INSTRUCTION LEVEL POWER MODEL OF MICROCONTROLLERS

Chaitali Chakrabarti

Department of Electrical Engineering
Arizona State University
Tempe, AZ 85287-5706
chaitali @asu.edu

ABSTRACT

In the design of low power systems, it is important to ana-
lyze and optimize both the hardware and the software com-
ponent of the system. To evaluate the software compo-
nent of the system, a good instruction-level energy model
is essential. In this paper we present a methodology for
instruction level modelling of microcontrollers using gate
level power estimation tools. We use the microcontroller,
M68HC11, to illustrate this method. We study two differ-
ent implementations of the microcontroller and show that
the energy consumption of each instruction is quite differ-
ent. Our study reveals that data correlation does not signif-
icantly affect the energy consumption of most instructions.
Finally, we show the correctness of this model by running
some sample programs and showing that the predicted en-
ergy estimates are quite close to the actual estimates.

1. INTRODUCTION

In order to design a system for low power and/or embedded
computing applications, it is important to analyze and opti-
mize power in all the components of the system. An ever
increasing portion of the functionality of today’s system is
in the form of software. Thus along with the power cost
of the hardware component, it is important to estimate the
power cost of the software component. In order to system-
atically analyze the power cost of the software component,
the power cost of the individual instructions have to be es-
timated. Clearly, a good instruction-level energy model is
essential to evaluate software in terms of the power metric
and also help search the design space for low power soft-
ware implementations.

There are many advantages in developing an instruction-
level power model [1] -[3]. First, it provides a way of as-
signing a power cost to the software component of a sys-
tem and helps in verifying if the overall system meets the

Thiswork was supported by the Center for Low Power Electronics and
by UDSL, Motorola Inc.

Dinesh Gaitonde

Monterey Design Systems
894 Ross Drive, Suite 200
Sunnyvae, CA 94089-1443
gaitonde@mondes.com

specified power budget. Secondly, it can be directly used
by compilers and code generators to generate code targetted
towards low power. Thirdly, it can guide higher level de-
sign decisions such as hardware-software partitioning. Fi-
nally, it helps in providing a meaningful comparison of the
power consumption of different processors (vs a single av-
erage power consumption figure).

The instruction level power analysis technique was first
developed at Princeton University [1]- [3]. The technique is
based on measuring the current drawn by the processor as it
repeatedly executes certain instructions. Power models for
the Intel 486DX2, the Fujitsu SPARCIite 934 and the Fu-
jitsu DSP processor have been developed using this method.
The current measurement method was also used in [4] to de-
velop a power predictor model for the TI TMS320C5x pro-
cessor. The method is very accurate and uses linear regres-
sion with instruction and architectural level variables (such
as the average bit switching activity in the instruction reg-
ister, address busses, etc.) as predictors. A variation of the
current measurement method that used a digitizing oscillo-
scope to measure instantaneous power was used in [5] to de-
velop a power model for the JF and HD implementations of
the 1960 family. The study in [5] showed that the variation
in power consumption across assembly instructions is of no
statistical significance. This is in disagreement with the re-
sults in [1]-[4] which show that while similar instructions
consume similar power, the variation across all instructions
is significant. Our conclusion is that the result in [5] is
specific to the Intel 1960 family and cannot be generalized.
Complex processors, in general, tend to have less variation
in instruction costs compared to smaller DSP processors be-
cause of the dominance of the overhead costs as pointed out
in [3].

The other related work in high level power analysis tech-
niques assign power costs to architectural modules such as
datapath units, control units and memory units [6], [7]. The
power cost is the estimated average capacitance that would
switch when the given module is activated. Since the ac-
tivity factors are obtained from functional simulation over

typical input streams, such a technique takes a long time to
evaluate the power consumption of the software component.
In contrast, once the instruction level model is developed,
evaluating the power consumption of even large programs
is very time-efficient.

