
Efficient Instruction-Level Optimization Methodology
for Low-Power Embedded Systems*

Kyu-won Choi and Abhijit Chatterjee

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332
{kwchoi,.chat}@ece.gatech.edu

Abstract

In this paper, for low-power embedded systems, we solve
the instruction scheduling and reordering problem as a
Precedence Constrained Hamiltonian Path Problem for DAGs
and the Traveling Salesman Problem (TSP), both of which are
NP-Hard [1,2]. We propose an efficient instruction-level
optimization algorithm for solving the NP-Hard problem.
Minimum spanning tree (MST) and simulated annealing (SA)
mechanisms are used for the optimization. We describe the
methods for generating the control flow and data dependence
graph (CDG), power dissipation table (PDT), and weighted
strongly connected graph (SCG) for the instruction-level low-
power analysis. In addition, confidence limits with error
tolerance are considered for the validation of the optimization.
Finally, experimental results that demonstrate the effectiveness
and the efficiency of the proposed algorithms are shown.

1 Introduction and Previous Work

Recently, new research directions in reducing power
consumptions for embedded systems have begun to address the
issues of arranging software at the instruction level to control
power dissipation [3,4,5,6,7,8,9,10]. The energy consumed by a
processor depends on the previous state of the system and the
current inputs. Therefore, it is clear that proper instruction
choice and ordering should be considered for low-power
embedded systems.

There has been previous research on instruction-level
scheduling to reduce total power consumption. In [3], a
technique called cold scheduling was combined with Gray code
addressing to reduce the switching activity in the control path of
high-performance processors. The cold scheduling algorithm
works much the same way as traditional list scheduling with the
exception that it schedules instructions based on a modified
priority scheme.

Another scheduling technique for reducing power
consumption is introduced in [4,5]. The goal here is to
reschedule code such that instructions are more judiciously
chosen as opposed to actually reordering instructions to reduce

power. In order to achieve the goal of low-power scheduling,
the authors implement a methodology for determining the
energy consumption of a single instruction in which they
measure the current through the processor when that
instruction is executed, using hardware.

In [6], the authors introduce a redundant search space
reduction scheme called BARS. Basically, BARS examines all
possible schedules of a DAG, and finds the schedule with the
lowest cost. The BARS algorithm employs two techniques for
runtime efficiency. One technique avoids potentially
redundant search, and another technique limits the number of
sub-trees to be searched.

In this paper, we propose an efficient instruction-level
optimization algorithm for low-power embedded systems. The
proposed scheme has the following benefits:

1) The instruction-ordering problem for low power is
formulated as a combinatorial graph-search
optimization problem, yielding near-optimal results.

2) RTL-level power simulators are used to drive the
optimization process.

3) A methodology for validating the results of the
optimization process is presented.

2 Key Contributions

In this paper, we tackle the following problems with
regard to instruction-level optimization:

1) The choice of instruction sequences is critical to

reducing power consumption. The instruction
scheduling or reordering problem is equivalent to the
Precedence Constrained Hamiltonian Path problem
for DAGs and the Traveling Salesman Problem in
general, both of which are NP-Hard. With n
instructions, there are (n-1)!/2 possible instruction
sequences. For example, for 11 instructions, there are
16,314,400 possible combinations of the instruction
sequences. For large numbers of instructions it is
practically impossible to examine all possible
instruction sequences to find the optimal sequence for
low power. Recent research has demonstrated that
design decisions made at the RTL level can have a
dramatic impact on the overall power characteristics
of the design [3,4.5,7,8]. Therefore, power estimation
of assembly instructions at the RTL level is very
useful, if accuracy is guaranteed within reasonable
simulation time constraints.

∗ This work is sponsored by DARPA under the grant # E21-F48.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/00010…$5.00.

147

2) Due to the large search space, the optimality of the
search algorithm should be validated at the very least
in a probabilistic sense.

3 Problem Description

The general procedure for instruction-level analysis is
shown in Figure 1(a-d):

1) Assembly instructions are assembled from the source
program.

2) The assembly code is decomposed into Basic Blocks
(BB).

3) Control and data dependency graph (CDG) is
constructed.

After obtaining the CDG, instruction scheduling is

performed for each BB and optimal instruction code for low
power is provided.

The main problem in instruction-level scheduling is that
the search space of the possible instruction sequences is very
large. The search space for six instructions of an FIR filter
source code for one BB is shown in Figure 1(e). Even though
only six instructions are considered, the search space is large.

