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Abstract 

In this paper, for low-power embedded systems, we solve 
the instruction scheduling and reordering problem as a 
Precedence Constrained Hamiltonian Path Problem for DAGs 
and the Traveling Salesman Problem (TSP), both of which are 
NP-Hard [1,2]. We propose an efficient instruction-level 
optimization algorithm for solving the NP-Hard problem. 
Minimum spanning tree (MST) and simulated annealing (SA) 
mechanisms are used for the optimization. We describe the 
methods for generating the control flow and data dependence 
graph (CDG), power dissipation table (PDT), and weighted 
strongly connected graph (SCG) for the instruction-level low-
power analysis. In addition, confidence limits with error 
tolerance are considered for the validation of the optimization. 
Finally, experimental results that demonstrate the effectiveness 
and the efficiency of the proposed algorithms are shown. 
 
1 Introduction and Previous Work 

Recently, new research directions in reducing power 
consumptions for embedded systems have begun to address the 
issues of arranging software at the instruction level to control 
power dissipation [3,4,5,6,7,8,9,10]. The energy consumed by a 
processor depends on the previous state of the system and the 
current inputs. Therefore, it is clear that proper instruction 
choice and ordering should be considered for low-power 
embedded systems. 

There has been previous research on instruction-level 
scheduling to reduce total power consumption. In [3], a 
technique called cold scheduling was combined with Gray code 
addressing to reduce the switching activity in the control path of 
high-performance processors. The cold scheduling algorithm 
works much the same way as traditional list scheduling with the 
exception that it schedules instructions based on a modified 
priority scheme. 

Another scheduling technique for reducing power 
consumption is introduced in  [4,5]. The goal here is to 
reschedule code such that instructions are more judiciously 
chosen as opposed to actually reordering instructions to reduce 

power. In order to achieve the goal of low-power scheduling, 
the authors implement a methodology for determining the 
energy consumption of a single instruction in which they 
measure the current through the processor when that 
instruction is executed, using hardware. 

In [6], the authors introduce a redundant search space 
reduction scheme called BARS. Basically, BARS examines all 
possible schedules of a DAG, and finds the schedule with the 
lowest cost. The BARS algorithm employs two techniques for 
runtime efficiency. One technique avoids potentially 
redundant search, and another technique limits the number of 
sub-trees to be searched. 

In this paper, we propose an efficient instruction-level 
optimization algorithm for low-power embedded systems. The 
proposed scheme has the following benefits: 

1) The instruction-ordering problem for low power is 
formulated as a combinatorial graph-search 
optimization problem, yielding near-optimal results. 

2) RTL-level power simulators are used to drive the 
optimization process. 

3) A methodology for validating the results of the 
optimization process is presented. 

 
2 Key Contributions 

In this paper, we tackle the following problems with 
regard to instruction-level optimization: 

 
1) The choice of instruction sequences is critical to 

reducing power consumption. The instruction 
scheduling or reordering problem is equivalent to the 
Precedence Constrained Hamiltonian Path problem 
for DAGs and the Traveling Salesman Problem in 
general, both of which are NP-Hard. With n 
instructions, there are (n-1)!/2 possible instruction 
sequences. For example, for 11 instructions, there are 
16,314,400 possible combinations of the instruction 
sequences. For large numbers of instructions it is 
practically impossible to examine all possible 
instruction sequences to find the optimal sequence for 
low power. Recent research has demonstrated that 
design decisions made at the RTL level can have a 
dramatic impact on the overall power characteristics 
of the design [3,4.5,7,8]. Therefore, power estimation 
of assembly instructions at the RTL level is very 
useful, if accuracy is guaranteed within reasonable 
simulation time constraints.  
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2) Due to the large search space, the optimality of the 
search algorithm should be validated at the very least 
in a probabilistic sense. 

 
 
3 Problem Description 

The general procedure for instruction-level analysis is 
shown in Figure 1(a-d):  

1) Assembly instructions are assembled from the source 
program.  

2) The assembly code is decomposed into Basic Blocks 
(BB).  

3) Control and data dependency graph (CDG) is 
constructed.   

 
After obtaining the CDG, instruction scheduling is 

performed for each BB and optimal instruction code for low 
power is provided.  

The main problem in instruction-level scheduling is that 
the search space of the possible instruction sequences is very 
large. The search space for six instructions of an FIR filter 
source code for one BB is shown in Figure 1(e). Even though 
only six instructions are considered, the search space is large.  