In this paper we present an instruction level power anal-
ysis technique based on gate level power estimation. While
this method requires access to the gate level (or at least the
RT level) description, it allows us to estimate the energy
early on in the design process (vs after the processor has
been shipped out), thereby making it possible to study the
design space trade-offs for low power implementation. We
use a popular Motorola microcontroller, M68HC11, to illus-
trate our method. We study two different implementations
of the microcontroller. We find that the energy consumption
of each instruction is quite different for the two implementa-
tions. A study of these differences can be used to resynthe-
size parts of the design for low power applications. We also
study the effect of data correlation on the energy consump-
tion of the instructions. Our study shows that data correla-
tion does not significantly affect the energy consumption of
most instructions. Finally we use the energy estimates of
the instructions to predict the energy consumption of a few
sample programs. The predicted values are quite close to
the actual values.

2. PROPOSED MODEL

In this paper we present a methodology for instruction level
modeling of microcontrollers using gate level power estima-
tion. We use a popular Motorola microcontroller - M68HC11
[8] to investigate the feasibility of using a gate level power
estimation tool to characterize the instruction set of this mi-
crcontroller for power. The HC11 microcontroller is used
only as an example. The techniques used in this paper can
be extended to any microcontroller.

Given the behavioral description of the microcontroller
design, high level synthesis tools can be used to transform it
into an RT level implementation. The RT level implementa-
tion can then be synthesized using a commercial synthesis
engine such as Synopsys. A gate level power estimation
tool can then be used to estimate the energy consumption of
each instruction. In our setup, we used the high level syn-
thesis tool Matisse ', the synthesis tool Synopsys and the
gate level estimator ASPEN 2.

In our model, the base cost of an instruction was mod-
elled in the following way. The base cost of simple instruc-
tions, such as the load instruction, was modelled by simply
executing such instructions 1000 times and computing the
average. The data values used in each instance of the in-

IMatisse is ahigh level synthesis tool developed at Motorola.
2ASPEN is agate level simulator developed at Motorola

struction were either random or correlated (where the de-
gree of correlation could be specified). The entire program
resided in an on-chip memory (and thus the base cost did
not model the cost of an external memory access). Most
instructions could not be modelled by themselves and had
to be modelled in conjunction with some other instruction
such as the load instruction. Consider the case when instruc-
tion X could be modelled by itself and instruction Y had
to be modelled with instruction X. In both cases, ASPEN
was used to generate the average power for 1000 runs. Let
Px be the average power for instruction X and Px,y be
the average power for instruction X followed by Y. Since
we know the exact time that it takes to execute a single in-
struction X, tx, and the time that it takes to execute in-
struction X followed by Y, tx,y, the energy of instruc-
tion Y, Ey, can be calculated in a straight-forward way.
The assumption while computing the base cost is that there
is no overhead in executing instruction Y after instruction
X. Thus Ey = tx+y * Px+y — tx x Px. The inter-
instruction effects have not been modelled explicitly. Ex-
perimental results were used to derive an average cost for
inter-instruction effects.

3. RESULTS

In this section we describe the results of implementing the
experimental setup on two different implementations of the
HC11 microcontroller. Since the synthesizable HC11 was
generated from a behavioral description of the design, one
could generate several candidate synthesizable implementa-
tions of the HC11. Both these implementations were opti-
mized for area — one more than the other.

We have categorized the instructions into the following
classes: (i) Loads, Stores and Transfers, (ii) Arithmetic Op-
erations, (iii) Multiply and Divide, (iv) Logical Operations
(v) Shifts and Rotates, (vi) Stack and Index Register Oper-
ations, (vii) Condition Code Register Instructions and (Vviii)
Branches. The details of function of each instruction can be
obtained from [8]. We studied the effects of data correlation
on the energy consumption values. Two sets of correlated
data were generated. Mildly correlated data corresponds
to cor(10), while medium correlated data corresponds to
cor(50). The results have been tabulated in Table I. We
found that the average energy consumption values do not
change much when the correlation of the data is increased.
This implies that there is not much data dependency on the
power consumed by each instruction. Consequently, it is
sufficient to work with power consumption values of ran-
dom data during the implementation evaluation phase. For
the branch instructions, the instruction was modelled differ-
ently, depending on whether the branch was successful or
not. Table 2 gives the energy consumption of a few branch
instructions for Implementation 1. The differences in the

Instruction Normalized energy

Successful | Unsuccessful
BNE 2.629 1.286
BEQ 2.696 2.024
BGE 2.773 1.861
BGT 2.924 1.695
JMP 3.075

TABLE II: Energy consumption values of a set of branch
instructions for Implementation 1. The energy values are
normalized with respect to the energy consumed by a LDAA
instruction

energy of the branch instructions can be utilized to generate
code with a low energy cost.

