
Journal of Circuits, Systems, and Computers Vol. 11, No. 5 (2002) 477–502
c©World Scientific Publishing Company

THE IMPACT OF SOURCE CODE TRANSFORMATIONS
ON SOFTWARE POWER AND ENERGY CONSUMPTION

CARLO BRANDOLESE

Politecnico di Milano – DEI, P.za L. Da Vinci, 32,
20133 - Milano, Italy, E-mail: brandole@elet.polimi.it

WILLIAM FORNACIARI

Politecnico di Milano – DEI, P.za L. Da Vinci, 32,
20133 - Milano, Italy, E-mail: fornacia@elet.polimi.it

FABIO SALICE

Politecnico di Milano – DEI, P.za L. Da Vinci, 32,
20133 - Milano, Italy, E-mail: salice@elet.polimi.it

DONATELLA SCIUTO

Politecnico di Milano – DEI, P.za L. Da Vinci, 32,
20133 - Milano, Italy, E-mail: sciuto@elet.polimi.it

Received
Revised

Accepted

Software power consumption minimization is becoming more and more a very relevant
issue in the design of embedded systems, in particular those dedicated to mobile devices.
The paper aims at reviewing state of the art source code transformations in terms of their
effectiveness on power and energy consumption reduction. A design framework for the
C language has been set up, using the gcc compiler with SimplePower as the simulation
kernel. Some new transformations have been also identified aiming at reducing the power
consumption. Four classes of transformations will be considered: loop transformations,
data structures transformations, inter-procedural transformations and control structure
transformations. For each transformation, together with the evaluation of the energy
and power consumption, some applicability criteria have been defined.

1. Introduction

In recent years, power dissipation has become one of the major concerns for the em-
bedded systems industry. The steady shrinking of the integration scale, the large
number of devices packed in a single chip coupled with high operating frequencies
have led to unacceptable levels of power dissipation, in particular for battery pow-
ered systems. An effective way to cope with the requirement of lowering power
consumption to uphold the increasing demands of applications, should concurrently

The impact of source code transformations on software power and energy consumption

consider the following aspects:

(i) the sources of power consumption and a set of reliable estimators;
(ii) the methodologies to reduce the power consumption, typically considering the

peculiarity of the applications.

A key for the success of many solutions is, in fact, a suitable tailoring of the imple-
menting platform to the application, in detriment of its general-purpose capability.
The higher the level of abstraction for the optimization, the better energy savings
can be usually achieved. In literature, these problems have been considered for a
long time, initially focusing on the silicon technology then moving up to include
logic design and architecture-level design1. Nevertheless, the presence of mixed
hardware/software architectures is becoming pervasive in the embedded systems
arena, with a growing importance for the software section. Many proposals take
into account the environment executing the code (CPU, Memory, Operating Sys-
tem, etc.) as well as the impact of code organization and compiler optimizations
on the energy demand of the application. Memory optimization techniques focus
on reducing the energy related to memory access, exploiting the presence of multi-
level memory hierarchy, possibly in conjunction with suitable encodings to reduce
the bus switching activity1. Other software-oriented proposals focus on instruction
scheduling and code generation, possibly minimizing memory access cost6,7,8. A
number of reviews and proposals on compiler techniques for power minimization
can be found in literature11,12,13,14. As expected, standard compiler optimizations,
such as loop unrolling or software pipelining, are also beneficial to energy reduc-
tion since they reduce the code execution time. However, there are a number of
cross-related effects that cannot be so clearly identified and, in general, are hard
to be applied by compilers, unless some suitable source-to-source restructuring of
the code is a priori applied. In fact, the optimizations at compile time typically
improve performance and usually the power consumption, with the main limita-
tions of having a partial perspective of the algorithms and without the possibility
of introducing significant modifications to the data structures. On the contrary,
source code transformations can exploit full knowledge of the algorithm character-
istics, with the capability of modifying both data structures and algorithm coding;
furthermore, inter-procedural optimizations can be envisioned. Another benefit of
exploiting restructuring of the source code is related to portability, since the results
are normally fairly general to deal with different compilers and architectures, with-
out any intervention on existing compilers. The aim of this paper is to present a
part of a more comprehensive investigation in progress within the EU-funded Esprit
project called POET, where our goal is to identify a methodology to optimize the
energy consumption of software for embedded applications. We set up a workbench
based on the SimplePower and gcc environments, and stressed the state-of-the-art
transformations, to discover and compare their effectiveness. Some new transforma-
tions have been also identified and the rest of the paper will mainly describe their
characteristics5. The methods have been partitioned in four classes, each focusing

The impact of source code transformations on software power and energy consumption

on a specific code aspect:

(i) Loop transformations.
(ii) Data Structure Transformations.
(iii) Inter-Procedural Transformations.
(iv) Operators and Control Structure Transformations.

Due to the lack of space, despite the analysis we carried out considered a broader
range of transformations5, this paper details only some of the most innovative ones.
For each method, in addition to energy saving data, some applicability criteria are
reported. Some code restructuring, in fact, can produce no energy improvement
but can magnify the effectiveness of other transformations applied in sequence.

The paper is organized as follows. Section 2 describes the general methodology
and the environment we arranged for our investigation. Sections 3, 4, 5 and 6 are
devoted to present some of the proposed source level transformations together with
experimental results obtained considering ad-hoc case studies. Section 7 discusses
how the different transformations can be used in practice, proposing a possible
source-level design flow. Finally, Section 8 summarizes in a concise form the most
relevant properties of the presented transformations and shows the results obtained
on larger, real-life benchmarks.