Figure 2(a) shows a power dissipation table (PDT) which
shows the average power consumed when an instruction in the
left most column is followed by an instruction in the topmost
rows. The control flow and data dependency graph (CDG) of
Figure 2(b) shows the inter-dependency of instructions. For
example, instruction can be executed only after instruction
and have both been executed, while instructions , , and
may be executed in any order. The weighted strongly connected
graph (SCG) of Figure 2(c) contains all the edges of the CDG of
Figure 2(b) and some additional edges. If the order in which any
two instructions are executed can be interchanged without
violating the constraints of the CDG, then an additional edge is
inserted between the graph nodes (vertices) corresponding to
the two instructions. For example, the instruction and of
the CDG in Figure 2(b) can be interchanged. Hence, in Figure
2(c), there is an edge between the nodes and . Each edge of
the SCG is assigned a weight corresponding to the power
consumed by running the pair of instructions repeatedly. It is
assumed that the order in which the instruction pair is executed
does not matter.

Once the SCG is obtained, a minimum spanning tree
algorithm in Figure 2(d) is used to obtain an initial sequence for
the optimization. After the MST is performed, local
improvement heuristics are conducted by using simulated
annealing to obtain an optimal (least cost) Hamiltonian Tour of
all the vertices of the SCG as shown in Figure 2(e). This tour
gives the optimal sequence of instructions from the viewpoint
of power. In this case, the optimal sequence is , , , , , .

 Figure 1. CDG and Search Space Example

4 Optimization Procedure

The instruction-level optimization methodology is given
below:

Step1: Assemble the source code
Step2: Decompose into basic blocks
Step3: Construct CDG for each basic block
Step4: Generate PDT from power simulation
Step5: Build weighted SCG from CDG and PDT
Step6: Solve TSP problem to find optimal or near

optimal solution
Step7: Validate the optimization algorithm
Step8: Generate instruction sequence for low-power

(e) Search Space

Start

1 2 3

2 3 2 1

3 5 4 2

5 4 2 3 4 5

4 5 5 4 4 5

6 6 6 6 6 6 6 6 6 6

5 4 4 5

4 5 5 4

1 2

(d) CDG

1 2 3

4 5

6

 A Part of BB1

1 →→→→ subu $1,$2,$3
2 →→→→ move $5,$3
3 →→→→ lw $4,224($fp)
4 →→→→ sll $2,$3,2
5 →→→→ addu $4,$fp,32
6 →→→→ addu $3,$2,$4

 (b) Assembly Code

fir.c (FIR source code)

int main() {
 :
 initialization
 :
for (i=0;i<11;i++) {
 sum=0;
 for (j=0;j<i;j++)
 {sum += h[j] * x[i-j];}
 y[i] = sum;
}
 return(0);
}

(a) Source Code (c) Control Flow Graph

main

B1

B2

B3

B4

B5

Start

148

Figure 2. Our Approach

In the following, we discuss specific steps of the optimization
procedure.

4.1 CDG Construction

First, we review basic graph notations that are used in this
paper. A graph G consists of a set of nodes V, and a set of edges
E, G = <V,E>. The degree of a node is the number of neighbors
adjacent to it. We write X→Y when <X,Y> ∈∈∈∈ E in a directed
graph. We define PRED(X) as the set of the all predecessors of
node X, and SUCC(X) as the set of all successors of X. If X→Y,
then X ∈∈∈∈ PRED(Y) and Y ∈∈∈∈ SUCC(X). The indegree of a node
X is the cardinality of PRED(X) and the outdegree of a node X
is the cardinality of SUCC(X). The indegree(X) is the number
of edges of the form W→X, and the outdegree(X) is the number
of edges X → Y. If W→X , then W ∈∈∈∈ INDEG(X) and X ∈∈∈∈
OUTDEG(W). So, the OUTDEG(W) is a sub set of SUCC(W),
and the INDEG(X) is the sub set of PRED(X). The notation X
*→Y is to mean that there is a path from X to Y. The control
flow and data dependency graph specifies the execution order
among the components for given instructions to obey the
original program semantics. Figure 3 shows the CDG
construction algorithm.

Figure 3. CDG Construction Algorithm

4.2 PDT Generation

The power dissipation table describes the power
consumption due to the execution of an instruction itself and a
pair of instructions. We use a cycle-accurate data path energy
model at the RTL level. A cycle-by-cycle instruction-level
simulator is used to collect the switching activity at all latches
in the data path during execution of the program. The
SimpleScalar tool set [11], version 3.0 with RTL level power
model is used. Our target machine has a five-stage pipelined
data path and the functional units are 32-32bit general
registers, I-cache, D-cache, divider, multiplier, ALU, shifter,
and control units.

Details of generating infinite loops to measure the power
dissipation due to an instruction itself and an instruction pair
are shown in Figure 4. To avoid any corruption due to loop
overhead, we repeat the instruction pair 200,000 times with a
nop operation.

