
Power Estimation of a C algorithm based on the Functional-
Level Power Analysis of a Digital Signal Processor

Nathalie Julien, Johann Laurent, Eric

LESTER, University of South Brittany - Lorient, FRANCE

Abstract. A complete methodology to estimate power consumption at the C-level for on-the-shelf
processors is introduced. It relies on the Functional-Level Power Analysis, which results in a power
model of the processor that describes the consumption variations relatively to algorithmic and
configuration parameters. Some parameters can be predicted directly from the C-algorithm with
simple assumptions on the compilation. Maximum and minimum bounds for power consumption
are obtained, together with a very accurate estimation; for the TI C6x, a maximum error of 6%
against measurements is obtained for classical digital signal processing algorithms. Estimation
results are summarized on a consumption map; the designer can compare the algorithm
consumption, and its variations, with the application constraints.

1 Introduction

Power consumption has become a critical design constraint in many embedded
applications. Amount all the causes of dissipation, the software can have a substantial
impact on the global consumption [1]. As two codes can have the same performances but
different energy consumption [2], only a reliable power consumption estimation at the
algorithmic level can efficiently guide the designer. Therefore, a C-level estimation can be
worthwhile if it proposes a fast and easy estimation of the consumption characteristics of
the algorithm. As there is no need of compiling, direct comparisons on different
processors can be done before choosing the target and then without purchasing the
development tools. It also allows to compare the consumption of different versions of the
same algorithm to check if the application constraints are respected. More precisely, it
allows to locate the 'hot points' of the program on which the writing efforts have to be
focused.

When the applications are running on commercial processors, details on the
architecture implementation are unavailable, and methods based on a cycle-level
simulation [3][4] are then inappropriate. In this case, the classical approach to evaluate the
power consumption of an algorithm is the instruction-level power analysis (ILPA) at the
assembly-level [5]. This method relies on the measurements of the power consumption for
each instruction and inter-instruction (a pair of successive instructions); but for complex

processor architectures, the number of required measures becomes unrealistic. Many
studies are currently focusing on a functional analysis of the power consumption in the
processor [6][7]. But all of them are also made at the assembly-level. Only one attempt of
algorithmic estimation has already been made, concluding that a satisfying model could
not be provided [8].

This paper presents an accurate estimation of the power consumption of an algorithm
directly at the C-level. A simple power model for a complex processor is proposed,
including all the important phenomena like pipeline stalls, cache misses, parallelism
possibilities… This model expresses the software power dissipation from parameters,
determined through a functional analysis of the processor power consumption. It has
already been validated with an estimation method at the assembly-level. In this case, the
parameters are computed from the code by profiling [9]. To estimate at the C-level, some
parameters are predicted assuming different ways of compiling the code. For classical
digital signal processing algorithms, C-level estimates are obtained with an average error
of 4% against measurements, which is an accuracy similar to the other methods at the
assembly-level. We also provide the user with a consumption map, representing the
consumption behavior of the C algorithm.

The estimation methodology is sketched in Section 2 with the general framework, and
the case study of the functional analysis on the TMS320C6201, resulting in the power
model of the processor. Section 3 presents the assumptions to predict the parameters
required as inputs of the power model of the processor. The application results for digital
signal processing algorithms are discussed in Section 4. The conclusion summarizes the
conditions and limits of this algorithmic power estimation method and indicates the future
works.

2 Functional-Level Power Analysis and Model Definition

2.a The estimation framework

The complete estimation methodology, represented in Figure 1, is composed of two
steps: the Model definition and the Estimation process.

The Model definition is done once and before any estimation to begin. It is first based
on a Functional Level Power Analysis (FLPA) of the processor, that allows discerning
which parameter has a significant impact on the global power consumption. This step
conducts to define the power model of the processor: this is a set of consumption rules
describing the evolution of the processor core power related to algorithmic and
configuration parameters. These consumption rules are computed from a reduced set of
measurements performed on the processor for various elementary programs.