2. Analysis Methodology

Reducing the energy consumption working at software level means to apply a set
of code transformations producing a less energy hungry application. This goal is
pursued by directly modifying the control structures, the data access modes, and
the subprograms organization or by performing a set of source code transforma-
tions such that the resulting code can be better optimized by the compiler (e.g.,
copy propagation, constant propagation and common sub-expression elimination).
In this paper we followed the latter approach, identifying and evaluating a set of
transformations to be applied before compilation (using gcc). The validation tool
we adopted is based on SimplePower2 and to overcome its lack of support of system
calls an in-house, semi-automatic simulation framework based on SimpleScalar15

has been developed. The optimization framework is an algorithmic-based optimiza-
tion tool, where each transformation under analysis is applied until it produces an
energy improvement. The four steps composing the analysis strategy are shown in
Figure 1. The C source code under analysis for the applicability of a transforma-
tion is firstly compiled, to be conservative, with the highest optimization (gcc -O3).
Such a result constitutes the comparison term to evaluate the transformation ef-
fectiveness. The compiled code is then simulated using SimpleScalar and the
simulation results (number of clock cycles, cache misses, RAM accesses, etc.) are
gathered and post-processed to identify energy and power consumption for both
the core processor and the system. Concerning the energy consumption at system
level, the Shiue-Chakrabarti model has been used3,4. Then, the transformation is
applied to the source code and, following the same previous steps, the simulation

The impact of source code transformations on software power and energy consumption

Original C Code → Transformation → Transformed C Code

↓ ↓
Compilation

(gcc)
Compilation

(gcc)

↓ ↓
Simulation

(SimplePower)
← Configuration file → Simulation

(SimplePower)

↓ ↓
Report file Report file

↓ ↓
Post-processing Post-processing

↓ ↓
Report file → Data Analysis ← Report file

↓
Result file

Fig. 1. The validation flow for code transformations analysis

results and the energy and power consumption are collected. Finally, the proces-
sor energies and the system energies are compared to identify the effectiveness of
the transformation under analysis. It is worth noting that both simulations, with
and without transformation, use the same set of values for the configuration of the
simulator. In particular, a 1 KByte 2-ways set-associative unified cache has been
selected. This configuration has been used to stress the analysis, since it tends to
limit the benefits of the presented transformations.

3. Loop Transformations

This class includes transformations modifying either the loop body or the con-
trol structure of the loop. They are usually valuable since operate on a subset of
code that is typically executed frequently: even small energy saving per cycle could
strongly impact on the global energy of the application. While some loop transfor-
mations have been proposed in the field of compilers to exploit parallelism, others
are specifically tailored to reduce power consumption. This type of transformations
includes, among the others:

(i) Loop unrolling. The cycle is replicated multiple times.
(ii) Variable expansion. Variables like counters, accumulators, switches are iden-

tified and replicated for each code section, to reduce data dependencies and
improving parallelism.

(iii) Loop fusion. Merges different loops to reduce control operations and D-cache
misses, especially whenever they operate on the same data structures.

(iv) Loop interchange. Modifies the nesting ordering of the loops to change the
access paths to arrays.

(v) Loop tiling. Increases the loop depth to reduce D-cache misses when large
size arrays need to be accesses.

The impact of source code transformations on software power and energy consumption

(vi) Software pipelining. Improves the instruction parallelism among the dif-
ferent loop iterations so that the pipeline is better exploited through stalls
reduction.

(vii) Loop unswitch. Moves outside the loop those operations independent of the
significant computation performed within the loop body.

(viii) While-do to do-while, Zero output condition. Modify the structure of
the loop and the output condition to perform a zero-comparison (that is less
energy expensive), respectively.

Within this class, we propose and detail the use of a transformation called Loop
Distribution, that is well known in the field of parallel architectures, but its use
for source level energy reduction is novel. The basic idea is to reduce the size of
the loop body in order to decrease the number of I-cache misses. In particular,
sections of decoupled code are distributed in disjoint loops to enable the storing
of a complete loop in the cache, preventing to access the upper memory levels.
Figure 2 reports an example of this transformation. Loop distribution is effective

Original C Code Transformed C Code

for(i = 0; i < 80; i++) {
a = b[i] + i * d;

d = b[i+4] + d + a * (i + 1);

a = a * d + b[i+2] * d;

f = i * e + c[i];

e = b[i] + i * f;

e = e * f + b[i] * e;

}

for(i = 0; i < 80; i++) {
a = b[i] + i * d;

d = b[i+4] + d + a * (i + 1);

a = a * d + b[i+2] * d;

}
for(i = 0; i < 80; i++) {

f = i * e + c[i];

e = b[i] + i * f;

e = e * f + b[i] * e;

}

Fig. 2. An example of the loop distribution transformation

when a loop body is larger than the cache or than a given number of cache blocks
and/or the cache is unified. Note that this transformation requires a reliable met-
ric to estimate the code size at assembly level9,10. The proposed transformation
produces positive effects in term of reduction of the number of I-cache and D-cache
misses. The latter could probably occur when the original loop presents expressions
with non interacting arrays so that different arrays can be distributed on disjoined
loop bodies. Figure 3 reports an example where the two expressions in the loop
interfere causing, probably, repeated D-cache misses since the probability of data
reuse is low (b could overwrite a and viceversa). The transformed code reduces
the probability of D-cache misses, this effect is amplified if the cache implements
any pre-fetching mechanism. Negative consequences of this transformation could
arise from both the increase of code size and the reduction of performance, due to
the added control structure of loops. Table 1 collects the simulation results for the
example of Figure 2, showing that both the system energy and the processor en-
ergy decrease. Note that the strong reduction of the term System Power/Processor
Power indicates that the transformation affects the primary memory accesses. In

The impact of source code transformations on software power and energy consumption

Original C Code Transformed C Code

for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {

a[j] = a[j] + c[i];

b[j] = b[j] + c[i];

}
}

for(i = 0; i < n; i++) {
for(j = 0; j < n; j++) {

a[j] = a[j] + c[i];

}
}
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
b[j] = b[j] + c[i];

}
}

Fig. 3. An example of Loop Distribution transformation with two disjoined arrays

Table 1. Power and energy data for the loop distribution

Parameter Original Transformed %

Clock Cycles 14393.00 11981.00 -16.76
Processor Energy (µJ) 3.44 3.25 -5.64
Processor avg. Power (mW) 23.90 27.09 13.35
System Energy (µJ) 544.00 90.00 -83.45
System Avg Power (mW) 3778.66 751.31 -80.12
System Power/Processor Power 158.09 27.73 -82.46

particular, cache misses are considerably reduced as shown in Table 2. In fact, the
original code size and the number of variables cause a set of I-cache misses at each
loop iteration, which are avoided by fragmenting the computation and the variables
over two loops. These effects are particularly relevant since the considered cache is
unified. This transformation produces relevant energy savings at system level, also

Table 2. D-cache and I-cache misses for the loop distribution

Parameter Original Transformed %

I-Cache Misses 319.00 37.00 -88.40
D-Cache Misses 110.00 34.00 -69.10

using different cache architectures. The source-level factors influencing the energy
reduction are:

(i) The number of loop repetitions. Often, the number of cache misses per loop is
small: the greater is the number of iterations the higher the energy saved.