Figure 2(a) shows a power dissipation table (PDT) which 
shows the average power consumed when an instruction in the 
left most column is followed by an instruction in the topmost 
rows. The control flow and data dependency graph (CDG) of 
Figure 2(b) shows the inter-dependency of instructions. For 
example, instruction  can be executed only after instruction  
and  have both been executed, while instructions , , and  
may be executed in any order. The weighted strongly connected 
graph (SCG) of Figure 2(c) contains all the edges of the CDG of 
Figure 2(b) and some additional edges. If the order in which any 
two instructions are executed can be interchanged without 
violating the constraints of the CDG, then an additional edge is 
inserted between the graph nodes (vertices) corresponding to 
the two instructions. For example, the instruction  and  of 
the CDG in Figure 2(b) can be interchanged. Hence, in Figure 
2(c), there is an edge between the nodes  and . Each edge of 
the SCG is assigned a weight corresponding to the power 
consumed by running the pair of instructions repeatedly. It is 
assumed that the order in which the instruction pair is executed 
does not matter.  

Once the SCG is obtained, a minimum spanning tree 
algorithm in Figure 2(d) is used to obtain an initial sequence for 
the optimization. After the MST is performed, local 
improvement heuristics are conducted by using simulated 
annealing to obtain an optimal (least cost) Hamiltonian Tour of 
all the vertices of the SCG as shown in Figure 2(e). This tour 
gives the optimal sequence of instructions from the viewpoint 
of power. In this case, the optimal sequence is , , , , , . 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 1. CDG and Search Space Example 
 
4 Optimization Procedure 

The instruction-level optimization methodology is given 
below: 

Step1: Assemble the source code 
Step2: Decompose into basic blocks 
Step3: Construct CDG for each basic block 
Step4: Generate PDT from power simulation 
Step5: Build weighted SCG from CDG and PDT 
Step6: Solve TSP problem to find optimal or near 

optimal solution  
Step7: Validate the optimization algorithm 
Step8: Generate instruction sequence for low-power  
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       A Part of BB1 
 
1 →→→→  subu  $1,$2,$3 
2 →→→→  move  $5,$3 
3 →→→→  lw       $4,224($fp) 
4 →→→→  sll       $2,$3,2  
5 →→→→  addu  $4,$fp,32 
6 →→→→  addu  $3,$2,$4  

      (b) Assembly Code  

fir.c ( FIR  source code ) 
 
int main() { 
             : 
    initialization 
             : 
for (i=0;i<11;i++) { 
   sum=0; 
   for (j=0;j<i;j++)  
      {sum += h[j] * x[i-j];} 
   y[i] = sum; 
} 
    return(0); 
} 

(a) Source Code (c) Control Flow Graph 

main 

B1 

B2 

B3 

B4 

B5 

Start 
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Figure 2. Our Approach 
 
In the following, we discuss specific steps of the optimization 
procedure. 
 
4.1   CDG Construction 

First, we review basic graph notations that are used in this 
paper. A graph G consists of a set of nodes V, and a set of edges 
E, G = <V,E>. The degree of a node is the number of neighbors 
adjacent to it. We write X→Y when <X,Y> ∈∈∈∈ E in a directed 
graph. We define PRED(X) as the set of the all predecessors of 
node X, and SUCC(X) as the set of all successors of X. If X→Y, 
then X ∈∈∈∈ PRED(Y) and Y ∈∈∈∈ SUCC(X). The indegree of a node 
X is the cardinality of PRED(X) and the outdegree of a node X 
is the cardinality of SUCC(X). The indegree(X) is the number 
of edges of the form W→X, and the outdegree(X) is the number 
of edges X → Y. If W→X , then W ∈∈∈∈ INDEG(X) and X ∈∈∈∈ 
OUTDEG(W). So, the OUTDEG(W) is a sub set of SUCC(W), 
and the INDEG(X) is the sub set of PRED(X). The  notation X 
*→Y is to mean that there is a path from X to Y. The control 
flow and data dependency graph specifies the execution order 
among the components for given instructions to obey the 
original program semantics. Figure 3 shows the CDG 
construction algorithm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. CDG Construction Algorithm 
 
 
4.2   PDT Generation 

The power dissipation table describes the power 
consumption due to the execution of an instruction itself and a 
pair of instructions. We use a cycle-accurate data path energy 
model at the RTL level. A cycle-by-cycle instruction-level 
simulator is used to collect the switching activity at all latches 
in the data path during execution of the program. The 
SimpleScalar tool set [11], version 3.0 with RTL level power 
model is used. Our target machine has a five-stage pipelined 
data path and the functional units are 32-32bit general 
registers, I-cache, D-cache, divider, multiplier, ALU, shifter, 
and control units. 

