A Retargetable Software Power Estimation Methodology

C. Brandolese
Politecnico di Milano, P.zza L. da Vinci, 32 - 20133 Milano, Italy
brandole@elet.polimi.it

ABSTRACT

In the design of mized hardware/software embedded
systems, the early assessment of the power budget is
a key factor to concurrently meet time-to-market and
product competitiveness. An increasing contribution
to the overall power consumption depends on the soft-
ware portion of the design and is influenced both by
the system specification style and by the target micro-
processor. The proposed estimation methodology op-
erates at an abstraction level halfway between the sys-
tem language and the specific assembly language and
provides power consumption figures useful for both
source code analysis and modification, and for target
processor selection.

I. INTRODUCTION

The importance of the power constraints in the de-
sign of embedded systems has continuously increased
in the past years, due to technological trends to-
ward high-level integration and increasing operating
frequencies, combined with the growing demand of
portable systems. So far, only a few co-design ap-
proaches have considered power consumption as a
comprehensive system-level metric [1] [2] [3]. Accord-
ing to [4], the methods to estimate the software power
consumption can be grouped in three classes: gate-
level processor simulation [5], architectural-level pro-
cessor description and instruction-level models. The
gate-level simulation provides the most accurate re-
sults at the cost of extremely time demanding simu-
lations. Furthermore, due to the lack of information
of the processor gate-level description, this method-
ology is rarely viable. Architectural-level power esti-
mation is less precise but much faster than gate-level
estimation [6] and requires a coarser grain model of
the processor (ALU, register file, etc.). Instruction-
level power estimates are typically based on stochas-
tic data modeling of the current drawn by the pro-
cessor for each instruction. Such methodologies have
been proposed in [2] and [3]. The goal of this pa-
per is to describe a power estimation methodology
for software components suitable for typical hard-
ware/software embedded system architectures. The
proposed approach allows exploring the design space
either to early retarget architectural design choices,
or to redesign the power-critical parts of the system.

The proposed technique has been implemented in the
TOSCA co-design framework for control-dominated
embedded systems [10]. The description language
adopted in the framework is OCCAM2, since it al-
lows describing mixed hardware/software systems,
and provides constructs for parallel execution and
process synchronization with the rendez-vous seman-
tic. It is worth noting that the use of OCCAM2 as
description language, does not affect the generality
of the proposed approach, the key point being the
introduction of an intermediate pseudo-assembly lan-
guage, called VIS (Virtual Instruction Set [7]). The
VIS model provides sufficient detail to permit an ac-
curate estimate and a degree of generality allowing
easy retargeting towards different processors. The pa-
per is organized as follows. In section II, the TOSCA
framework, and in particular software flow, are de-
scribed; in section III, the procedure adopted to de-
rive the power estimation model is detailed and jus-
tified; in section IV, the results obtained on some
benchmarks and an industrial design are reported;
finally, in section V conclusions are drawn and an
outline of the current research is given.

II. FRAMEWORK AND FLOW

When designing low-power embedded systems, and,
in particular, their software components, two aspects
have to be considered. On one hand, the specifica-
tion can be partitioned between hardware and soft-
ware in different ways; on the other hand, the same
source code results in different power requirements
when compiled and executed on different micropro-
cessors. The designer, usually, performs the parti-
tioning on the basis of figures such as cost and per-
formance. With the increasing demand of portable
devices, considering the power consumption from the
early phases of the design, becomes essential. A
satisfactory design-space exploration should consider
these aspects concurrently and should be fast enough
not to compromise time-to-market constraints. As far
as the software portion of the design is concerned, the
analysis of different solutions would require a com-
plete development environment (compiler, debugger,
instruction-set-simulator, etc.) for each target micro-
processor considered. In addition, a modification of
the source code implies re-running the complete flow,
from compilation, through profiling and power esti-

mation, to back-annotation. Currently only a few
microprocessor vendors ship such a complete devel-
opment toolkit. This means that it is often neces-
sary to complete (or, at least, customize) the vendor
toolkits with in-house developed tools and utilities.
The TOSCA environment overcomes these problems
with the introduction of the intermediate, pseudo-
assembly VIS. This language is sufficiently close to an
actual assembly to guarantee a good degree of detail,
and, at the same time, sufficiently general to permit
fast retargeting towards different assembly languages.
The power estimation methodology presented in this
paper operates at the VIS level, and achieves a good
trade-off between accuracy and effectiveness. Figure
1 depicts the part of the TOSCA framework devoted
to the software flow. In this figure, rounded boxes in-
dicate input and output files while grayed-out boxes
indicate tools. The software power estimation flow is
composed of five tools:

o COMPILER - An OCCAM2 to VIS compiler.

o SIMULATOR - A VIS simulator and profiler.

o MAPPER - A library-based translator from VIS to
different real target assembly languages.

o ESTIMATOR - A library-based power estimator.

o BACK-ANNOTATOR - Atool for assembly-to—VIS
and VIS- to-OCCAM2 back-annotation.