(ii) The amount and size of disjoined code blocks. The size of both code and
data has to be close to the cache size, so that the number of cache misses
is minimized. Conversely, the higher number of loops increases the control
instructions affecting both the energy reduction and the performance.

Loop Distribution is a good candidate to be applied after Software Pipelining and
Variable Expansion5.

The impact of source code transformations on software power and energy consumption

4. Data Structure Transformations

This class identifies the set of source code transformations that either modifies the
data structure included in the source code or introduces new data structures or,
possibly, modifies the access mode and the access paths. This class of transforma-
tions focuses on the relation with the data memory, with the aim of maximizing
the exploitation of the register file (reduction of memory and cache accesses). Two
sub-classes of transformations can be envisioned, focusing on arrays or scalar vari-
ables. The former is mainly constituted by innovative transformations, optimizing
the array allocation and the access modes to improve cache effectiveness. The con-
sidered strategies mainly concern: Array Declaration Sorting, Array Scope
Modification, Insertion of Temporary Arrays and Replacement of Array
Entries with Scalar Variables.

4.1. Arrays Declaration Sorting

The basic idea is to modify the local array declaration ordering, so that the arrays
more frequently accessed are placed on top of the stack; in such a way, the mem-
ory locations frequently used are accessed by exploiting direct access mode. The
application of this transformation requires either a static estimation or a dynamic
analysis of the local arrays access frequency: starting from this information, the
array declarations are reorganized to place first the more frequently accessed ar-
rays. Figure 4 shows an example where the access frequency ordering is C[], B[]
and A[]: the declaration order is restructured placing C[] in the first position,
B[] in the second one and A[] at the end. This transformation is derived from

Original C Code Transformed C Code

void subf(int val) {
int A[DIM], B[DIM], C[DIM], i;

for(i = 5; i < 3500; i += 50)

C[i] = val;

for(i = 5; i < 2000; i += 100)

B[i] = val;

for(i = 5; i < 1000; i += 100)

A[i] = val;

}

void subf(int val) {
int C[DIM], B[DIM], A[DIM], i;

for(i = 5; i < 3500; i += 50)

C[i] = val;

for(i = 5; i < 2000; i += 100)

B[i] = val;

for(i = 5; i < 1000; i += 100)

A[i] = val;

}

Fig. 4. An example of array declaration sorting

both the stack allocation strategies of local arrays performed by compilers and the
access mode used to access the arrays. In particular, the arrays are allocated in
the stack following the order of declaration and the first array is accessed using
offset addressing with constant 0, while the others use non-0 constants. Note that,
in general, offset addressing with constant 0 is less energy expensive with respect
to using other constants. By declaring as first the array more frequently used in
the subroutine, the number of operations using offset addressing with constant 0 is
maximized and, consequently, the energy consumption is reduced. Conversely, per-

The impact of source code transformations on software power and energy consumption

formance does not change since the number of clock cycles is unaffected. The array
size affects the energy consumption associated with the data access. In fact, when
the offset exceeds a given value (depending on the Instruction Set Architecture), it
can no longer be embedded in the instruction, requiring more instructions or other
addressing modes (i.e. indexed addressing). For this reason, it could be convenient
to place large arrays at the bottom of the declarations list, to save additional in-
structions for accessing small arrays. An example is reported in Figure 5, where
the C code on the left-and side of the has been compiled with N=1500 and N=15000

and the relevant differences in the assembly code are highlighted with a ¦ sign. In
particular, the latter imposes that the addresses for accessing B[] and C[] have to
be computed at each loop iteration. In summary, the developed energy function to

C Code Assembly code for N=1500 Assembly code for N=15000

#define N 1500 /*15000*/

int subf(void) {
int A[N], B[N], C[N], i;

for(i = 5; i < 20; i++) {
A[i] = 5;

B[i] = A[i] + 7;

C[i] = B[i] + 6;

}
return C[10];

}

subf:

.frame $sp, 18000, $31

.mask 0x00000000, 0

.fmask 0x00000000, 0

subu $sp, $sp, 18000

li $4, 0x00000001

li $7, 0x00000005

li $6, 0x0000000c

li $5, 0x00000012

addu $3, $sp, 4

$L11:

sw $7, 0($3)

sw $6, 6000($3)

sw $5, 12000($3)

addu $3, $3, 4

addu $4, $4, 1

slt $2, $4, 20

bne $2, $0, $L11

.set noreorder

lw $2, 12040($sp)

.set reorder

addu $sp, $sp, 18000

j $31

.end subf

subf:

.frame $sp, 18000, $31

li $8, 0x0002bf20

subu $sp, $sp, $8

li $5, 0x00000001

li $10,0x00000005

¦ li $9, 0x0000ea60

li $8, 0x0000000c

¦ li $6, 0x00010000

¦ ori $6, $6, 0xd4c0

li $7, 0x00000012

addu $4, $sp, 4

$L11:

¦ addu $2, $4, $9

¦ addu $3, $4, $6

sw $10, 0($4)

addu $4, $4, 4

addu $5, $5, 1

sw $8, 0($2)

slt $2, $5, 20

sw $7, 0($3)

bne $2, $0, $L11

¦ li $2, 0x00010000

¦ ori $2, $2, 0x8000

¦ addu $2, $sp, $2

.set noreorder

lw $2, 21736($2)

.set reorder

¦ li $8, 0x0002bf20

addu $sp, $sp, $8

j $31

.end subf

Fig. 5. A sample code for the analysis of the relation between energy consumption and array size

evaluate this transformation takes into account the array size (depending on both
number and type of the entries), the execution frequency and the number of arrays.
The transformation has been tested on the example of Figure 4, focusing on the

The impact of source code transformations on software power and energy consumption

sorting effect. Table 3 gathers the simulation results: it is clear that the energy sav-
ing is confined to the processor while the performance and the system level energy
are both unchanged.