Fig. 1. The Estimation Method Flow

The Estimation Process is done every time the power consumption of an algorithm has
to be evaluated. This step allows to determine the parameter values to apply in input of the
power model of the processor. Some algorithmic parameters are estimated through simple
assumptions about compilation: the prediction models.

2.b The model definition for the TMS320C6201

As a case study, the power model of the C6x from Texas Instruments has been
developed. This processor has a complex architecture with a deep pipeline (up to 11
stages), VLIW instructions set, the possibility of up to 8 parallel instructions, an internal
program memory and an External Memory Interface (EMIF), dedicated to load data and
program from the external memory. Four memory modes are available: mapped, bypass,
cache and freeze [10]. On this processor, there is no significant difference in power
consumption between an addition or a multiplication, or a read or a write instruction in the
internal memory. Moreover, the data correlation have no more effect than 2% on the
global energy consumption. It seems that the architecture complexity of the C6x hides
many power variations.

The first part in the Model Definition is the FLPA: it consists in a functional analysis
of the processor architecture to determine which parameter is relevant from a
consumption viewpoint. The complete analysis has already been presented in previous
works [9]. The result of this step for the C6x is summarized in Figure 2, with two class of
inputs: the algorithmic parameters and the configuration parameters. The configuration
parameters, known with the application, are the clock frequency F and the memory mode
MM. The algorithmic parameters represent activity rates between functional blocks: the

C Algorithm Processor

FLPA

Measurements
s

Model definitionEstimation process

Power
Model

Parameters

C-level Power
Estimation

Prédiction
models

parallelism rate α, the processing rate β, the program cache miss rate γ, and the Pipeline
Stall Rate PSR.

Fig. 2. Power Model for the C6x

The second step in the Model Definition is to establish the consumption rules,
expressing the core power consumption PCORE from the input parameters. Measurements
have been performed for different values of these parameters by elementary assembly
programs. Final consumption rules have been obtained by curve fitting. The present
processor model does not include external memory yet; to add it will be part of future
works.

Here is given by Equation 1 the consumption rule for the mapped mode:

PCORE = VDD * ([aβ(1-PSR) + bm] F + α(1-PSR) [amF + cm] + dm) (1)

where VDD is the supply voltage and a=0.64, am=5.21, bm=4.19, cm=42.401, and
dm=7.6. Details on the other cases can be found in [9]. The expressions obtained are more
complex than those derived from a linear regression analysis; that explains why, in [8],
the model conducts to very important errors.

3. Estimation Process

To compute the power consumption from the power model, the algorithmic parameters
must be determined. Both α and β can be estimated directly from the C code by a
prediction model that anticipates the compilation. In some particular cases, γ and/or PSR
can be defined, like in the mapped memory mode where γ = 0. If not, these parameters
will be considered as variables.

In the C6x, 8 instructions, forming a fetch packet (FP), are fetched at the same time. In
this fetch packet, operations are gathered in execution packets (EP) depending on the
available resources and the parallelism capabilities [10]. The parallelism rate α and the
processing rate β are obtained from Equation 2:

1≤=
NEP

NFP
α ; 1

NEP

NPU

8

1
≤=β (2)

TMS320C6201

POWER

MODEL

α
β
γ

F
MM

Algorithm
parameters

Configuration
parameters

Pcore

PSR

NFP and NEP stands for the average number of FP and EP. NPU is the average
number of processing units (every instruction except the NOP). To estimate α and β, it is
then necessary to predict NFP, NPU and NEP. Four prediction models were developed
according to the processor architecture and requiring a slight knowledge of the compiler:
§ SEQ model: all the operations are executed sequentially.
§ MAX model: all the architecture possibilities are fully exploited.
§ MIN model: the load/store instructions can never be executed in parallel.
§ DATA model: the load/store instructions are executed in parallel only if they

involve different data.
 For (i = 0; i < 512; i++)

Y = X[i] * (H[i] + H[i+1] + H[i-1]) + Y[i] ;

Fig. 3. Program example for the prediction models

As illustration, a trivial example is presented in Figure 3. The operations out of the
loop body are neglected. In the loop nest, 4 loads (LD), and 4 other operations (OP) are
needed. Then, we predict 8 instructions, gathered in one single FP, so NFP = 1. Because
no NOP operation is involved, NPU = 8 and α = β. In the SEQ model, all instructions are
assumed to be executed sequentially; then NEP = 8, and α = β = 0.125. Results for the
other models are summarized in Table 1.