Details of generating infinite loops to measure the power 
dissipation due to an instruction itself and an instruction pair 
are shown in Figure 4. To avoid any corruption due to loop 
overhead, we repeat the instruction pair 200,000 times with a 
nop operation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. PDT Generation Example  
 
 

Algorithm 1   Algorithm for CDG Construction 

Input: Instruction-level source code 
Output: Control and Data flow DAG representation 
Definition:  idn:x : id number (idn) for each instruction x 
                    src_pre(x) : source operands of previous instruction of x 
                    des_pre(x) : destination operands of previous instruction of x    
                    src(x) : current source operands of x 
                    des(x) : current destination operand of x 
 
step 0: Set identity number ( idn:x ) for each instruction x. 
step 1: Calculate total BB number and store the start idn of each BB. 
step 2: For each x in BB, visit x, identify src_pre(x), des_pre(x), src(x), 
             and des(x). 
step 3: IF there is any y in des_pre(x) associated with src(x),  
            THEN create an <x,y>∈∈∈∈E in  G=<V,E> and remove 
            y from des_pre(x)  
step 4: IF there is any y in des_pre(x) associated with des(x),  
            THEN create an <x,y>∈∈∈∈E in  G=<V,E> and remove 
            y from des_pre(x)  
step 5: IF there is any y in src_pre(x) associated with des(x),  
            THEN create an <x,y>∈∈∈∈E in  G=<V,E> and remove 
            y from src_pre(x)  
step 6: IF there is any x in BB to be scheduled,  
            THEN go to step 2. 
            ELSE generate CDG graph and return.  
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 main: 
: 
 lw      $2,228($fp)  
move $5,$4 
nop 
lw      $2,228($fp)  
move $5,$4 
nop 
lw      $2,228($fp)  
move $5,$4 
nop 
 … 200,000 times 
: 

1 1 7 2 8  addu 

1 2 8 9 3  sll 

7 8 2 3 5  lw 

2 9 3 2 1  move 

6 3 5 1 5  subu 

adduslllwmovesubu
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4.3   SCG Generation 
We define a strongly connected graph that is a set of nodes 

S such that there is S1 *→ S2 for any two nodes S1, S2 ∈∈∈∈ S. As 
shown in Figure 2(c) in Section 3, the weighted SCG is a sub 
set of all possible instructions corresponding to the CDG. The 
SCG Generation algorithm is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. SCG Generation Algorithm 

 
4.4 TSP Realization 

In the general form of the traveling salesman problem, we 
are given a finite set of points V and a cost cuv of travel between 
each pair u.v ∈∈∈∈ V. A tour is a circuit that passes exactly once 
through each point in V. The TSP is to find a tour of minimal 
cost. The TSP can be modeled as a graph problem by 
considering a complete graph G = <V,E>, and assigning each 
edge u.v ∈∈∈∈ E the cost cuv. A tour is then a circuit in G that meets 
every node. The tours are sometimes called Hamiltonian 
Circuits. The TSP is one of the best-known problems of 
combinatorial optimization. A nice collection of papers tracing 
the history and research on the problem can be found in [12]. 
No polynomial-time algorithm is known for solving the TSP in 
general. Indeed, it belongs to the class of NP-Hard problems. 

Heuristics are methods that cannot be guaranteed to 
produce optimal solutions, but which produce fairly good 
solutions at least some of the time. For the TSP, there are two 
different types of heuristics. The first attempts to construct a 
good tour from scratch. The second tries to improve an existing 
tour, by means of local improvements. In practice it seems very 
difficult to get a really good tour construction method [12]. In 
this paper, as a construction method, we use a minimum-cost 
spanning tree by using Prim’s Algorithm  [13], and as a 
improvement method, we use 2-optimal and 3-optimal local 

search heuristics by using simulated annealing. Prim’s 
algorithm is used for computing a minimum spanning tree. It 
builds upon a single partial minimum spanning tree, at each 
step adding an edge connecting the vertex nearest to but not 
already in the current partial minimum spanning tree. If Prim’s 
Algorithm is applied to the graph of Figure 6(a) with starting 
vertex a, edges are chosen in the order ab, af, ac, cd, dg, de as 
shown in Figure 6(b). 

