performance. The underlining idea of our ap-
proach is to statically transform the application description
(algorithm), targeting arrays within loops, and preserving
the semantics. The transformation has as final goal the in-
crease of the cache hit ratio. To evaluate the effectiveness
of loop transformations in reducing power consumption we
propose a framework which is based on an automatic trans-

formation tool. Our framework includes a library of loop
transformations, a cache miss rate based power estimator,
and a transformation engine that is performing the steering
mechanism.

The presentation is organized as follows. Section 2
provides some background informations on loop trans-
formations. Section 3 describes the proposed framework
for power reduction transformations. Section 4 consists of
experiments and comparations and Section 5 presents some
conclusions and intended future work.

2. Loop Transformation

A loop transformation can be applied to a given de-
scription of an algorithm as a program, ����� , if a[some]
loop[s], identified as candidates according to a given cri-
terion, is[are] transformed in other loop[s]. The resulting
program, ���
	�� has to have the same functionality as the
initial program. This is achieved with validity verifica-
tions for loop transformations. Loop transformations can
operate on some of the elements of the loop set, , con-
sidering as one loop a multiple nested loop. ������������ is
the number of loops present in a program. The iterator
space is the topological reunion of the iterator domains 1,����� � �"!$#�%�%&%�# �'�"(�)+*-,/.1032 , and � �54 � � � is the depth of the
loop nests. The effects of loop transformations may vary
from affecting only the loop body to changing the iterator
space, the number of loops, and the depth of the loop nests.

Loop transformations can be employed to decrease the
traffic between the cache and off-chip memory or to in-
crease the efficiency of the cache. Traditionally, the issue
of loop transformations has been addressed either with a
similar, power consumption related, goal [7] or with a dif-
ferent one, such as restructuring of a possibly sequential
program to improve execution efficiency on parallel ma-
chines [9]. In [10] a technique that involves global data
transformations and local loop transformations in order to

1The formalism allows as worst case, linear dependence of the iterat-

ors, 687:9<; 7>=@?A�BDCDE A 6 AGF�H 9 I F5J 6LKNM/O�P .

minimize overhead on distributed shared machines is in-
troduced. The overhead is given by the need to have cer-
tain (expensive) temporary arrays copied and, as a result,
communication and synchronization problems occur. This
technique implies an algebraic transformation framework
that has not fully investigated the mathematical properties
of the transformation representation. Of those, the most
important are the necessary validity tests for all the trans-
formations. Verified by practical implementation in multi-
media [1, 2], the semi-automated tools that are helping the
design process, in yet another approach, seem to answer all
the questions arose by the other approaches. The formalism
has better coverage: non-rectangular iterator space, mul-
tiple loop nests, validity tests, and, especially, estimated
complexity for most of the problems. The most important
characteristic of this approach is that power consumption is
not an independent metric that can be optimized, but power
savings can be obtained via memory's area reduction [7].

An analysis of these different approaches suggests that
although mathematical models for formal description of
loop transformations and possible transformations have
been introduced, the mechanism that is steering the process
according to a criterion is either missing or far from being
formal. For the purpose of power aware loop transforma-
tions the techniques mentioned are not sufficient because
either a relevant to power consumption cost function may
not be introduced or the existing cost function is not intro-
ducing power consumption as an independent metric. Our
approach is targeting a high level power aware loop trans-
formation engine. Because of the power consumption term
none of the previously mentioned approaches can be em-
ployed. Due to the fact that we want to keep account of the
design time term into the embedded system cost function,
we have decided to limit our research to statical analysis.

for � � to � do��� ��� � f ��� � ��� �
od
for � � to � do� � ��� � g � ��� ��� �
od

for � � to � do��� ��� � f ��� � ��� �� � ��� � g � ��� ��� �
od

Figure 1. Loop Fusion

Loop transformations that reduce miss ratio, as our ex-
periments suggest, can be classified into the following cat-
egories 2:

� Inherently miss ratio reduction LT: loop fusion, loop inter-
change, loop tiling.

� Jointly applied LT: node splitting, loop fission, access nor-
malization, wavefronting.

2A different classification, serving a different purpose can be found
in [8].

� Miss ratio reduction LT with special conditions: loop re-
versal, internalization.