MODEL EP1 EP2 EP3 EP4 α, β
MAX 2 LD 2 LD, 4 OP - - 0.5
MIN 1 LD 1 LD 1 LD 1 LD, 4 OP 0.25
DATA 2 LD 1 LD 1 LD, 4 OP - 0.33

Table 1. Prediction models for the example

For realistic cases, the prediction has to be done for each part of the program (loop,
subroutine…) to obtain local values. The global parameter values, for the complete C
source, are computed by averaging all the local values. Such an approach also permits to
spot 'hot points' in the program.

4 Applications

4.1 Estimation validation

The power estimation method is applied on classical digital signal processing
algorithms: a FIR filter, a LMS filter, a Discrete Wavelet Transform with two image sizes:
64*64 (DWT1) or 512*512 (DWT2) and an Enhanced Full Rate vocoder for GSM (EFR

v.). The results for these applications are presented in Table 2 for different memory modes
(MM) : mapped (M), bypass (B) and cache (C) and different data placement (DP): in
internal or external memory (Int/Ext). The nominal clock frequency F is 200MHz. The
estimates at the C-level for the different predictions models are presented and compared
against measurements. The estimates at the assembly level (Asm) are also provided to
confirm the previous validation of the power model of the processor.

Applications Measurements Power estimation (W)

Algo MM DP TEXE P(W) Energy Asm % Seq Max Min Data %
FIR M Int 6.885µs 4.5 30.98µJ 4.6 2.3 2.745 4.725 3.015 4.725 5
FFT M Int 1.389ms 2.65 3.68mJ 2.585 2.5 2.36 2.97 2.57 2.58 -2.6
LMS B Int 1.847s 4.97 9.18J 5.145 3.5 5.02 5.12 5.07 5.12 3
LMS C Int 165.75ms 5.665 939mJ 5.56 -1.8 2.55 6 4.76 6 5.9
DWT1 M Int 2.32ms 3.755 8.71mJ 3.83 1.9 2.82 4.24 3.27 3.53 -6
DWT1 M Ext 9.19ms 2.55 23.46mJ 2.548 -0.2 2.295 2.63 2.4 2.46 -3.5
DWT2 M Ext 577.77ms 2.55 1.473J 2.53 -1 2.27 2.61 2.37 2.45 -3.9
EFR v. M Int 39µs 5.078 198µJ 4.935 -2.8 2.54 5.636 3.86 5.13 1
error 2% 25% 7% 13% 3.9%

Table 2. Comparison between measurements and power estimation

The aim is to provide the designer with accurate estimates about all the possible
consumption variations, including the particular point representing the real case. Then we
have set γ = 0 and the global power consumption is computed with the PSR obtained after
compilation. Validations of the power model at the assembly level for various values of
the cache miss rate can be found in [9].

The results of the SEQ model proves that it is not possible to provide an estimation
without any knowledge about the targeted architecture. Except in one particular case, the
MAX and the MIN models always overestimates and underestimates respectively the
power consumption of the application. For the LMS in bypass mode, all the models
overestimate the power consumption with close results; in this marginal memory mode,
pipeline stalls are so dominant that all the instructions become sequential. The DATA
model is shown as a very accurate estimation with a maximum error of 6% and an average
error of 4%. Although this fine grain model implies to also consider the data placement, it
remains very easy to determine.

4.2 Algorithm Power Consumption Exploration

If the cache miss rate γ and/or the pipeline stall rate (PSR) are unknown, it is possible
to give to the programmer a 'consumption map'. This map represents the power
consumption variations of the algorithm. Moreover, in many applications, the designer
can evaluate the realistic domain of variation for PSR and γ. It is thus possible to locate,
on the consumption map, the more probable power consumption limits. In particular, the

major part of the embedded applications have a program size (after compilation) that can
easily be contained in the internal memory of the C6x (64 kbytes).