The evaluation of power consumption of a given OC-
CAM2 source code begins within the compilation in
VIS code. The VIS code can then be debugged and
validated, executing it on the virtual VIS Machine
implemented in the simulator. When the functional-
ity of the VIS code has proven correct, the simulator
can be run in batch mode to obtain profiling informa-
tion, i.e. the number of times that each VIS instruc-
tion has been executed. The VIS code is then mapped
to a specific, commercial assembly language, accord-
ing to a fixed set of rules and its power consumption is
evaluated on the basis of power figures collected into
annotation libraries. Exploring different solutions

Fig. 1. The TOSCA software flow

targeted to different microprocessors would require
re-mapping and re-estimating each and every alterna-
tive. This can be avoided noting that the same VIS
instruction (same op-code, same operands type and

value) is always mapped to the same assembly por-
tion of code. This knowledge, along with an accurate
statistical analysis of the results (see sections III and
IV), allows characterizing directly each VIS instruc-
tion in terms of power consumption, once the target
microprocessor is selected. This approach shortens
the design flow, since avoids the mapping, the assem-
bly annotation and one of the back-annotation steps
(see figure 1). Furthermore, when a dynamic analy-
sis is desired, a single session of profiling at VIS level
is necessary. It is worth noting that, being each VIS
instruction power-characterized for different architec-
tures, the power consumption impact of the choice of
a specific target microprocessor can be estimated by
simply switching to the suitable annotation library,
without simulating or mapping. Furthermore, the
static or dynamic power consumption figures gath-
ered at VIS level can be conveniently back-annotated
to the OCCAM2 source code, giving a clearer and
more useful view of the overall power budget of the
software components. Typically, the back-annotated
information are valuable hints to the designer on what
parts of the source code should possibly be modified
or moved to the hardware partition.

III. METHODOLOGY

The methodology presented in this section can be ap-
plied to derive the power characterization of the VIS
instruction set for any target processor. A VIS in-
struction is defined by:

e op-code: the type of operation to perform;
o addressing mode: the type of operand used;
o operand value: the value of the operands;

The class of an instruction is defined by its op-code
and the addressing mode of its operand, but ignor-
ing the value of operands. For each instruction class,
thus, a set of instructions can be built, varying the
value of the operands. As an exemple, consider the
VIS instruction MOVE.W #16, +5(R0): the op-code
is MOVE. W, the addressing mode of the two operands
are immediate (#16) and indirect (+5(R0)) and the
values are 16 for the first operand and the couple
(5, RO) for the second. It is not uncommon that in-
structions of the same class map to different assembly
codes and are thus characterized by different power
consumption [9] [11]. As an example consider the
ARMT7TTDMI microprocessor: an immediate constant
can be loaded into a 32-bit register directly if and
only if it falls in the range 0-255; when the immedi-
ate value is greater than 255, its low and high bytes
must be loaded into the register separately, suitably
shifting the register content after the first load. To
properly account for these differences all the possi-
ble instructions of a given instruction class must be

analyzed. Let Z be an instruction class and i; € 7
a generic instruction with specific operands values.
Using the estimation flow described in section II, all
instructions i; € 7 can be annotated with the ac-
tual timing ¢; = ¢(i;) and average current ¢; = ¢(i;)
leading to two vectors of measures T = {t;} and
C = {c¢;}. To derive single values ¢(Z) and ¢(Z) for
the VIS instruction class Z, four different approaches
have been adopted:

o Different translations only. The timing t(7)
and current ¢(Z) are computed by averaging only
the values ¢; and c¢; corresponding to different
translations. This method is easily applicable be-
cause the mapping rules are known and thus it
is possible, for each instruction class, to build all
the instructions necessary to exercise all the cases
that the specific rule considers. This strategy is
supported by the hypothesis that a generic VIS
code exploits in a statistically uniform way all the
possible alternatives of all the rules.