Figure 4. PDT Generation Example

Algorithm 1 Algorithm for CDG Construction

Input: Instruction-level source code
Output: Control and Data flow DAG representation
Definition: idn:x : id number (idn) for each instruction x
 src_pre(x) : source operands of previous instruction of x
 des_pre(x) : destination operands of previous instruction of x
 src(x) : current source operands of x
 des(x) : current destination operand of x

step 0: Set identity number (idn:x) for each instruction x.
step 1: Calculate total BB number and store the start idn of each BB.
step 2: For each x in BB, visit x, identify src_pre(x), des_pre(x), src(x),
 and des(x).
step 3: IF there is any y in des_pre(x) associated with src(x),
 THEN create an <x,y>∈∈∈∈E in G=<V,E> and remove
 y from des_pre(x)
step 4: IF there is any y in des_pre(x) associated with des(x),
 THEN create an <x,y>∈∈∈∈E in G=<V,E> and remove
 y from des_pre(x)
step 5: IF there is any y in src_pre(x) associated with des(x),
 THEN create an <x,y>∈∈∈∈E in G=<V,E> and remove
 y from src_pre(x)
step 6: IF there is any x in BB to be scheduled,
 THEN go to step 2.
 ELSE generate CDG graph and return.

1 2 3

4 5

6

3 1 2

4 5

6

6

3

1 3

5

2 9
7

1

1

4

(b) CDG
(c) Weighted SCG

8

5

1 2 3

4 5

6

6

3

1 3

5

2 9
7

1

1

4

1 2 3

4 5

6

6

3

1 3

5

2 9
7

1

1

4

(d) After Minimum
Spanning Tree

(e) After Simulated
Annealing

8 8

5 5

(a) PDT

 main:
:
 lw $2,228($fp)
move $5,$4
nop
lw $2,228($fp)
move $5,$4
nop
lw $2,228($fp)
move $5,$4
nop
 … 200,000 times
:

1 1 7 2 8 addu

1 2 8 9 3 sll

7 8 2 3 5 lw

2 9 3 2 1 move

6 3 5 1 5 subu

adduslllwmovesubu

149

4.3 SCG Generation
We define a strongly connected graph that is a set of nodes

S such that there is S1 *→ S2 for any two nodes S1, S2 ∈∈∈∈ S. As
shown in Figure 2(c) in Section 3, the weighted SCG is a sub
set of all possible instructions corresponding to the CDG. The
SCG Generation algorithm is shown in Figure 5.

Figure 5. SCG Generation Algorithm

4.4 TSP Realization

In the general form of the traveling salesman problem, we
are given a finite set of points V and a cost cuv of travel between
each pair u.v ∈∈∈∈ V. A tour is a circuit that passes exactly once
through each point in V. The TSP is to find a tour of minimal
cost. The TSP can be modeled as a graph problem by
considering a complete graph G = <V,E>, and assigning each
edge u.v ∈∈∈∈ E the cost cuv. A tour is then a circuit in G that meets
every node. The tours are sometimes called Hamiltonian
Circuits. The TSP is one of the best-known problems of
combinatorial optimization. A nice collection of papers tracing
the history and research on the problem can be found in [12].
No polynomial-time algorithm is known for solving the TSP in
general. Indeed, it belongs to the class of NP-Hard problems.

Heuristics are methods that cannot be guaranteed to
produce optimal solutions, but which produce fairly good
solutions at least some of the time. For the TSP, there are two
different types of heuristics. The first attempts to construct a
good tour from scratch. The second tries to improve an existing
tour, by means of local improvements. In practice it seems very
difficult to get a really good tour construction method [12]. In
this paper, as a construction method, we use a minimum-cost
spanning tree by using Prim’s Algorithm [13], and as a
improvement method, we use 2-optimal and 3-optimal local

search heuristics by using simulated annealing. Prim’s
algorithm is used for computing a minimum spanning tree. It
builds upon a single partial minimum spanning tree, at each
step adding an edge connecting the vertex nearest to but not
already in the current partial minimum spanning tree. If Prim’s
Algorithm is applied to the graph of Figure 6(a) with starting
vertex a, edges are chosen in the order ab, af, ac, cd, dg, de as
shown in Figure 6(b).

(a) SCG (b) MST

Figure 6. Prim’s Algorithm Example for MST

The MST solution is used as a starting point for further

optimization using heuristics. In this paper, we use 2-optimal
and 3-optimal mechanisms for the improvement heuristic,
using simulated annealing with the reasonable cooling
parameters as the optimization engine. The 2-optimal heuristic
proceeds by considering each non-adjacent pair of edges of
tree T in turn. If these edges are deleted, the T breaks up into
two paths T1 and T2. There is a unique way that these two
paths can be recombined to form a new tour T’. If c(T’) <<<<
c(T), then we replace T with T’ and repeat the procedure. As
shown in Figure 7, if c(T’) >>>> c(T) for every choice of pairs of
nonadjacent edges, then T is 2-optimal and we terminate the
procedure.