Fig. 4. Power Consumption Exploration for the DWT1 in mapped mode.

Let us reconsider the application of the EFR vocoder, in the mapped mode (γ = 0). In
Figure 4, its consumption map is represented together with the measurement. Once again,
the DATA prediction model is close to the reality.

The power consumption exploration tells the programmer if the algorithm respects the
application consumption constraints (energy and/or power). Since at the C level the
execution time is unknown, the energy could be evaluated from the execution time
constraint (given by the programmer). If the algorithm consumption estimation is always
under the constraints then the C code is suitable. On the contrary, the programmer can
focus on the more dissipating parts of the algorithm (selected with local values of α and β
parameters), being aware on pipeline stalls and cache misses. At last, several versions of
the same algorithm could be efficiently compared through their consumption maps.

5 Conclusion

In this paper, an accurate power consumption estimation of a C-algorithm is proposed
for DSP applications. The accuracy of this estimation directly depends on the considered
information about the processor: (i) it is not possible to determine precisely the power
consumption without any knowledge about the targeted processor. (ii) an estimation with
a coarse grain model taking into account only the architecture possibilities provides the
maximum and minimum bounds of the power consumption for the algorithm. (iii) the fine
grain model including both elementary information on the architecture and data placement
offers a very accurate estimation with a maximum error of 6% against measurements.

Current works include first the development of an on-line power consumption
estimation tool. FLPA will also be applied on other processors in order to provide other

POWER (W)

0
1
2
3
4
5
6
7

0 10 20 30 40 50 60 70 80 90

PSR (%)

MAX
DATA
MIN
SEQ

Measurement

estimation examples at both C-level and assembly-level. Finally, the development of a
power model for the external memory will be an important part of future works.

References

1. K. Roy, M. C. Johnson "Software Design for Low Power," in NATO Advanced Study Institute
on Low Power Design in Deep Submicron Electronics, Aug. 1996, NATO ASI Series, chap.
6.3.

2. M. Valluri, L. John "Is Compiling for Performance == Compiling for Power?," presented at the
5th Annual Workshop on Interaction between Compilers and Computer Architectures
INTERACT-5, Monterey, Mexico, Jan. 2001.

3. W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin “The Design and Use of SimplePower: A
Cycle Accurate Energy Estimation Tool,” in Proc. Design Automation Conf., June 2000, pp.
340-345.

4. D. Brooks, V. Tiwari, M. Martonosi "Wattch: A Framework for Architectural-Level Power
Analysis and Optimizations," in Proc. Int. Symp. on Computer Architecture, June 2000, pp. 83-
94.

5. V. Tiwari, S. Malik, A. Wolfe "Power analysis of embedded software: a first step towards
software power minimization," IEEE Trans. VLSI Systems, vol.2, n°4, Dec. 1994, pp. 437-445.

6. L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, R. Zafalon "A Power Modeling and
Estimation Framework for VLIW-based Embedded Systems," in Proc. Int. Workshop on
Power And Timing Modeling, Optimization and Simulation PATMOS, Sept. 2001, pp. 2.3.1-
2.3.10.

7. G. Qu, N. Kawabe, K. Usami, M. Potkonjak "Function-Level Power Estimation Methodology
for Microprocessors," in Proc. Design Automation Conf, June 2000, pp. 810-813.

8. C. H. Gebotys, R. J. Gebotys "An Empirical Comparison of Algorithmic, Instruction, and
Architectural Power Prediction Models for High Performance Embedded DSP Processors," in
Proc. ACM Int. Symp. on Low Power Electronics Design, Aug. 1998, pp. 121-123.

9. J. Laurent, E. Senn, N. Julien, E. Martin "High Level Energy Estimation for DSP Systems," in
Proc. Int. Workshop on Power And Timing Modeling, Optimization and Simulation PATMOS,
Sept. 2001, pp. 311-316.

10. TMS320C6x User's Guide, Texas Instruments Inc., 1999.