+ Different figures only. The timing and current
are computed by averaging only the values ¢; and
c; that are different. This approach is justified by
the consideration that different translations may
lead to identical total power figures.

o Complete uniform. The timing and current
are computed averaging all the values t; and c;.
This choice is statistically justified considering
that, when a sufficiently long VIS program is con-
sidered, and the semantics of the instructions is
neglected, the distribution of instructions within
an instruction class tends to be uniform. This is
mostly due to the fact that there is no reason to
suppose non-uniform the distribution of values of
the operands.

o Complete weighted. The timing and current
are computed by averaging all the values ¢; and
cj, weighted with relative frequencies obtained
from an analysis of a sufficiently large set of
benchmarks. The previous case, as mentioned,
ignores the semantics of the instructions. This
hypothesis can be removed considering the fact
that some values are more likely to be used than
others. The measured relative frequency is thus
considered an estimate of the probability.

Once all VIS instructions have been characterized,
according to one of these strategies, in terms of num-
ber of clock cycles and average current consumption,
power estimates of a generic VIS program can be de-
rived. The estimation flow produces, for each instruc-
tion i, of the VIS program, the number of clock cy-
cles required for execution ¢, the average current ab-
sorbed per clock cycle ¢; and the number of times ny
the instruction has been executed during a simulation

session driven by typical input streams. The energy
absorbed by all executions of the k-th instruction is
e; = ni Vaatrcr and the total energy and cycles are:

E = EkM=1 exr = Vaa Ekle NgtrCr (1)

T = i, mtk (2)
where Vg4 is the power supply of the core and M
is the number of instructions of the considered VIS
program. The average power consumption is thus:

E Ekle NEtrCr (3)

W == =Vaa- =57
T 2 k=1 Mtk

In the next section the four proposed characterization

approaches are compared. o

IV. EXPERIMENTAL RESULTS
A. Methodology tuning

The four modeling approaches presented in the pre-
vious section have been applied to the entire VIS
instruction set for the two commercial processors
ARM7TDMI in Thumb mode (ARM Ltd.) and
MC68000 (Motorola) and the results for the first
are reported in figure 2 (similar results have been
obtained for the Motorola processor, but are omit-
ted here for brevity). The figure reports relative er-
rors with respect to the complete uniform method,
and shows that the four methods, for each instruc-
tion class lead to significantly different figures (up to
+50%). To select the most accurate method, bench-
marking is necessary. Some sample OCCAM2 sources
have been run through the complete compilation,
mapping, power annotation and back-annotation flow
and the power measures obtained have been com-
pared against the four estimation methods, leading
to the results summarized in table I. Note that these
errors are much smaller than those plotted in figure
2: this is due to cancellation effects that occur over
real VIS instruction sequences.

[Method | Error |
Different figures only 7.21%
Different translations only | 4.31%
Complete uniform 3.14%
Complete weighted 2.71%

TABLE I
RELATIVE ERRORS (ABSOLUTE VALUES)

The comparison of the results shows that the two best
methods are the complete uniform and the complete
weighted, the latter being slightly more accurate. In
the next paragraph the methodology is applied to an
industrial example and results are discussed.

B. Test case

To validate the presented methodology and frame-
work, a set of benchmarks has been built. This set

—— Different figures
Different translations
---- Complete weighted

Energy relative error

VIS Instructions

Fig. 2. Energy errors relative to the complete uniform method

comprises OCCAM2 programs 10 to 230 lines long.
The result of compilation of these codes are VIS files
with lengths ranging from 60 to 2,600 lines, approx-
imately. The benchmarks have been used: to decide
for one of the strategies for VIS instruction set char-
acterization (see table I); to measure the accuracy
of the VIS-level model and to measure the speed-
up obtained with the estimation flow with respect
to the complete flow. Figure 3 reports the run times
of the complete flow and the estimation flow on the
benchmarks. The speed-up varies from 30% to 75%
with an average value of 63%, confirming the suit-
ability of the proposed methodology as an effective
design-space exploration strategy. To determine the
accuracy of the proposed model, the methodology has
been applied to a real industrial design called ILC16,
a 16-channel link controller developed at Italtel R&D
Labs [12], and the results, summarized in tables ITI
and II, have been obtained.