Next we illustrate the difference in the power consump-
tion values for the two architectures. Even though the soft-
ware (core) of the two implementations is identical, the hard-
ware realizations are significantly different. Consequently,
the energy consumption values are also different. An anal-
ysis of the differences in the energy consumption values
should aid in future implementations of HC11 that would
be targetted for low power. Table 1 lists the the % difference
in the energy values for random data of the two implemen-
tations. In this sample set of instructions, Implementation
2 has a lower power consumption for the following instruc-
tions: LDAA, INCA, DECA, ORAA, ASLA, ASLD, INX.

3.1. Sample Program

The accuracy of the instruction energy estimates was checked
by running a few sample programs. In each case, we com-
pared the actual energy consumption values (calculated by
ASPEN) with those predicted using the estimates derived
using the power model developed in Section 2. The pre-
dicted values were always within 12% of the actual values.
Program 1: Computing the MAXIMUM of 5 numbers.
The data is loaded in locations 0000-0004. For input data
73, 36, 24, 82, 49 (where 73 is loaded in location 0000, 36 in
0001, etc), the average energy over 100 runs using ASPEN
is 4.066 nJ. The estimated energy using the instruction level
power model is 4.017 nJ. The estimated energy is 1.2 %
lower than the actual energy.

Program 2: Computing the running sumy; = Z?:o Litj
0<i<4.

Random data is loaded in locations 0000-0006. The aver-
age energy over 100 runs using ASPEN is 20.0056 nJ. The
estimated energy using the proposed instruction level power
model is 20.0958 nJ. The estimated value is 0.45% higher
than the actual value.

Program 3: Computing the running sum y; = Z?:o Titj,
0 < i < 4-unrolling.

In this example, we simply unrolled Program 2 to gener-
ate this program. The average energy over 100 runs using
ASPEN is 9.022 nJ. The estimated energy using the pro-
posed model is 8.988 nJ. Thus the estimated value is 3.77%
lower than the actual value. An interesting point to note
is that the unrolled program (unrolling factor 5) consumes
only 45% of the energy consumed by the program with the
loop (Program 2). This is because of the large overhead in
manipulating loops. Instructions with index register X such
as LDAA(ind,X), STAA(ind,X) etc do extra addition oper-
ations, thereby increasing the power consumption. Thus for
low power applications, loop unrolling should be done as
much as possible.

Program 4: Sorting 5 numbers using bubble sort.

The numbers are loaded in locations 0000 through 0004.
For input data 19, 23, 35, 57 and 89, where 19 is stored in
location 0000, 23 in location 0001, etc., the average energy
using ASPEN over 50 runs is 19.757 nJ. The estimated en-
ergy using the power model is 22.07 nJ. So, for this data
set, the estimated energy is 11.71 % higher than the actual
energy. For a different set of input data, the energy values
were closer to the actual estimates. If the experiment had
been run on a large number of input data sets, we antici-
pate that the average energy would have been closer to the
estimated energy.

4. CONCLUSIONS

In this paper we have described a method based on gate
level power estimation to develop an instruction level en-
ergy model for microcontrollers. We applied our technique
to develop an instruction level energy model for the M68HC11
microcontroller. This model was used to successfully pre-
dict the energy consumption of a few sample programs. Our
study also showed that (i) data correlation does not affect the
energy consumption of most instructions and (ii) the same
instruction incurs a different cost for different gate-level im-
plementations (even though the software core is the same).
The accuracy of our model can be significantly increased
by taking into account the effect of average switching in the
data address bus, the program address bus and the instruc-
tion register as in [4]. Our next step is to extend this method
to develop instruction level models for more complex pro-
cessors where the effect of pipeline stalls, size of register
files, cache misses, 1/0 accesses etc. would be significant.