Figure 7. 2-Interchange Local Search Heuristics

The 2-optimal algorithm can be generalized naturally to a

k-optimal algorithm, wherein we consider all subsets of the
edge-set of a tour of size of k, or size at most k, remove each
subset in turn, then see if the resulting paths can be
recombined to form a tour of lesser cost. The problem is that
the number of subsets grows exponentially with k, and we
soon reach a point of diminishing return. For this reason, k-
optimal for k>>>>3 is rarely used. Figure 8 shows 3-optimal
example. In this paper we use both the 2-optimal and the 3-
optimal heuristics for optimization.

Figure 8. 3-Interchange Local Search Heuristics

16

22

29

35 25

12

18
15 23

32
31

28

20

f

a

b

c

d

e

g

16

22

29

35 25

12

18
15 23

32
31

28

20

f

a

b

c

d

e

g

a

l
k j

i

h

g

f

e b

c d
a

l
k j

i

h

g

f
e

b

c d

a

l
k j

i

h

g

f

e b

c d
a

l
k j

i

h

g

f

e b

c d

Algorithm 2 Algorithm for SCG Generation
Input: CDG stream
Output: SCG DAG representation (summation of SCCs)
Definition: indegree(X) : the number of edges of W→X
 outdegree(X) : the number of edges of X→Y
 INDEG(X) : If W→→→→X , then W ∈∈∈∈ INDEG(X)
 OUTDEG(X) : If X→→→→Y , then Y ∈∈∈∈ OUTDEG(X)
 SCC(X) : strongly connected components of X
 means that the components in SCC(X)
 may be followed by an instruction X
 (i.e., SCC(X)= [Y, Z]:Y,Z can be followed by X)

 Reverse CDG input stream in BB

Visit Xi, identify outdegree(Xi)

outdegree(Xi)

End of BB

indegree[OUTDEG(Xi)]

SCC(Xi)=[OUTDEG(Xi)] SCC(Xi)=[OUTDEG(INDEG(Xi))
 … OUTDEG(Xi)]

i = i - 1

SCC(Xi) =
[OUTDEG(Xi){0},
 … OUTDEG(Xi){n}]

>1

>1

= 1

= 1

= 0

150

5 Validation of Optimization Methodology
Let us designate the sample space n=(k-1)!/2 for k

instructions in a BB. Let us define v as an input vector for an
instruction sequence, define random variable W(v) to be the
power dissipation of the system when v is applied. If we choose
j input vectors v1, v2,…,vj randomly and exclusively, the power
dissipation obtained in each trial is also an independent random
variable (RV) Wj=W(vj), j=1,…,n. Since the Wj are
independent, the set {W1, W2,…,Wj} constitutes a random
sample. We define a new RV Xj=min(W1, W2,…,Wj), so that Xj
is the minimum power dissipation over j trials.

Let us designate the jth ordered observation oXj and the
fraction of the population below this observation as Pj=F(oXj).
Since the value of oXj varies from sample to sample, Pj is a
random variable. Thus we must consider the distribution of Pj.
We will now proceed with the development of the distribution
for Pj.

Given an ordered random sample oX1, oX2, …. , oXn of size n
from a population having a cumulative distribution function
F(X), where X is continuous, we try to find estimators for
F(oX1), F(oX1), …. , F(oXn). Let us define nPj=F(oXj), where
nPj is the probability of failing to find an optimal minimum
sequence Xn prior to the jth ordered observation in a sample
space n. Then, we have the F(oXj) probability for j-1 outcomes,
f(oXj)dX for 1 outcome, and 1- F(oXj)for n-j outcomes. Clearly,
the multinomial distribution is applicable in this situation.
Recall that the multinomial distribution is given by

ky
k

yy

k
k yyy

myyyP)...()()(
!!...!

!),...,,(21
21

21
21 ΘΘΘ= (1)

Where, the iΘ is the probability of obtaining the ith outcome
and yi is the RV representing the number of outcomes of the ith
type.

Therefore, the probability of j-1 outcomes with F(oXj), 1
outcome with f(oXj)dX, and n-j outcomes with 1- F(oXj)is given
by

jn
jojo

j
jo XFdXXfXF

jnj
n −− −

−−
)](1[)()]([

)!(!1)!1(
! 1 (2)

This is precisely the distribution of oXj, the value of the jth

odered observation.
Now we know that

jnjojo pddXXfXdF ==)()((3)

 Hence the probability element becomes

)10()1(
)!()!1(

!)(1 ≤≤−
−−

= −−
jnjn

jn
jn

j
jn

n
jnjn ppdpp

jnj
npdpg (4)

This distribution is commonly termed the rank distribution.

Actually the p.d.f. of the RV nPj is the well-known beta
distribution [14]. Figure 9 shows the p.d.f. for different values
of j for a sample of size n=10.