This classification is not exhaustive as new types of ap-
plications may require new transformations to be added to
every category. We will describe further the inherently miss
ratio reduction loop transformations.

Although it is roughly depending on the statements in-
volved in the loop nests the most power saving loop trans-
formation is loop fusion. Loop fusion is decreasing the
traffic between cache and external memory.

Definition 1 Loop fusion is a loop transformation in which two
different loops, having the same iterator space and the statements
contained in the loops in flow dependence are transformed in a
single loop. In this case ���
	�������������
	����� and ���������
����� �
���!�"���
���$#&% .

A loop fusion is depicted in Figure 1. If the variable
that insures the flow dependence, i.e.,

��� ��� is alive after the
second loop nest the power saving is given by the differ-
ence between an external memory reference and a register
reference, saving ' � �)(+*-, memory loads. Other-
wise,

��� ��� can be removed completely and replaced with a
temporary register. This saves an extra ' store operations.
It has to be noted that for loops with unrelated statements
(from the flow dependence point of view) fusion can still
be performed. The gain in such a situation is much smal-
ler, namely the one given by the creation and computation
needed for the register that keeps the iterator. Very specific
conditions can be found, e.g., a cache with the associativity
of one and references in the same iteration at two differ-
ent memory locations separated by a distance larger than
the cache block size, due to which loop fusion applied to
loops with unrelated statements can worsen the power con-
sumption. In these cases loop tiling can be performed or
the organization of the cache can be changed.

Another class of loop transformations is loop permuta-
tion, as exemplified in Figure 2. The gain for this class is
caused by a better cache usage through improved data loc-
ality. Loop permutation is applied according to the way
in which multidimensional arrays are stored in memory 3.
E.g., in C, the arrays are stored in memory by rows, so, for a
better cache usage, successive iteration memory references
have to stay in the same row. This is equivalent with the
fact that the iterator space has its first iterator in the inner
loop.

Definition 2 Loop permutation is a loop transformation applied
on loops with ���
	�����&.0/ , in which some of the loop nests
are changed in respect to the lexicographical order. In this case
���
	1�� � ���2���
	1��3� .
Loop permutation is legal if, and only if, the mapped dis-
tance vectors are lexicographically positive. This condition

3The data layout is the most important factor for loop permutation.

2

for � � ! to � ! do
for � � �� to ��� do

for � � �� to ��� do� � ��# � # � � � � � � (, # � * , # � (, �
od

od
od

for � � �� to ��� do
for � � ! to � ! do

for � � �� to ��� do� � ��# � # � � � � � � (, # � * , # � (, �
od

od
od

Figure 2. Loop Permutation for � �54 � � � �	�

for � ! � ! to � ! do
. . .
for ��
 �
 to �
 do

H � � !$#���� # ��
 �
od
...

od

for � � ! � ! to � ! step � ! do
. . .
for �5�
 �
 to �
 step �
 do

for � ! � �5� ! to 4 � ' � � ! # �5�"! *�� ! (, � do
. . .
for ��
 � �5��
 to 4 � ' � �
�# � ��
 *��
 (, � do

H � � !$#���� # ��
 �
od
...

od
od
...

od
Figure 3. Loop Tiling

can be expressed formally with the following characteriza-
tion lemma.

Lemma 1 Loop permutation is valid if and only if the number of
cycles in the decomposition of the dependence permutation, seen
as the topological reunion of the dependence direction vector and
dependence distance vector, is even.

Loop permutation is an unimodular transformation� �����)�� ��� �)��
��) � � , # for � � , # ' # and
�)�� � �"! for �$#�

' (%� # � # � � , # ''& #)(� (� , . A loop permutation can be
applied for � �54 � � � �+* , in which case the transformation
is called loop interchange. The transformation matrix is
now
� �,�-� ! � ! �.� � � � �.! # � ! � � �.� � � ! � ,/& , so (� (�

, . Loop interchange is valid if the vectorial representation
of dependences has, initially, positive value for the term
representing the inner loop. The same type of power related
gain appears, i.e. more efficient cache usage.

Another class of loop transformations is tiling, as depic-
ted in Figure 3. The gain for this class cannot be predicted
in a formal manner, but it consists of better cache perform-
ance, through increased data locality.