Table 3. Power and energy data for array declaration sorting transformation

Parameter Original Transformed %

Clock Cycles 13185.00 13185.00 0.00
Processor Energy (µJ) 0.96 0.93 -2.69
Processor avg. Power (mW) 7.29 7.09 -2.69
System Energy (µJ) 388.00 388.00 0.00
System Avg Power (mW) 2941.04 2941.04 0.00
System Power/Processor Power 403.41 414.56 +2.76

4.2. Array Scope Modification: local to global

This method converts local arrays into global arrays to store them within data
memory rather than on the stack. In this case the array allocation address can be
determined at compile time. Conversely, if the array is declared locally, the alloca-
tion address can only be determined when the subprogram is called and it depends
on the stack pointer value. As a consequence, the global arrays are accessed with
offset addressing mode with constant 0 while local arrays, excluding the first, are
accessed with constant offset different from 0: an energy reduction is thus achieved.
Figure 6 shows an example of this code transformation. Unfortunately, since global

Original C Code Transformed C Code

main() {
int i;

int b[50];

int a[50];

for(i = 0; i < 48; i++) {
b[i] = i;

a[i] = i;

}
for(i = 2; i <= 40; i++) {

b[i] = (a[i] + b[i]) / 2;

if(i % 2) == 0) {
a[i] = a[i-2] + 1;

} else {
a[i] = a[i-1] - 1;

}
}

}

int b[50];

int a[50];

main() {
int i;

for(i = 0; i < 48; i++) {
b[i] = i;

a[i] = i;

}
for(i = 2; i <= 40; i++) {

b[i] = (a[i] + b[i]) / 2;

if(i % 2 == 0) {
a[i] = a[i-2] + 1;

} else {
a[i] = a[i-1] - 1;

}
}

}

Fig. 6. An example of array scope modification

declarations are memory consuming, only a subset of the arrays can actually take
advantage of such a scope modification. A specific cost function we developed
considers this feature, apart from other relevant aspects, suggesting a scope modifi-
cation for arrays frequently accessed. The transformation has been analyzed on the

The impact of source code transformations on software power and energy consumption

example of Figure 6. As predictable for this simple case study, the influence is in
terms of processor energy (Table 4) since the transformation affects a specific char-
acteristic related to the offset addressing. However, this transformation has other
valuable side-effects, related to the probability of not exceeding the offset during
access to locally declared arrays. In such a way, more energy can be saved since
the negative influence of high instruction numbers (cache misses and performance
degradation) is mitigated.

Table 4. Power and energy data for array scope modification transformation

Parameter Original Transformed %

Clock Cycles 8311.00 8310.00 -0.01
Processor Energy (µJ) 2.70 2.08 -22.82
Processor avg. Power (mW) 32.48 25.07 -22.81
System Energy (µJ) 15.20 15.20 0.00
System Avg Power (mW) 183.03 183.05 +0.01
System Power/Processor Power 5.63 7.30 29.57

4.3. Array Resizing: temporary array insertion

This transformation introduces a small temporary array where to store a subset of
the elements of a larger array. The candidates are those elements accessed more fre-
quently, e.g. identified via profiling or static considerations, which could be accessed
without any data cache miss. Note that the application of this transformation could
be not significant for small arrays, if they can be totally contained in the cache and
they are not in conflict, in terms of memory resources, with other data. Practical
application of the transformation requires, once the subset of elements is identified,
their copy in a temporary array (resizing) to be used instead of the original array
and a copy back (restoring) of the final results. An adaptation of the indexes used
in the original array towards the resized one is also necessary. Figure 7 shows an
example of the application of this transformation on the arrays a[] and b[]. In
the case the candidate subset of elements changes dynamically, not to vanish the
transformation, the temporary array identification has to be computed every time
the considered elements are not part of the temporary array. The increase of control
instructions related to both the array initialization and, possibly, the data restoring,
increases the processor energy. However, it has been noticed that when the ratio
between the size of the initial array and the temporary one is roughly more than
10, the system energy reduction is significant and largely compensates the increase
of the processor energy. The results for the example of Figure 7 are reported in
Table 5, showing a processor energy rising due to the adding of two cycles (array
initialization and data restoring) and a significant system energy reduction mainly
related to the data cache misses improvement (Table 6). Conversely, performance
is significantly reduced, so that particular attention has to be paid during the ap-
plication of this transformation in timing sensitive systems.