Figure 9. The rank distribution for a sample of size 10

Recall that the nPj is the probability of failing to find an

optimal minimum sequence Xn prior to the jth ordered
observation in a sample space n. Let us define that εεεε is the
error tolerance with a range of 0≤ εεεε ≤1and αααα is confidence
limit with range 0≤ αααα ≤1.

αε ≥≤ }{ jn pP (5)
This equation describes the method used to estimate the

confidence limit of the optimization with error tolerance εεεε. For
example, in order to get 95% confidence with less than 5%
error tolerance for any optimization value, it is estimated as
follows:

1) Estimate j trial number from the 95.0}05.0{ ≥≤jn pP
in the sample space n

2) Generate j input instruction sequences randomly and
exclusively

3) Find the minimum value among all j trial sequences
4) Compare the minimum value (minimum power) and

TSP optimized value
5) If two values are close, we can say that the TSP

optimization has 95% confidence limit with 5% error
tolerance.

6 Experiments and Results

All simulations are done by using the SimpleScalar tool
set [11], version 3.0 with RTL level power model. The target
machine includes a five-stage pipelined data path, 32-32bit
general registers, I-cache, D-cache, divider, multiplier, ALU,
shifter, and control units. The simulated annealing parameters
are tuned for 95% confidence limit and 5% error in Equation
(5). We assume a fixed clock frequency, fixed supply voltage,
and 0.35 micron technology. So, the terms “power” and
“energy” can be used interchangeably because the clock
frequency is fixed. Moreover, the power is almost proportional
to the switching capacitance, due to the fact that over 90% of
the total power dissipation is the switching power in well-
designed circuits [15]. We analyze the power consumption
without any schedule and with the optimal schedule when
running several embedded applications. Figure 10 shows an
optimal instruction sequence example for an FIR filter
application. When one basic block is optimized, 8.5 % of the
total power can be reduced with our scheme. Figure 11
presents power savings in each component of the target
system. Table 1 shows that a maximum 29% of the total power
can be saved with our algorithm for about 95% confidence
limit with 5 % error tolerance.

)(jn pg

jp10
1.0

j = 9
j = 3

j = 5

j = 1

151

9 2 :lw $ 2 ,2 2 8($ fp)

9 3 :m o v e$ 5,$ 4

9 4 :sl l$ 2 ,$ 3 ,2

9 5 :a d d u$ 4 ,$ fp ,3 2

9 7 :a d d u$ 2 ,$ 3 ,9 6

9 8 :lw $ 3 ,2 2 4($ fp)

9 9 :lw $ 4 ,2 2 8($ fp)

1 0 0:su b u $ 3 ,$ 3 ,$ 4

1 0 1:m o ve $4 ,$3

1 0 2:sl l$ 3 ,$ 4 ,2

1 0 3:a d d u$ 4 ,$ fp ,3 2

1 0 4:a d d u$ 3 ,$ 3 ,$ 4

1 0 8:m flo $ 2

1 0 9:lw $ 3 ,2 3 2($ fp)

1 1 0:a d d u$ 2 ,$ 3 ,$ 2

1 1 1:sw $ 2 ,2 3 2($ fp)

9 6 :a d d u$ 3 ,$ 2 ,$ 4

1 0 6:lw $ 3 ,0 ($3)

1 0 7:m u lt$ 2 ,$ 3

1 0 5:lw $ 2 ,0 ($2)

9 2 :lw $ 2 ,2 2 8($ fp)9 2 :lw $ 2 ,2 2 8($ fp)

9 3 :m o v e$ 5,$ 49 3 :m o v e$ 5,$ 4

9 4 :sl l$ 2 ,$ 3 ,29 4 :sl l$ 2 ,$ 3 ,2

9 5 :a d d u$ 4 ,$ fp ,3 29 5 :a d d u$ 4 ,$ fp ,3 2

9 7 :a d d u$ 2 ,$ 3 ,9 69 7 :a d d u$ 2 ,$ 3 ,9 6

9 8 :lw $ 3 ,2 2 4($ fp)9 8 :lw $ 3 ,2 2 4($ fp)

9 9 :lw $ 4 ,2 2 8($ fp)9 9 :lw $ 4 ,2 2 8($ fp)

1 0 0:su b u $ 3 ,$ 3 ,$ 41 0 0:su b u $ 3 ,$ 3 ,$ 4

1 0 1:m o ve $4 ,$31 0 1:m o ve $4 ,$3

1 0 2:sl l$ 3 ,$ 4 ,21 0 2:sl l$ 3 ,$ 4 ,2

1 0 3:a d d u$ 4 ,$ fp ,3 21 0 3:a d d u$ 4 ,$ fp ,3 2

1 0 4:a d d u$ 3 ,$ 3 ,$ 41 0 4:a d d u$ 3 ,$ 3 ,$ 4

1 0 8:m flo $ 21 0 8:m flo $ 2

1 0 9:lw $ 3 ,2 3 2($ fp)1 0 9:lw $ 3 ,2 3 2($ fp)