 
 
 
 
 
 
 
(a) SCG             (b) MST  

 
Figure 6. Prim’s Algorithm Example for MST 

 
The MST solution is used as a starting point for further 

optimization using heuristics. In this paper, we use 2-optimal 
and 3-optimal mechanisms for the improvement heuristic, 
using simulated annealing with the reasonable cooling 
parameters as the optimization engine. The 2-optimal heuristic 
proceeds by considering each non-adjacent pair of edges of 
tree T in turn. If these edges are deleted, the T breaks up into 
two paths T1 and T2. There is a unique way that these two 
paths can be recombined to form a new tour T’. If c(T’) <<<< 
c(T), then we replace T with T’ and repeat the procedure. As 
shown in Figure 7, if c(T’) >>>> c(T) for every choice of pairs of 
nonadjacent edges, then T is 2-optimal and we terminate the 
procedure.  

 
 
 
 
 
 
 

Figure 7. 2-Interchange Local Search Heuristics 
 
The 2-optimal algorithm can be generalized naturally to a 

k-optimal algorithm, wherein we consider all subsets of the 
edge-set of a tour of size of k, or size at most k, remove each 
subset in turn, then see if the resulting paths can be 
recombined to form a tour of lesser cost. The problem is that 
the number of subsets grows exponentially with k, and we 
soon reach a point of diminishing return. For this reason, k-
optimal for k>>>>3 is rarely used. Figure 8 shows 3-optimal 
example. In this paper we use both the 2-optimal and the 3-
optimal heuristics for optimization. 

 
 
 
 
 
 
 

Figure 8. 3-Interchange Local Search Heuristics 
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Algorithm 2   Algorithm for SCG Generation 
Input: CDG stream  
Output: SCG DAG representation (summation of SCCs) 
Definition:  indegree(X) : the number of edges of W→X 
                    outdegree(X) : the number of edges of X→Y 
                    INDEG(X) : If W→→→→X , then W ∈∈∈∈ INDEG(X)  
                    OUTDEG(X) : If X→→→→Y , then Y ∈∈∈∈ OUTDEG(X) 
                    SCC(X) : strongly connected components of X  
                                     means that the components in SCC(X)  
                                     may be followed by an instruction X 
                                     (i.e., SCC( X )= [Y, Z]:Y,Z can be followed by X) 
 
 Reverse CDG input stream in BB 

Visit Xi, identify outdegree(Xi) 

outdegree(Xi) 

End of BB 

indegree[OUTDEG(Xi)] 

SCC(Xi)=[OUTDEG(Xi)] SCC(Xi)=[OUTDEG(INDEG(Xi)) 
                    … OUTDEG(Xi)] 

i = i - 1 

SCC(Xi) =  
[OUTDEG(Xi){0}, 
 … OUTDEG(Xi){n}] 

>1 

>1 

= 1 

= 1 

= 0 
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5 Validation of Optimization Methodology 
Let us designate the sample space n=(k-1)!/2 for k 

instructions in a BB. Let us define v as an input vector for an 
instruction sequence, define random variable W(v) to be the 
power dissipation of the system when v is applied. If we choose 
j input vectors v1, v2,…,vj randomly and exclusively, the power 
dissipation obtained in each trial is also an independent random 
variable (RV) Wj=W(vj), j=1,…,n. Since the Wj are 
independent, the set {W1, W2,…,Wj} constitutes a random 
sample. We define a new RV Xj=min(W1, W2,…,Wj), so that Xj 
is the minimum power dissipation over j trials.  

Let us designate the jth ordered observation oXj and the 
fraction of the population below this observation as Pj=F(oXj). 
Since the value of oXj varies from sample to sample, Pj is a 
random variable. Thus we must consider the distribution of Pj. 
We will now proceed with the development of the distribution 
for Pj. 