ACKNOWLEDGEMENTS
The authors would like to thank Kayhan Kucukcakar for
help with the HC11 implementations and many interesting
discussions.

Energy as a multiple of energy consumed by LDAA instruction | % diff of Impl2
Instruction Implementationl Implementation2 wrt Impl1 for
Random | Cor(10) | Cor(50) | Random | Cor(10) | Cor(50) | random data
LDAA 1 0.994 0. 988 0.998 0.989 0.985 -0.2%
LDAA(dir) | 1.833 1.811 1.835 2.006 1.989 2.017 9.4%
STAA 2.864 2.867 2.853 2.867 2.890 2.874 0.1%
TAB 1.727 1.736 1.733 1.818 1.803 1.801 5.3%
LDD 1.922 1.908 1.880 2.203 2.185 2.155 14.6%
XGDX 3.322 3.340 3.225 3.728 3.750 3.624 12.2%
INCA 2.536 2.554 2.556 2.304 2.335 2.328 -9.1%
DECA 2.631 2.665 2.657 2.273 2.285 2.284 -13.6%
ABA 2.735 2.653 2.667 2.917 2.867 2.849 6.6%
SBA 2.839 2.800 2.839 2.902 2.857 2.927 2.2%
ADDD 4.404 4.365 4.249 5.059 5.089 4.922 14.9%
SUBD 4.401 4.340 4.338 4.436 4.396 4.380 0.8%
CPD 5.832 5.839 5.750 6.057 6.081 6.006 3.8%
| MUL | 11.054 | 10.566 | 10.774 | 11.849 | 11.433 | 11591 | 7.2% |
ANDA 1.268 1.281 1.279 1.447 1.472 1.473 14.1%
ORAA 1.710 1.666 1.658 1.426 1.422 1.391 -16.6%
ASLA 2.577 2.563 2.549 2.439 2.441 2.427 -5.3%
LSRA 1.988 1.982 1.977 2.079 2.082 2.076 4.6%
ASLD 3.660 3.644 3.616 3.598 3.497 3.492 -1.7%
LDX 1.850 1.827 1.811 1.973 1.949 1.933 6.7%
STX 3.851 3.834 3.826 3.900 3.907 3.901 1.3%
TXS 2.644 2.864 2.867 2.922 2.921 2.924 10.5%
INX 3.030 3.046 3.042 2.802 2.807 2.801 -71.5%

TABLE I: Energy consumption values of a subset of M68HC11 instructions for two different implementations using data
with different degrees of correlation

[1]

[2]

[3]

[4]

5. REFERENCES

V. Tiwari, S. Malik and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software
Power Minimization,” IEEE Trans on VLS Systems,
Dec 1994, pp. 437-445.

M.T.-C. Lee, V. Tiwari, S. Malik and M. Fujita,
“Power Analysis and Minimization Techniques for
Embedded DSP Software,” IEEE Trans on VLS Sys-
tems, Mar 97, pp. 123-135.

V. Tiwari, S. Malik, A. Wolfe and M.T.-C. Lee, “In-
struction Level Power Analysis and Optimization of
Software,” Journal of VLS Signal Processing, 1996,
pp. 1-18.

C.H.Gebotys and R.J.Gebotys, “An Empirical Com-
parison of Algorithmic, Instruction and Architectural
Power Prediction Models for High Performance Em-

(5]

(6]

(7]

(8]

bedded DSP Processors,” Proc of ISLPED 98, pp 121-
123.

J. Russell and M.F. Jacome, “Software Power Estima-
tion and Optimization for High Performance, 32-bit
Embedded Processors,” Proc. of ICCD '98.

H. Mehta, R.M. Owens and M.J. Irwin, “Instruction
Level Power Profiling,” Proc of ICASSP 96, pp. 3326-
3329.

P. Landman and J. Rabaey, “Activity-sensitive Archi-
tectural Power Analysis,” IEEE Trans on Computer
Aided Design, June 1996.

M68HC11 Reference Manual, Motorola.