Definition 3 Assuming %1032�034 the number of dimension
tiled, tiling is a loop transformation in which a nested loop with
���
	1��3� �54 is transformed in a nested loop with ���
	��� � � �47682 with a smaller and less complex iterator space in the inner
loop[s].

A necessary condition for this type of transformation to be
applied is that the loop nests that have to be tiled are fully
permutable. Therefore, there have to be only positive terms
in the matrix representation of the dependences, on the po-
sition corresponding to the loop nests that have to be tiled.
The dimension of the tiles must be established so that the
dimension of the new iterator space is related with the di-
mension of the cache blocks4. Figure 3 depicts the most
general case in which all the dimensions are tiled. Such
a general type of tiling is possible but not always needed.
Usually 1 or 2 dimensions are tiled for better taking advant-
age of the cache organization.

Loop transformations with special conditions are those
transformations that are speculating architectural details. In
some cases and under certain conditions some other trans-
formations may offer savings, e.g., if an address bus gener-
ator contains a counter, then is beneficial to have the iter-
ator space transformed -with access normalization or loop
reversal, for instance- in order to take advantage of it. It is
also conceivable that transformations like scaling and ro-
tation may be convenient when the changed iterator space
is facilitating increased spatial and temporal locality. The
cost, in terms of power consumption, of type changing for
the iterating variable and subsequent operations cannot be
compared with the power consumption reduction due to
better cache usage, at this level of abstraction, therefore we

4The cache organization is the most important factor for loop tiling.

3

neglect such cases.

3. LT Based Design Framework

Original C code

Transformed C code

Transformation
 engine estimator

 PowerTransformation
 library

Figure 4. Power Reduction Framework

Our design framework is illustrated in Figure 4. The
result is that the original description in C of an algorithm
is transformed in a less power consuming one. The frame-
work consists of a power estimator, a loop transformations
library, and a transformation engine. The library contains
an enumeration of possible loop transformations, with ap-
plying conditions. The transformation engine is based on
a steering mechanism, in order to selectively apply the
needed transformation for power consumption reduction.
The steering mechanism is taking the decision of applying
a given transformation. Such decisions are taken through a
less than exact ruled based method. The rules are inferred
from experiments and are a reflection of the type of pro-
grams that are targeted for power consumption reduction.
The most important characteristic of this framework is that
due to the steering mechanism, at a given time, the trans-
formation to be applied is only a function of the current
state of the code. Rules for loop transformations may look
as described further.

1. If two consecutive loops have the same iterator space and
there is flow dependence between the arrays involved in the
loops statements then loop fusion may be applied; if there
are no dependencies between the statements then loop fu-
sion may still be applied with lesser improvement.

2. If a loop has it's statements addressing arrays in a non-
lexicographical manner and validity check holds then loop
interchange may be applied.

3. If a loop has it's statements addressing arrays that are larger
than the cache line the tiling may be applied.

4. If a loop is reading arrays with different references to the
iterator space node splitting may be applied.

5. If consecutive loop nests have their some sub- statements
in flow dependence and loop fusion can not be applied, and
the arrays are larger than the cache lines, wavefront may be
applied.

This is not an exhaustive rule enumeration, as studying dif-
ferent types of benchmarks may extend both the rule list
and the transformations list. For further improvement, ex-
ploiting weaker conditions than those described, may be
possible. For example, if two consecutive loop nests have
their statements in flow dependence and the iterator space
is different, enabling transformations may still be applied
in order to obtain an identical iterator space. Many other
types of loop transformations, e.g. loop unrolling, are in-
creasing the cache hit ratio while not modifying the power
consumed by the application. It has to be mentioned that
our framework can be extended in applying any type of
loop transformation with no repercussions to the power
consumption.

The design scenario assumes that an input program, i.e.,
the application, is given, in which patterns of loops are
searched. If such a pattern is found, the necessary rule trig-
gering conditions are checked. In case more than a rule
may be applied at a given time, the rule with the biggest
priority is applied. Assigning different priorities uncovered
the fact that some classes of loop transformations are ortho-
gonal, being insensitive to the order in which were applied.
The process is iterative until no further power consumption
reduction transformations, at this level of abstraction, can
be performed to the code.