The impact of source code transformations on software power and energy consumption

Original C Code Transformed C Code

#define DIM1 250

main() {
int a[DIM1], b[DIM1];

int c, i, j = 40;

while(j-- > 0) {
for(i = 0; i < 100; i += 10) {

a[i] = b[i] + 5;

c = a[i] + b[i] * 15;}
}

}

#define DIM1 250

#define DIM2 15

main() {
int a[DIM1], b[DIM1];

int ta[DIM2], tb[DIM2];

int c, i, j = 40;

for(i = 0; i < 10; i++) {
ta[i] = a[i*10];

tb[i] = b[i*10];

}
while(j-- > 0) {

for(i = 0; i < 10; i++) {
ta[i] = tb[i] + 5;

c = ta[i] + tb[i] * 15;

}
}
for(i = 0; i < 10; i++) {

a[i*10] = ta[i];

b[i*10] = tb[i];

}
}

Fig. 7. An example of temporary array insertion

Table 5. Power and energy data for array resizing transformation

Parameter Original Transformed %

Clock Cycles 4427.00 6369.00 +43.87
Processor Energy (µJ) 0.47 1.94 +7.71
Processor avg. Power (mW) 10.73 30.42 +83.39
System Energy (µJ) 186.00 63.40 -65.99
System Avg Power (mW) 4209.71 995.25 -76.36
System Power/Processor Power 392.13 32.71 -91.66

Table 6. D-cache and I-cache misses for array resizing

Parameter Original Transformed %

I-Cache Misses 19.00 15.00 -21.05
D-Cache Misses 128.00 35.00 -72.66

4.4. Scalarization of Array Elements

This transformation introduces a set of temporary variables as a substitute of the
more frequently used elements of an array. It allows the compiler to optimize
the computation by using the CPU registers avoiding repeated memory accesses.
The application of this transformation requires gathering information (statically,
by analyzing the code or dynamically) to identify the subset of the more frequently
used array elements or to identify references that can be tightly independent of the
iteration index. Figure 8 shows an example of the proposed transformation where
the introduction of the scalar variables t1 and t2 eliminates the accesses to the

The impact of source code transformations on software power and energy consumption

array elements a[i-1] and a[i-2] while memory accesses to a[i] are reduced by
introducing t0. Table 7 shows the results concerning the example of Figure 8.

Original C Code Transformed C Code

main() {
int i, b[50], a[50];

for(i = 0; i < 48; i++) {
b[i] = i;

a[i] = i;

}
for(i = 2; i <= 40; i++) {

b[i] = (a[i] + b[i]) / 2;

if(i % 2) == 0) {
a[i] = a[i-2] + 1;

} else {
a[i] =a [i-1] - 1;

}
}

}

main() {
int i, b[50], a[50];

int t2, t1, t0;

for(i = 0; i < 48; i++) {
b[i] = i;

a[i] = i;

}
t2 = a[0]; t1 = a[1];

for(i = 2; i <= 40; i++) {
t0 = a[i];

b[i] = (t0 + b[i]) / 2;

if(i % 2) == 0) {
t0 = t2 + 1;

} else {
t0 = t1 - 1;

}
a[i] = t0;

t2 = t1; t1 = t0;

}
}

Fig. 8. An example of scalar variables introduction

Processor energy and power consumption are improved thanks to the local accesses
to the register file. At system level, the impact of the transformation on energy and
power is less evident due to the specific characteristics of the test-bench. However,
the reduction of the memory accesses helps the cache misses reduction.

Table 7. Power and energy data for scalarization of array elements

Parameter Original Transformed %

Clock Cycles 1775.00 1077.00 -39.32
Processor Energy (µJ) 0.38 1.59 -58.66
Processor avg. Power (mW) 21.67 14.76 -31.87
System Energy (µJ) 33.00 31.70 -3.85
System Avg Power (mW) 1856.71 2942.39 +58.46
System Power/Processor Power 859.91 1993.18 +131.68

Table 8 shows this effect where the cache hit reduction clearly indicates an intensive
use of the register file and a relevant decreasing of cache access operations.

Table 8. D-cache and I-cache misses for scalarization

Parameter Original Transformed %

I-Cache Misses 12.00 11.00 -8.33
D-Cache Misses 14.00 14.00 0.00
I-Cache Hits 1650.00 962.00 -41.70
D-Cache Hits 256.00 116.00 -54.69

The impact of source code transformations on software power and energy consumption

It is worth noting that the application of this transformation enhances its effects if
it is applied after the loop unrolling transformation (see Figures 9 and 10).

Original C Code

main() {
int x[80], y[80], a[80][80];

int i, j, n = 40;

for(i = 1; i <= n; i++) {
x[i] = 0;

for(j = 1; j < n; j++) {
x[i] = x[i] + a[i][j] * y[j];

}
}

}

Fig. 9. An example of scalar variables introduction

Unrolled C Code Final C Code

main() {
int x[80], y[80], a[80][80];

int i, j, n = 40;

for(i = 1; i <= n; i += 3) {
x[i] = 0;

for(j = 1; j < n; j++) {
x[i] = x[i]+a[i][j]*y[j];

x[i+1] = x[i+1]+a[i+1][j]*y[j];

x[i+2] = x[i+2]+a[i+2][j]*y[j];

}
}

}

main() {
int x[80], y[80], a[80][80];

int i, j, n = 40;

int t0, t1, t2, t4;

for(i = 1; i <= n; i += 3) {
t0 = t1 = t2 = 0;

for(j = 1; j <n; j++) {
t4 = y[j];

t0 = t0 + a[i][j] * t4;

t1 = t1 + a[i+1][j] * t4;

t2 = t2 + a[i+2][j] * t4;

}
x[i] = t0;

x[i+1] = t1;

x[i+2] = t2;

}
}

Fig. 10. An example of the combination of loop unrolling and scalarization transformations

In addition to the above transformations, other energy optimization strategies can
be envisioned:

(i) Local copy of global variable. This strategy increases the possibility for
the variables to be stored in registers whose access is less energy demanding.

(ii) Pointer-chain reduction. Multiple indirect addressing are replaced with a
temporary variable storing the actual address of the data structure.

(iii) Global variable inizialization. Assignment is carried out during declaration.
This solution allows the first procedure executing the initialization to skip the
allocation in memory of the values.

Transformations operating on scalar variables (e.g. modifying their scope) are not
discussed here for the sake of conciseness.

The impact of source code transformations on software power and energy consumption

5. Inter-subroutine Transformations

This class of transformations includes the set of source code manipulations operating
at subroutine level, typically not considered by compilers, analyzing whether or
not it is convenient to modify the subroutine interface (i.e. parameters passing
strategy, data types, etc.), the subroutine declaration and/or the subroutine call.
The most known of these transformations is Function Inlining whose benefits are
to reduce context switch due to the call itself and to enable more aggressive compiler
optimization by eliminating function boundaries. In addition, we propose two new
transformations: Subroutines Queuing Reordering and Scope reduction of
by-address parameters whose details are give in the following.