Given an ordered random sample oX1,  oX2, …. , oXn of size n 
from a population having a cumulative distribution function 
F(X), where X is continuous, we try to find estimators for 
F(oX1), F(oX1), …. , F(oXn). Let us define nPj=F(oXj),  where 
nPj is the probability of failing to find an optimal minimum 
sequence Xn prior to the jth ordered observation in a sample 
space n. Then, we have the F(oXj) probability for j-1 outcomes, 
f(oXj)dX  for 1 outcome, and 1- F(oXj)for n-j outcomes. Clearly, 
the multinomial distribution is applicable in this situation. 
Recall that the multinomial distribution is given by 

ky
k
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k yyy
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21
21 ΘΘΘ=         (1) 

Where, the iΘ is the probability of obtaining the ith outcome 
and yi is the RV representing the number of outcomes of the ith 
type. 

Therefore, the probability of j-1 outcomes with F(oXj), 1 
outcome with f(oXj)dX, and n-j outcomes with 1- F(oXj)is given 
by  

 

jn
jojo

j
jo XFdXXfXF

jnj
n −− −

−−
)](1[)()]([

)!(!1)!1(
! 1       (2) 

 
This is precisely the distribution of oXj, the value of the jth 

odered observation. 
Now we know that  
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This distribution is commonly termed the rank distribution. 

Actually the p.d.f. of the RV nPj is the well-known beta 
distribution [14]. Figure 9 shows the p.d.f. for different values 
of j for a sample of size n=10. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. The rank distribution for a sample of size 10 

 
Recall that the nPj is the probability of failing to find an 

optimal minimum sequence Xn prior to the jth ordered 
observation in a sample space n. Let us define that εεεε is the 
error tolerance with a range of 0≤ εεεε ≤1and αααα is confidence 
limit with range 0≤ αααα ≤1.  

αε ≥≤ }{ jn pP                      (5) 
This equation describes the method used to estimate the 

confidence limit of the optimization with error tolerance εεεε. For 
example, in order to get 95% confidence with less than 5% 
error tolerance for any optimization value, it is estimated as 
follows: 
 

1) Estimate j trial number from the 95.0}05.0{ ≥≤jn pP  
in the sample space n 

2) Generate j input instruction sequences randomly and 
exclusively 

3) Find the minimum value among all j trial sequences 
4) Compare the minimum value (minimum power) and 

TSP optimized value 
5) If two values are close, we can say that the TSP 

optimization has 95% confidence limit with 5% error 
tolerance. 

 
6 Experiments and Results 

All simulations are done by using the SimpleScalar tool 
set [11], version 3.0 with RTL level power model. The target 
machine includes a five-stage pipelined data path, 32-32bit 
general registers, I-cache, D-cache, divider, multiplier, ALU, 
shifter, and control units. The simulated annealing parameters 
are tuned for 95% confidence limit and 5% error in Equation 
(5). We assume a fixed clock frequency, fixed supply voltage, 
and 0.35 micron technology. So, the terms “power” and  
“energy” can be used interchangeably because the clock  
frequency is fixed. Moreover, the power is almost proportional  
to the switching capacitance, due to the fact that over 90% of 
the total power dissipation is the switching power in well-
designed circuits [15]. We analyze the power consumption 
without any schedule and with the optimal schedule when 
running several embedded applications. Figure 10 shows an 
optimal instruction sequence example for an FIR filter 
application. When one basic block is optimized, 8.5 % of  the 
total power can be reduced with our scheme. Figure 11 
presents power savings in each component of the target 
system. Table 1 shows that a maximum 29% of the total power 
can be saved with our algorithm for about 95% confidence 
limit with 5 % error tolerance.        
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9 2 :lw $ 2 ,2 2 8($ fp )

9 3 :m o v e$ 5,$ 4

9 4 :sl l$ 2 ,$ 3 ,2

9 5 :a d d u$ 4 ,$ fp ,3 2

9 7 :a d d u$ 2 ,$ 3 ,9 6

9 8 :lw $ 3 ,2 2 4($ fp )

9 9 :lw $ 4 ,2 2 8($ fp )

1 0 0:su b u $ 3 ,$ 3 ,$ 4

1 0 1:m o ve $4 ,$3

1 0 2:sl l$ 3 ,$ 4 ,2

1 0 3:a d d u$ 4 ,$ fp ,3 2

1 0 4:a d d u$ 3 ,$ 3 ,$ 4

1 0 8:m flo $ 2

1 0 9:lw $ 3 ,2 3 2($ fp )

1 1 0:a d d u$ 2 ,$ 3 ,$ 2

1 1 1:sw $ 2 ,2 3 2($ fp )