Comparing manual inspection with the automated one
suggested that the number of steps in which the minimum
of power consumption can be achieved is minimal. Due to
the fact that the benchmarks were either “nicely written” or
the result of an automated transforming tool, the compara-
tion suggested that the number of loops that can be trans-
formed, with respect to power consumption, automatically
is very close to number of loops that can be transformed
manually. Such a good performance, in respect to identify
possible transformations, may be explained through the
fact that the rule based method is miming the design de-
cisions taken by the human expert. In the next section, in
an attempt to evaluate the performance, we will discuss the
experimental results, when our framework is applied.

4 Experiments and Comparations

In order to verify the effectiveness of our approach a
set of experiments has been performed. Two examples of
loop transformations are presented. These examples were
chosen to exemplify that power savings are not obtained
with only power saving loop transformations. Although at
some point in the design space the power consumption res-
ulted from a transformation is at maximum, the final result

4

for � � ! to , do
for � ��� * , to , step (, do

for � ��� * , to , step (, do� � *�� � (, # *�� � # � � � � � � *�� � # *�� � # � � * � � *�� � (* # *�� � # � � �	� *� � *�� � # *�� � (, # � � � � � � *�� � # *�� ��# � � * � � *�� � # *
� � (* # � � �	� *
od

od
od

for � �"! to , do
for � ��� * , to , step (, do

for � ��� * , to , step (, do� � *�� � (, # *�� � # � � � � � � *�� � # *�� � # � � * � � *�� � (* # *�� � # � � �	� *� � *�� ��# *�� � (, # � � � � � � *�� � # *�� � # � � * � � *�� ��# *�� � (* # � � �	� *
od

od
od

Figure 5. Combined Transformation Applied to WANAL

is lowering the power consumption. WANAL is a wave
equation solver, part of the RICEPS benchmark suite. In
Figure 5 the original and transformed loop, respectively,
are presented. In order to get good locality it is necessary
to interchange j and i in the second statement but not in
the first. To achieve this we can perform loop distribu-
tion (valid because there is no flow dependence between
sub-statements between iteration), loop interchange in the
second loop and, finally, loop fusion. The steering mech-
anism works as follows:

1. Assuming row major allocation, the second sub-statement
is not optimal (verifiable with the dependence distance mat-
rix), but the first is.

2. There is no flow dependence between the two sub-
statements (verifiable with dependence direction) so we can
do loop fission.

3. Loop fission (now valid)

4. Loop interchange (verifiable with the dependence vector) -
sub-statement 2 is now optimal.

5. Further improvement can be gained with loop fusion (valid
because of the same iterator space and no flow dependence
between sub-statements).

It has to be noted that steps 1 to 4 are driven by the
fact that the steering mechanism has been triggered. While
these steps are equivalent to one traversal of the itinerary
described in Figure 1, so is step 5 alone. With row major
allocation, the second statement in the initial nested loop
is addressing memory locations that are in different rows.
For the case in which the dimension of the cache is smaller
than
* � *�� * � � � then a cache miss occurs in every itera-

tion. This inconvenience is eliminated in the transformed

version of the loop [8]. Even if the cache dimension is big-
ger than the array dimension, then, for a block-buffering
scheme, the gain of increased spatial locality is evident;
also the transformed version offers the advantage of read-
ing the same operands twice in a short period of time, en-
suring good temporal locality too. Following, a study case
is presented. Let us assume that the dimension of the cache
lines is � and that there is no border effect. Expressing the
lack of border effect is done with ��

!� ��� . Replacing the
previous factor with

� �� !� 2 *-, in all the equations does
treating cases where this is not true. For the original loop
nest, for the first statement, a cache read miss appears due
to cold start every time decreases. There are no cache write
misses. For the second statement, two cache read misses
and one write miss appears every iteration, except for the
two cases in which the cache line is already accessed within
the same iteration. Both LRU and 4 � ' [3] policy for repla-
cing cache lines when the cache is filled ensure that the
line needed for the first statement during the next iteration
would not be purged, avoiding a supplementary miss. In
order to be able to show qualitative results without going
into too much low level detailing, we will consider that the
miss penalty is the same for both the cases in which the
cache is already filled or it is not filled yet. Doing so we
discard the effect of bus contention between main memory
and on chip memory. The limited cache dimension effect
can be taken into account, from the energy consumption
point of view, by considering different miss penalties. This
also allows greater flexibility due to the fact that differently
organized caches can be studied. All the effects are con-
sidered in Equation (1), with ��� � � being power penalty