5.1. Subroutines Queuing Reordering

Usually, compilers produce object code by queuing the subroutines imitating the
source code structure. Based on this peculiarity, this transformation sorts the sub-
routines declarations according to the subroutine call graph (possibly annotated
with dynamic information) in order to reduce the I-cache misses. Let us consider
the first call of a sub-program. When such a subroutine is called, its code, or part
of it, has to be fetched in cache. Consequently, if the object code of the called func-
tion is adjacent to the calling subroutine it is probable that it (or part of it) has
been already loaded in cache during the execution of the caller sub-program. This
effect is magnified if the cache adopts a pre-fetching policy where some cache blocks
following the required block (cache miss) are automatically fetched. Conversely, if
the two subprograms are not adjacent, a double penalty is introduced, since one or
more instruction cache blocks could be uselessly. In order to take full advantage of
this transformation, the call graph should be annotated with information, dynami-
cally extracted, for subprograms called in more than one subroutine and for those
calling more than one subroutine. Such dynamic indications improve the trans-
formation effectiveness with respect to the simple static analysis of the call graph
which, however, it is an improvement over the typical random subroutine queuing.
The transformation has been experimented with the simple example reported in
Figure 11 and the obtained results are gathered in Table 9. The main impact is on
the system level energy though it can be identified a contribute to the reduction of
the number of clock cycles; these effects are both originated from the reduction of
instruction cache misses consequent to the implicit optimization of the cache blocks
contents. Figure 11 only shows the relevant portion of the different routines, i.e. the
calls. The results reported in Table 9 refer to subroutines composed of 5 to 10 lines
of code each, mostly performing integer arithmetic operations on scalar variables.
Different factors can influence the effectiveness of this transformation. Subroutines
with high call frequency are good candidates, and the lower the fan out (fan in) of
the call graph, the higher the probability to exploit the shared cache block. Sim-
ilarly, the higher the subroutines code size, the lower the probability to reuse the
shared cache block is. This factor depends on the cache block substitution policy,

The impact of source code transformations on software power and energy consumption

Call graph Original C Code Transformed C Code

main()

↓
subE()

↓
subC()

↓
subA()

↓
subD()

↓
subB()

↓
subF()

main () {
res = subE();

}

int subA() { res = subD(); }

int subB() { res = subF(); }

int subC() { res = subA(); }

int subD() { res = subB(); }

int subE() { res = subC(); }

int subF() { ... }

main () {
res = subE();

}

int subE() { res = subC(); }

int subC() { res = subA(); }

int subA() { res = subD(); }

int subD() { res = subB(); }

int subB() { res = subF(); }

int subF() { ... }

Fig. 11. An example of subroutine code sorting: call graph and transformation

Table 9. Power and energy data for subroutine code sorting

Parameter Original Transformed %

Clock Cycles 1943.00 1931.00 -0.62
Processor Energy (µJ) 0.35 0.35 -0.00
Processor avg. Power (mW) 18.12 18.16 +0.22
System Energy (µJ) 156.00 153.00 -1.62
System Avg Power (mW) 8034.96 7953,48 -1.01
System Power/Processor Power 443.43 437,84 -1.26

the cache architecture and the cache blocks number. Other aspects to be considered
are the position of the call inside the calling subroutine, with respect to the cache
substitution policy and the distance between two consequent calls: the higher is
their distance (in terms of code) the lower is probability to reuse the shared cache
block.

5.2. Substitution of a variable passed as an address with a local variable

This transformation replaces a routine argument passed as an address with a local
copy of a variable; the substitution is performed immediately before the subroutine
is called while the returned values are restored in the initial variable immediately
after the call. Typically, compilers tend to store in memory a variable used as
subroutine argument passed as an address, so that using such a variable inside the
calling routine is energy-expensive, especially if it is intensively used. This transfor-
mation drives the compiler in the use of registers, to minimize the energy necessary
to access such data. Unfortunately, the insertion of temporal variables has a price
to be paid: it adds instructions to perform copies and to restore values that could
make ineffective the transformation, if the enlarged code increases the instruction
cache misses. To cope with this risk, the approach can be applied only to the sub-

The impact of source code transformations on software power and energy consumption

set of variables involved (in the caller subroutine) in intensive computations. The
higher is the number of variables involved in the transformation the higher is the
probability to take advantage of this transformation. However, the variable number
is constrained by both the amount of registers and the number of parallel variables
concurrently active. In particular, the latter influences the spilling effect where
some load/store operations are forced to cope with the limited number of regis-
ters. The analysis performed on the example reported in Figure 12 has produced

Original C Code Final C Code

main() {
int a, b = 436, d = 52;

int e = 362, f = 783, h = 35;

int r = 13, ind;

for(ind = 1; ind < 200; ind++) {
e = d + ind * f;

f = h * e + d - r * ind;

h = h + ind;

b++; f++; d++;

}
for(a = 1; a < 10; a++) {

for(b = 1; b < 14; b++) {
d++; e++; f++; h++; r++;

res = fc(&a, &b, &d, &e,

&f, &h, &r);

}
}

}

int fc(int *a, int *b, int *d,

int *e, int *f, int *h, int *r) {
int cont, result;

for(cont = 1; cont < 5; cont++) {
*d = *a + *b;

*f = *b + *e;

result = *d + *f + *h + *r;

}
return result;

}

int a, b = 436, d = 52;

int e = 362, f = 783, h = 35;

int r = 13, ind;

main() {
int ta, tb, td, te, tf, th, tr;

for(ind = 1; ind < 200; ind++) {
e = d + ind * f;

f = h * e + d - r * ind;

h = h + ind;

b++; f++; d++;}
for(a = 1; a < 10; a++) {

for(b = 1; b < 14; b++) {
d++; e++; f++; h++; r++;

ta = a; tb = b; td = d;

te = e; tf = f; th = h;

tr = r;

res = fc(&a, &b, &d, &e,

&f, &h, &r);

a = ta; b = tb; d = td;

e = te; f = tf; h = th;

r = tr;

}
}

}

int fc(int *a, int *b, int *d,

int *e, int *f, int *h, int *r) {
int cont, result;

for(cont = 1; cont < 5; cont++) {
*d = *a + *b;

*f = *b + *e;

result = *d + *f + *h + *r;

}
return result;

}

Fig. 12. An example of substitution of a variable passed as an address with a local variable

the results collected in Table 10. The transformation mainly affects the system
level energy consumption. This effect is due to the confinement of the computa-
tion inside the CPU reducing cache hits. Furthermore, the decreasing of code size
resulting from the elimination of same load/store operations introduces an extra
energy improvement since it affects the instruction cache misses.