1 1 0:a d d u$ 2 ,$ 3 ,$ 21 1 0:a d d u$ 2 ,$ 3 ,$ 2

1 1 1:sw $ 2 ,2 3 2($ fp)1 1 1:sw $ 2 ,2 3 2($ fp)

9 6 :a d d u$ 3 ,$ 2 ,$ 49 6 :a d d u$ 3 ,$ 2 ,$ 4

1 0 6:lw $ 3 ,0 ($3)1 0 6:lw $ 3 ,0 ($3)

1 0 7:m u lt$ 2 ,$ 31 0 7:m u lt$ 2 ,$ 3

1 0 5:lw $ 2 ,0 ($2)1 0 5:lw $ 2 ,0 ($2)

9 2 :lw $ 2 ,2 2 8($ fp)

9 3 :m o v e$ 5,$ 4

9 4 :sl l$ 2 ,$ 3 ,2

9 5 :a d d u$ 4 ,$ fp ,3 2

9 7 :a d d u$ 2 ,$ 3 ,9 6

9 8 :lw $ 3 ,2 2 4($ fp)

9 9 :lw $ 4 ,2 2 8($ fp)

1 0 0:su b u $ 3 ,$ 3 ,$ 4

1 0 1:m o ve $4 ,$3

1 0 2:sl l$ 3 ,$ 4 ,2

1 0 3:a d d u$ 4 ,$ fp ,3 2

1 0 4:a d d u$ 3 ,$ 3 ,$ 4

1 0 8:m flo$ 2

1 0 9:lw $ 3 ,2 3 2($ fp)

1 1 0:a d d u$ 2 ,$ 3 ,$ 2

1 1 1:sw $ 2 ,2 3 2($ fp)

9 6 :a d d u$ 3 ,$ 2 ,$ 4

1 0 6:lw $ 3 ,0 ($3)

1 0 7:m u lt$ 2 ,$ 3

1 0 5:lw $ 2 ,0 ($2)

9 2 :lw $ 2 ,2 2 8($ fp)9 2 :lw $ 2 ,2 2 8($ fp)

9 3 :m o v e$ 5,$ 49 3 :m o v e$ 5,$ 4

9 4 :sl l$ 2 ,$ 3 ,29 4 :sl l$ 2 ,$ 3 ,2

9 5 :a d d u$ 4 ,$ fp ,3 29 5 :a d d u$ 4 ,$ fp ,3 2

9 7 :a d d u$ 2 ,$ 3 ,9 69 7 :a d d u$ 2 ,$ 3 ,9 6

9 8 :lw $ 3 ,2 2 4($ fp)9 8 :lw $ 3 ,2 2 4($ fp)

9 9 :lw $ 4 ,2 2 8($ fp)9 9 :lw $ 4 ,2 2 8($ fp)

1 0 0:su b u $ 3 ,$ 3 ,$ 41 0 0:su b u $ 3 ,$ 3 ,$ 4

1 0 1:m o ve $4 ,$31 0 1:m o ve $4 ,$3

1 0 2:sl l$ 3 ,$ 4 ,21 0 2:sl l$ 3 ,$ 4 ,2

1 0 3:a d d u$ 4 ,$ fp ,3 21 0 3:a d d u$ 4 ,$ fp ,3 2

1 0 4:a d d u$ 3 ,$ 3 ,$ 41 0 4:a d d u$ 3 ,$ 3 ,$ 4

1 0 8:m flo$ 21 0 8:m flo$ 2

1 0 9:lw $ 3 ,2 3 2($ fp)1 0 9:lw $ 3 ,2 3 2($ fp)

1 1 0:a d d u$ 2 ,$ 3 ,$ 21 1 0:a d d u$ 2 ,$ 3 ,$ 2

1 1 1:sw $ 2 ,2 3 2($ fp)1 1 1:sw $ 2 ,2 3 2($ fp)

9 6 :a d d u$ 3 ,$ 2 ,$ 49 6 :a d d u$ 3 ,$ 2 ,$ 4

1 0 6:lw $ 3 ,0 ($3)1 0 6:lw $ 3 ,0 ($3)

1 0 7:m u lt$ 2 ,$ 31 0 7:m u lt$ 2 ,$ 3

1 0 5:lw $ 2 ,0 ($2)1 0 5:lw $ 2 ,0 ($2)

Power Reduction Efficiency = 8.5 %
[(100436 – 91885)/100436 = 0.085]

No
Optimization

With
Optimization

T ota l Pow er: 100436 (p F)
(T otal C ycle : 29 00)