5

for � � * to ' do
for � � * to ' do� � � # � � � � � � (, # � � * � � ��# � (, � * � � � (, # � (, �

* ��� � (, # � � * ��� ��# � (, � * ��� � (, # � (, �
* � � � (, # � � * � � ��# � (, � * � � � (, # � (, �

od
od

for � �	* to ' do� � ��# * � � � � � # , � * � � � (, # , � * ��� ��# , � * ��� � (, # , � * � � � # , � * � � � (, # , �
od
for � �	* to '1(, do

for � �"* to ' do� � ��# � � � � � ��# � � * � � � (, # � � * ��� � (, # � � * � � � (, # � �� � ��# ��* , � � � � � # � � * � � � (, # � � * ��� ��# � � * ��� � (, # � � * � � � # � � * � � � (, # � �
od

od
for � �	* to ' do� � ��# ' � � � � ��# ' � * � � � (, # ' � * ��� � (, # ' � * � � � (, # ' �
od

Figure 6. Combined Transformation Applied to SLIA

for a cache miss.

�'� � ��� � * � � * , �
� � * ,

� � �
* * � � (, � � � * � � � � (1)

For the modified loop nest, for both statements, two cache
misses at reading appears due to cold start and every time�) � 2 decreases. Supplementary cache misses are avoided
using LRU or 4 � ' replacement technique. The result is
presented in Equation (2)

�'� � ��� � * � � * , �
� � * ,

� � � * � � * � � � (2)

In Equations (1), (2) if � � � � � � , then the right term
becomes number of cache misses. With this assumption,
the equations have been verified with Simple Scalar [5] for
some numerical examples. This normalization allows the
illustration of a very interesting effect: the local decrease
of power consumption is given only by ���	��
 �������
 �� � .

SLIA is a synthetic loop presented in Figure 6, in the ori-
ginal and the transformed version. LT address data align-
ment constraints, the number of operations needed, and
the possibility of pipelining. The steering mechanism per-
forms in a similar manner. The study case is resembling the
WANAL study case.. The effects are as written in Equa-
tions (3),(4).

�'����� � � '�(,
��� � '1(, � � � (3)

�'����� � � ' (,
� � � �
' * , �"� � *2' � � � (4)

Simplifying with � � � � � � , offers the conclusion:
the local decrease of power consumption is given only by���	��� ���� ��� � , % � . Taking advantage better of the cache can be
obtained if the modified version of the loop is scheduled in
a wavefront. A more complicated description would illus-
trate further reduction of the cache miss ratio.

To asses the performance and have a non-local image
of the decreased cache miss ratio, and consequently power
consumed, our design framework is applied on two sets
of benchmarks. The Simple Scalar[5] tool set contains a
number of simulators that may be used to find profiling in-
formations about programs and their characteristics when
ran on various architectures. Instrumenting the executables
in order to determine the traces of memory references was
performed a retargeted gcc compiler, provided with the tool
set. All the experiments assume 8KBytes data cache size,
an associativity of one, and a line size of 8Bytes.

DSP type of benchmarks targeting image handling
(edge, flatten, smooth) allow all enumerated types of loop
transformations to be applied. The same phenomenon may
be observed for mathematical related programs [6], e.g.,
equation solvers, which are usually manipulating multi-
dimensional matrixes. We have chosen the data set to be
much bigger than the cache size and a small line size, in or-
der to observe the relevance of each type of loop transform-
ation that we have applied. Therefore, the miss rate for the
modified applications may still be improved. The instruc-
tion count of the retargeted modified code is decreasing as a
consequence of applying loop transformations. The results
are depicted in Table 1.