The impact of source code transformations on software power and energy consumption

Table 10. Power and energy data for local variable substitution

Parameter Original Transformed %

Clock Cycles 12298.00 12278.00 -0,16
Processor Energy (µJ) 4.25 4.22 -0,86
Processor avg. Power (mW) 34.57 34.33 -0,70
System Energy (µJ) 34.30 31.80 -7,41
System Avg Power (mW) 279.10 258.83 -7,26
System Power/Processor Power 8.07 7.54 -6.60

6. Operators And Control Structure Transformations

This class gathers source code transformations optimizing either specific operations
or control structures. Since compilers, directly perform many optimizations belong-
ing to this class (e.g. when the maximum optimization level is selected by gcc) we
focus the attention on those typically not directly provided. The section discusses
two transformations: Conditional Expression Reordering that rearranges the
conditional sub-expression of a test condition and Function Call Preprocessing
that wraps library function calls with macros in order to to eliminate the call when
the result can be a-priori determined.

6.1. Conditional Expression Reordering

This transformation analyzes a complex conditional expressions by rearranging the
sub-expressions set in order to save energy by exploiting implicit shortcuts opera-
tions. The proposed transformation reassembles the sub-expressions by following,
recursively, this criterion: two sub-conditions AND–connected (OR–Connected) are
reordered by placing after (before) the sub-condition whose probability to be true
is higher. Figure 13 shows an example. The application of such a transformation

Original C Code Final C Code

int a = 1, b = 1, d = -2, e = 22;

int f = 1, res = 0;

main() {
int b = 12, i;

for(i = 1; i < 400; i++) {
a++; b++; f++; e++;

res = funct(a, b, f);

}
}

int funct(int a, int b, int c) {
if(a > 1 && b > 40 && c > 90) {

a = b * c * e;

b = a * c + e;

}
return b;

}

int a = 1, b = 1, d = -2, e = 22;

int f = 1, res = 0;

main() {
int b = 12, i;

for(i = 1; i < 400; i++) {
a++; b++; f++; e++;

res = funct(a, b, f);

}
}

int funct(int a, int b, int c) {
if(c > 90 && b > 40 && a > 1) {

a = b * c * e;

b = a * c + e;

}
return b;

}

Fig. 13. An example of substitution of a variable passed as an address with a local variable

The impact of source code transformations on software power and energy consumption

requires a dynamic analysis of the conditional expression (and/or some designer
directives) since information concerning the probability to be true or false are cru-
cial to optimize the sub-expressions reorganization. Such statistics are computed
by combining iteratively the probabilities of the involved sub-expressions. In par-
ticular, by representing with Pa and Pb the two sub-conditions probabilities, the
probability that a && b is true is Pa · Pb while the probability that a || b is true
is Pa + Pb − Pa · Pb. For example, by considering the conditional expression a &&

(b || c) && e || d where Pa = 0.3, Pb = 0.2, Pc = 0.5, Pd = 0.5; Pe = 0.1,
(b || c) is reorganized by swapping the position of b and c; then, since Pb||c =
0.2+0.5−0.1 = 0.6, the sub-expression a && (c || b) && e is reorganized obtain-
ing e && a && (c || b) that induces, since Pe&&a&&(c||b) = 0.1 · 0.3 · 0.6 = 0.018,
the final reorganization d || e && a && (c || b). The higher is the number of
sub-expressions and their relative difference of probability, the higher is the effec-
tiveness of this optimization strategy. The proposed transformation reduces the
energy consumption due to control operations, but a complete analysis requires
considering the energy consumption of the involved arithmetic operators (if any
exist); in particular, the operations complexity (comparison, sums, products, etc.)
could induce a reordering modification with respect to the simple probability-based
approach. For this reason, a more general F (energy, probability) cost function
has been introduced. Consequently, in a 2 AND–connected conditional expression,
a low-energy high-probability sub-condition could be placed before a high-energy
low-probability sub-condition while in a 2 OR–connected conditional expression,
a low-energy low-probability sub-condition could be placed before a high-energy
high-probability sub-condition. The analysis performed on the example reported in
Figure 13 has produced the set of data summarized in Table 11.

Table 11. Power and energy data for conditional sub-expression reordering

Parameter Original Transformed %

Clock Cycles 14759.00 14309.00 -3.05
Processor Energy (µJ) 4.35 4.25 -2.35
Processor avg. Power (mW) 29.50 29.72 -0.72

6.2. Function Call Preprocessing

This transformation associates with a specific function a proper set of macros that
will substitute a function call with either an equivalent but low energy function call
or a specific result; in short, the transformation skips a function call, or reduces its
impact, when its actual parameters allow to directly identify either the returned
value or another equivalent function. Figure 14 shows a simple but meaningful
example. This transformation presents some potential drawbacks depending on the
application. In particular, both the increase of code size and the possible insertion
of some control conditions have to be justified by a significant probability to exploit
the power saving of the transformation. By considering, as an example, the function

The impact of source code transformations on software power and energy consumption

acos(x), the substitution saves energy since the implementation of such a function
does not include a pre-computed value for -1. Consequently, the advantage of the
substitution is twofold: no energy is used to call the function and no energy is used
to compute the corresponding value.