If s tage : 31 23(3 .11 %)
Id s tag e : 1 422 1(14 .1 6)
E xe stag e: 4334 3(43 .1 6)
M em stage: 9060(9 .02)
W b stage : 30 687 (30.55)

R eg iste r f ile : 25 84 6 (2 5 .73 %)
P ipe line R eg ister: 3 737 2(37 .2 1)
Fun ctio n U nits : 26 497 (26 .38)
O th er: 74 51(7 .4 2)

T ota l Pow er: 91885 (pF)
(T otal C ycle : 27 90)

If s tage : 31 02(3 .38 %)
Id s tag e : 1 304 5(14 .2 0)
E xe stag e: 3918 0(42 .6 4)
M em stage: 8596(9 .36)
W b stage : 27 960 (30.43)

R eg iste r f ile : 22 83 2 (2 4 .85 %)
P ipe line R eg ister: 3 579 7(38 .9 6)
Fun ctio n U nits : 23 285 (25 .34)
O th er: 68 00(7 .4 0)

T ota l Pow er: 100436 (p F)
(T otal C ycle : 29 00)

If s tage : 31 23(3 .11 %)
Id s tag e : 1 422 1(14 .1 6)
E xe stag e: 4334 3(43 .1 6)
M em stage: 9060(9 .02)
W b stage : 30 687 (30.55)

R eg iste r f ile : 25 84 6 (2 5 .73 %)
P ipe line R eg ister: 3 737 2(37 .2 1)
Fun ctio n U nits : 26 497 (26 .38)
O th er: 74 51(7 .4 2)

T ota l Pow er: 100436 (p F)
(T otal C ycle : 29 00)

If s tage : 31 23(3 .11 %)
Id s tag e : 1 422 1(14 .1 6)
E xe stag e: 4334 3(43 .1 6)
M em stage: 9060(9 .02)
W b stage : 30 687 (30.55)

R eg iste r f ile : 25 84 6 (2 5 .73 %)
P ipe line R eg ister: 3 737 2(37 .2 1)
Fun ctio n U nits : 26 497 (26 .38)
O th er: 74 51(7 .4 2)

T ota l Pow er: 91885 (pF)
(T otal C ycle : 27 90)

If s tage : 31 02(3 .38 %)
Id s tag e : 1 304 5(14 .2 0)
E xe stag e: 3918 0(42 .6 4)
M em stage: 8596(9 .36)
W b stage : 27 960 (30.43)

R eg iste r f ile : 22 83 2 (2 4 .85 %)
P ipe line R eg ister: 3 579 7(38 .9 6)
Fun ctio n U nits : 23 285 (25 .34)
O th er: 68 00(7 .4 0)

T ota l Pow er: 91885 (pF)
(T otal C ycle : 27 90)

If s tage : 31 02(3 .38 %)
Id s tag e : 1 304 5(14 .2 0)
E xe stag e: 3918 0(42 .6 4)
M em stage: 8596(9 .36)
W b stage : 27 960 (30.43)

R eg iste r f ile : 22 83 2 (2 4 .85 %)
P ipe line R eg ister: 3 579 7(38 .9 6)
Fun ctio n U nits : 23 285 (25 .34)
O th er: 68 00(7 .4 0)

Figure 10. Scheduling Example for one BB of FIR Source

Fir

 If Id Exe Mem Wb RF PR FU DP

Po
w

er
 (p

F)

0

10000

20000

30000

40000

50000

No Optimization
With Optimization

Bubble_Sort

 If Id Exe Mem Wb RF PR FU DP

P
ow

er
 (p

F)

0

1e+6

2e+6

3e+6

4e+6

5e+6

6e+6

No Optimization
With Optimization

Quick_Sort

 If Id Exe Mem Wb RF PR FU DP

Po
w

er
 (p

F)

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

No
Optimization
With
Optimization

Banary_Search

 If Id Exe Mem Wb RF PR FU DP

Po
w

er
 (p

F)

0

1000

2000

3000

4000

5000

6000

No Optimization
With Optimization

Note: If: Instruction Fetch, Id: Instruction Decode, Exe: Execution, Mem: Memory access, Wb: Wright back,
 RF: Register file, PR: Pipeline Register, FU: Functional Units, DP: Other Data Paths

Figure 11. Power Savings for Each Component

6.69≈ 95 / ≈ 5337 3014. 48
/ (9632 9)

36 1512 1.35
/ (101 136)

H ea p Sor t
(100

S am p les)

29.19≈ 95 / ≈ 5191 9845. 60
/ (6117 0)

27 1144 5.75
/ (855 02)

Qu ick S or t
(100

S am p les)

2.68≈ 95 / ≈ 51162 7652 .60
/ (36067 5)

11 94891 7.22
/ (368 100)

B ub b le S ort
(100

S am p les)