9 6 :a d d u$ 3 ,$ 2 ,$ 4

1 0 6:lw $ 3 ,0 ($3 )

1 0 7:m u lt$ 2 ,$ 3

1 0 5:lw $ 2 ,0 ($2 )

9 2 :lw $ 2 ,2 2 8($ fp )9 2 :lw $ 2 ,2 2 8($ fp )

9 3 :m o v e$ 5,$ 49 3 :m o v e$ 5,$ 4

9 4 :sl l$ 2 ,$ 3 ,29 4 :sl l$ 2 ,$ 3 ,2

9 5 :a d d u$ 4 ,$ fp ,3 29 5 :a d d u$ 4 ,$ fp ,3 2

9 7 :a d d u$ 2 ,$ 3 ,9 69 7 :a d d u$ 2 ,$ 3 ,9 6

9 8 :lw $ 3 ,2 2 4($ fp )9 8 :lw $ 3 ,2 2 4($ fp )

9 9 :lw $ 4 ,2 2 8($ fp )9 9 :lw $ 4 ,2 2 8($ fp )

1 0 0:su b u $ 3 ,$ 3 ,$ 41 0 0:su b u $ 3 ,$ 3 ,$ 4

1 0 1:m o ve $4 ,$31 0 1:m o ve $4 ,$3

1 0 2:sl l$ 3 ,$ 4 ,21 0 2:sl l$ 3 ,$ 4 ,2

1 0 3:a d d u$ 4 ,$ fp ,3 21 0 3:a d d u$ 4 ,$ fp ,3 2

1 0 4:a d d u$ 3 ,$ 3 ,$ 41 0 4:a d d u$ 3 ,$ 3 ,$ 4

1 0 8:m flo $ 21 0 8:m flo $ 2

1 0 9:lw $ 3 ,2 3 2($ fp )1 0 9:lw $ 3 ,2 3 2($ fp )

1 1 0:a d d u$ 2 ,$ 3 ,$ 21 1 0:a d d u$ 2 ,$ 3 ,$ 2

1 1 1:sw $ 2 ,2 3 2($ fp )1 1 1:sw $ 2 ,2 3 2($ fp )

9 6 :a d d u$ 3 ,$ 2 ,$ 49 6 :a d d u$ 3 ,$ 2 ,$ 4

1 0 6:lw $ 3 ,0 ($3 )1 0 6:lw $ 3 ,0 ($3 )

1 0 7:m u lt$ 2 ,$ 31 0 7:m u lt$ 2 ,$ 3

1 0 5:lw $ 2 ,0 ($2 )1 0 5:lw $ 2 ,0 ($2 )

9 2 :lw $ 2 ,2 2 8($ fp )

9 3 :m o v e$ 5,$ 4

9 4 :sl l$ 2 ,$ 3 ,2

9 5 :a d d u$ 4 ,$ fp ,3 2

9 7 :a d d u$ 2 ,$ 3 ,9 6

9 8 :lw $ 3 ,2 2 4($ fp )

9 9 :lw $ 4 ,2 2 8($ fp )

1 0 0:su b u $ 3 ,$ 3 ,$ 4

1 0 1:m o ve $4 ,$3

1 0 2:sl l$ 3 ,$ 4 ,2

1 0 3:a d d u$ 4 ,$ fp ,3 2

1 0 4:a d d u$ 3 ,$ 3 ,$ 4

1 0 8:m flo$ 2

1 0 9:lw $ 3 ,2 3 2($ fp )

1 1 0:a d d u$ 2 ,$ 3 ,$ 2
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Figure 10. Scheduling Example for one BB of FIR Source 
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Note: If: Instruction Fetch, Id: Instruction Decode, Exe: Execution, Mem: Memory access, Wb: Wright back,  
         RF: Register file, PR: Pipeline Register, FU: Functional Units, DP: Other Data Paths 
 

Figure 11. Power Savings for Each Component  
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7 Conclusion and Future Work 
In this paper, we show that the instruction-level 

optimization problem can be solved using combinatorial 
methods. An efficient instruction-level optimization 
methodology and a validation method for the optimization are 
proposed. Experimental results show the effectiveness of the 
new approach. 

 The goal of this paper is to present a methodology for 
developing and validating an instruction-level low-power 
optimization framework for a given instruction set 
architecture. Future work will include global compiler-directed 
solutions for low-power embedded systems that will also 
consider the power benefits of voltage and frequency scaling. 
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