6

name miss rate initial miss rate final instr. count initial instr. count final

edge 49.78 37.12 101,376 89,739
flatten 48.19 41.77 110,116 96,127
smooth 46.20 19.63 90,641 83,282
matmul 44.12 23.76 898,253 816,980

nasi 76.37 41.52 487,367,565 474,877,114
nmc 62.91 37.48 2,213,146 2,181,533
tper 65.20 44.73 3,336,268 3,331,151
ccm 60.25 36.32 1,656,187 1,575,131

hydro 66.43 38.04 2,598,311 2,368,551
wave 58.56 29.81 1,109,423 996,394

Table 1. DSP and Matrix Manipulation Benchmarks

Separate experiments with digital circuitry synthesis
tools, targeting a 0.5 micron technology, have provided us
with the means of linking the cache miss ratio, along with
the instruction count (as only parameters available at high
level of abstraction) to the power consumption. Test inputs
have been applied in order to simulate application activity
on an architecture. With profiling information, an under-
lying assumption that energy saving scheme are available
for idle time, and suppositions on instruction latency and
functional block through-output, we were able to average
, ! � !���� per instruction. Moreover , ! � !���� per bus trans-
action, ��� , ! ���	� per cache read/write, and
 � , ! ���	� per
main memory access. It has to be noted that a separate
set of experiments with a different implementation library
offered similar figures for energy per instruction and energy
per bus transaction. And very different results for memory
type of accesses. The power estimator showed energy sav-
ings in the range of 9-12% for image processing applica-
tions and 19-27% for matrix manipulation benchmarks.

5. Conclusions and Future Work

A novel technique has been introduced in order to build
a power aware, at high level of abstraction, loop transform-
ations engine, employed statically on array structures. Al-
though in an opened to improvement stage, the principle
on which the engine is based already suggested important
conclusions for DSP and matrix manipulation benchmarks.

Directions for future work will include, at least, the fol-
lowing issues. Studying new types of benchmarks will sug-
gest new jointly applied power savings transformations and
new rules to be included in the steering mechanism. The
power estimator can further detail the penalties as a func-
tion of architectural characteristics, opening the possibility
for our approach to function, hierarchically, on different
levels of abstraction. When necessary and with the reserve
arisen by the increased cost in design time, dynamic ana-
lysis will be employed to extend the class of benchmarks

on which loop transformations can be applied. Dynamic
analysis is characterized by the lack of formal verification
of transformation legality due to impossibility of finding all
the dependences between the memory references, but may
prove beneficial when application relying heavily on point-
ers are to be optimized.

References

[1] F. Balasa, F. Catthoor, and H. D. Man. Practical solutions
for counting scalars and dependences in ATOMIUM - a
memory management system for multi-dimensional signal
processing. IEEE Transactions on Computer-aided Design,
16(2):133–145, 1997.

[2] F. Balasa, F. H. M. Franssen, F. V. M. Catthoor, and H. J. De
Man. Transformation of nested loops with modulo indexing
to affine recurrences. Parallel Processing Letters, 4(3):271–
280, Sept. 1994.

[3] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal, 5(2):78–
101, 1966.

[4] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth
limitations of future microprocessors. In Proceedings of
the 23rd Annual International Symposium on Computer Ar-
chitecure, pages 78–89, New York, May 22–24 1006. ACM
Press.

[5] D. C. Burger and T. M. Austin. The simplescalar tool
set, version 2.0. Technical Report CS-TR-1997-1342, Uni-
versity of Wisconsin, Madison, June 1997.

[6] J. Castellanos and F. Carmouche. Riceps benchmarks.
[7] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachter-

gale, and A. Vandecappelle. Custom Memory Management
Methodology: Exploration Of Memory Organization For
Embedded Multimedia System Design. Kluwer Academic
Publishers, 1998.

[8] D. Kulkarni and M. Stumm. Loop and data transformations:
A tutorial. Internal document, a tutorial guide., 1993.

[9] N. Manjikian and T. Abdelrahman. Fusion of loops for par-
allelism and locality. In International Conference on Paral-
lel Processing, Vol.2: Software, pages 19–28, Boca Raton,
USA, Aug. 1995. CRC Press.

[10] M. F. P. O'Boyle and P. M. W. Knijnenburg. Integrating loop
and data transformations for global optimization. PACT,
1998.

7