8.52≈ 95 / ≈ 591 885.5 0
/ (2790)

1 00436 .35
/ (29 00)

FI R Fil ter

Powe r
Red u cti
on (%)

Co nfid enc e
Li m it / E rro r

Ra te
(%)

T otal Po w er
/ (C yc le s)

w ith
S ched ul in g

(p F)

T otal Pow er
/ (Cyc le s)

w itho ut
S ched u lin g

(p F)

6.69≈ 95 / ≈ 5337 3014. 48
/ (9632 9)

36 1512 1.35
/ (101 136)

H ea p Sor t
(100

S am p les)

29.19≈ 95 / ≈ 5191 9845. 60
/ (6117 0)

27 1144 5.75
/ (855 02)

Qu ick S or t
(100

S am p les)

2.68≈ 95 / ≈ 51162 7652 .60
/ (36067 5)

11 94891 7.22
/ (368 100)

B ub b le S ort
(100

S am p les)

8.52≈ 95 / ≈ 591 885.5 0
/ (2790)

1 00436 .35
/ (29 00)

FI R Fil ter

Powe r
Red u cti
on (%)

Co nfid enc e
Li m it / E rro r

Ra te
(%)

T otal Po w er
/ (C yc le s)

w ith
S ched ul in g

(p F)

T otal Pow er
/ (Cyc le s)

w itho ut
S ched u lin g

(p F)

7 Conclusion and Future Work
In this paper, we show that the instruction-level

optimization problem can be solved using combinatorial
methods. An efficient instruction-level optimization
methodology and a validation method for the optimization are
proposed. Experimental results show the effectiveness of the
new approach.

 The goal of this paper is to present a methodology for
developing and validating an instruction-level low-power
optimization framework for a given instruction set
architecture. Future work will include global compiler-directed
solutions for low-power embedded systems that will also
consider the power benefits of voltage and frequency scaling.

References
 [1] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A.

Schrijver, Combinatorial Optimization, Wiley-Interscience Series
in Discrete Mathematics and Optimization, pp241-271, 1998.

[2] V. Jain, S. Rele, S. Pande, and J. Ramanujam "Code restructuring
for improving execution efficiency, code size and power
consumption for embedded DSPs", 12th International Workshop
on Languages and Compilers for Parallel Computing, 1999.

[3] C.-L. Su, C.-Y. Tsui, and A. M. Despain, "Low power architecture
design and compilation techniques for high-performance
processors," Proc. IEEE CompCon'94, pp. 489-498. Feb., 1994.

[4] V. Tiwari, S. Malik, and A. Wolfe, “Instruction Level Power
Analysis and Optimization of Software,” Journal of VLSI Signal
Processing, pp.1-18, 1996.

[5] V. Tiwari, S. Malik, and A. Wolfe, “Compilation Techniques for
Low Energy: An Overview,” IEEE Symposium on Low Power
Electronics, October 1994.

[6] H. Tomiyama, T. Ishihara, A. inoue, and H. Yasuura, "Instruction
Scheduling to Ruduce Switching Activity of Off-Chip Busses for
Low-Power Systems with Caches," Proc. IEICE, pp. 2621-2629.
Dec., 1998.

[7] C. Lee, J.K. Lee, and T.T. Hwang, “Compiler optimization on
Instruction Scheduling for Low Power,” ISSS2000, pp.20-22, Oct.,
2000.

[8] K.Roy and M.C. Johnson, “Software design for low power,”
Technical report at Purdue Univ., 1996.

[9] C.-L. Su, C.-Y. Tsui, and A. M. Despain, "Low power architecture
design and compilation techniques for high-performance
processors," Proc. IEEE CompCon'94, pp. 489-498. Feb., 1994.

[10] G. Lakshminarayana, A. Raghunathan, N.K. Jha, "Incorporating
Speculative Execution into Scheduling of Control-Flow-Intensive
Designs," IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, vol., 19, no. 3, pp. 308-324Mar.,
2000.

[11] D. Burger and T.M. Austin, “SimpleScalar Tool Set,” Univ. of
Wisconsin-Madison Computer Science Dept., Tech. Teport #1342,
Jun., 1997.

[12] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D. Shmoys,
The Traveling Salesman Problem, Wiley, Chichester, 1985.

[13] R.C. Prim, “Shortest connection networks and some
generalizations,” Bell System Technical Journal36, pp1389-1401,
1957.

[14] K.C. Kapur and L.R. Lamberson, Reliability in Engineering
Design, John Wiley & Sons, 1977.

[15] T.D. Burd and R.W. Brodersen, “Energy efficient CMOS
microprocessor design,” Proceedings 28th HICSS Conference,
vol. I, pp. 288-297, Jan., 1995.

Table 1. Total Power Saving Results for Some Applications

152

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