[Processor | Measure | Estimation | Speed-up |
ARM7TDMI 37.57 s 22.07 s 58.8%
MC60000 53.17 s 29.96 s 56.3%

TABLE II

RUN TIMES FOR THE ILC16 APPLICATION

| Processor | Measure | Model [Error |
ARM7TDMI | 224.48 mW | 230.65 mW 2.77%
MC68000 26.20 mW 27.41 mW 4.47%
TABLE III

POWER ESTIMATES FOR ILC16

The ILC16 design is composed of 54 OCCAM2 proce-
dures, for an overall line count of 2200 lines. The VIS
code resulting from compilation has 55000 lines and
the target assembly codes for the ARM and Motorola
processors are 75000 and 89000 lines long, respec-
tively. It is worth noting that the average currents
for the ARM7TDMI processor—used to characterize
the VIS instruction set—have been obtained from ac-
tual measurements [11], while those for the MC68000
processor are relative to the power consumption of a
reference instruction [8].

T T T T
| [0 Estimation time B
+—e Measurement timg o

0.5—

Computation time (s)

0 50 100 150
OCCAM2 source lines

Fig. 3. Run times of measure and estimation flows

V. CONCLUSIONS

The paper presented a new methodology for embed-
ded software power estimation. The main focus of the
proposed approach is fast design-space exploration
with respect to different coding styles and different
target processors. To validate the methodology, an
industrial example, used as a test vehicle during two
ESPRIT projects, has been analyzed using an inte-
grated environment developed to this purpose within
the TOSCA co-design framework. The techniques
described, though currently based on the OCCAM?2
system modeling formalism, are general and applica-
ble to different high-level languages such as C/C++.
The results obtained are encouraging under both ac-
curacy and effectiveness points of view. The current
effort of the research is aimed at properly consider-
ing dynamic effects such as the presence of a memory
hierarchy and pipelining.

REFERENCES

[1] E. Macii, M. Pedram, F. Somenzi, ”High-Level Power
Modeling, Estimation, and Optimization,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 17, No. 11, 1998.

[2] T.Sato, M.Nagamatsu and H.Tago, ”Power and per-
formance simulator: ESP and its application for
100MIPS/W class RISC design,” Proceedings of IEEE
Symposium on Low Power Electronic, pp. 46-47, 1994.

[3] P.W.Ong and R.H.Yan, "Power-conscious software de-
sign: a framework for modeling software on hardware,”
Proc. of 1994 IEEE Symposium on Low Power Electronic,
pp. 36-37, San Diego, CA, Oct. 1994.

[4] V. Tiwari, S. Malik and A. Wolfe, ”Power Analysis of
Embedded Software: a First Step towards Software Power
Minimization,” IEEE Transactions on VLSI Systems,
Vol. 2, No. 4, pp. 437-445, Dec. 1994.

[5] V. Tiwari and M.T.-C. Lee, ”"Power analysis of a 32-bit
Embedded Microcontroller,” VLSI Design Journal, 1996.

[6] J.Russell, M.F.Jacome, ”Software Power Estimation and
Optimization for High Performance, 32-bit Embedded
Processors,” Proc. of ICCD’98, International Conference
on Computer Design, Austin, Texas, USA, October, 1998.

[7] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto ”Fast
Software-Level Power Estimation for Design Space Explo-
ration,” Politecnico di Milano, Tech. Report 99.62, 1999.

[8] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto ”An
Energy Estimation Model for 32-bit Microprocessors,”
Politecnico di Milano, Tech. Report 99.63, 1999.

9] PEOPLE ESPRIT project n.26769, Deliverable D1.3.2.
10] PEOPLE ESPRIT project n.26769, Deliverable D1.3.3.
1] PEOPLE ESPRIT project n.26769, Deliverable D1.2.1.

12] A.Allara, M.Bombana, W. Fornaciari, F.Salice, A Case
Study in Design Space Ezploration: The TOSCA Enwvi-
ronment Applied to a Telecom Link Controller,” IEEE
Design & Test of Computers, 2000, (to appear).

Carlo Brandolese received his degree in
Electronic Engineering with a specializa-
tion in Microelectronics and Optoelec-
tronics in 1995 from the Politecnico di
Milano, Italy, working on florplanning
of analog integrated circuits. He has
been working from 1995 to 1997 at Ital-
tel Central R&D Labs as a CAD en-
gineer and focused on the FPGA de-
sign flow and methodology. He got his
MS in Information Technology in 1997
from CEFRIEL, Politecnico di Milano, with a thesis on hard-
ware/software co-design. He will receive his Ph.D. in Infor-
mation Technology in october 2000 and is currently working
on software power estimation and optimization for embedded
systems.