Original C Code Final C Code

#include <math.h>

main() {
int i, val;

float r1, r2;

for(i = 1; i < 200; i++) {
val = i % 5;

r1 = sqrt(val);

}
for(i = -20; i < 60; i++) {

r2 = fabs(val);

}
}

#include <math.h>

#define sqrt(x) ((x==0)?0:(x==1)?1:sqrt(x))

#define fabs(x) ((x>=0)?x:-x)

main() {
float r1, r2;

for(i = 1; i < 200; i++) {
val = i % 5;

r1 = sqrt(val);

}
for(i = -20; i < 60; i++) {

r2 = fabs(val);

}
}

Fig. 14. An example of function call preprocessing

The analysis of the example of Figure 14 led to the results gathered in Table 12.

Table 12. Power and energy data for function call preprocessing

Parameter Original Transformed %

Clock Cycles 15202.00 14818.00 -2.52
Cache Misses 834.00 823.00 -1.32
Cache Hit 17885.00 17316.00 -3.18

The macros listed in Table 13 have been considered taking into account their fre-
quency within a representative benchmark set. Obviously, the same approach ap-
plies to other libraries. Do note that these transformations have some side effects

Table 13. Macro definition for functions in math.h

Macro name Macro definition

acos(x) ((x==-1) ? 3.141592653589793238462643383 : acos(x))

asin(x) ((x==0) ? 0 : asin(x))

atan(x) ((x==0) ? 0 : atan(x))

cos(x) ((x==0) ? 1 : cos(x))

sin(x) ((x==0) ? 0 : sin(x))

tan(x) ((x==0) ? 0 : tan(x))

exp(x) ((x==0) ? 1 : (x==1) ? 2.718281828459045235360287471 : exp(x))

log(x) ((x==1) ? 0 : log(x))

log10(x) ((x==1) ? 0 : log10(x))

pow(x,y) ((y==1) ? x : pow(x,y))

sqrt(x) ((x==0) ? 0 : (x==1) ? x : sqrt(x))

fabs(x) ((x>=0) ? x : -x)

The impact of source code transformations on software power and energy consumption

related to the application of the expansion. For example, the expanded function
fabs(i++) causes a double increment of the variable i making the transformation
inconsistent. In such a case, two alternative solutions are possible: the first is to pre-
vent the macro expansion (i.e. to use the original function) by enclosing the function
name in parentheses, i.e. (fabs)(i++); the second solution consists in postponing
the increment after the function evaluation, i.e. fabs(i); i++. Note that the sec-
ond solution only exploits the advantages of the transformation. Other proposals
that can be found in literature consider the Optimization of Modulo-Division
by substituting the modulo operator with a sequence of cascaded conditions in order
to avoid expensive ALU operations.

7. Design Methodology: A Case Study

The huge number of available transformations faces the designer with the following
critical issues. First of all, it must be noted that transformations are not decou-
pled. In fact, the effectiveness of a given transformation is strongly influenced by
the structure of the code it operates on. Hence, particular attention has to be de-
voted to identify a proper order of application of different transformations. As a
consequence, the design space grows exponentially with the number of envisioned
transformations. For this reason, it is valuable to identify some criteria to restrict
the analysis—at each refinement step—only to those transformations expected to
be more promising. To fit industrial environment needs, this methodology should
be supported by a proper tool chain, possibly integrated with widespread develop-
ment frameworks. In particular, the availability of a user-driven, automated tool
to perform the source code transformation is crucial to reduce the error-proneness
of the manual intervention and to speed-up the design-space exploration. More-
over, a retargetable analysis tool to evaluate the actual benefits deriving from the
application of the selected transformations, at each refinement step, is also essential.

7.1. Design flow

Based on the above considerations, a design flow such as that of Figure 15 can be
envisioned. Starting from the characteristics of the source code, a set of applicable
transformations is selected among all those available. A second step of analysis is
devoted to determine which of these transformations are expected to produce bet-
ter improvements. The transformations selected at the end of these two steps are
then applied producing different source codes, whose power and energy properties
are then evaluated and compared. The code of the best candidate becomes the
input for a new iteration of the optimization flow. A realistic design flow requires
human intervention at least in the steps involving transformation selection. Heuris-
tic techniques can, in fact, only support the experience of a designer but cannot
completely replace it. A typical situation that requires user suggestions is when a
transformation does not produce any improvement by itself but enables the appli-
cation of a further transformation, possibly magnifying its benefits. Under a more

The impact of source code transformations on software power and energy consumption

Fig. 15. Design flow

general perspective, this corresponds to perform a branch-and-bound exploration
of the design space where part of the bounding is performed capitalizing user’s ex-
pertise, relieving him/her from the tedious decisions that can be automated thanks
to reliable heuristic criteria. Branching, on the other hand, can be automated by
means of language parsing and manipulation tools, such as SUIF216.

7.2. A case study: IIR Filter

In this section the methodology is applied to the case study of an IIR filter. The
first selection step led to the following candidate transformations:

(i) Loop unrolling
(ii) Variable expansion
(iii) Software pipelining
(iv) Exit-condition modification
(v) Scalarization of array elements

Based on previous experience, transformations (i), (ii) and (iii) have been grouped
in sequence to take full advantage of their mutual synergies. The new set of trans-
formations is thus:

(a) Loop unrolling → Variable expansion → Software pipelining
(b) Exit-condition modification
(c) Scalarization of array elements

Transformation (a), (b) and (c) have then been repeatedly applied to the source

The impact of source code transformations on software power and energy consumption

code. The sequences of transformations are depicted in Figure 16 where a solid
outline of the boxes indicates that the corresponding transformation is accepted
while a dashed outline means that the transformation is rejected. In this study, the
selection criterion has been the reduction of the total (system) energy. The analysis

Fig. 16. Transformation application sequences

of the tree of Figure 16 reveals that only three different paths are obtained. The
quality of these solutions are summarized in Table 14. In conclusion the best results

Table 14. Comparison of the results obtained for the IIR filter optimization

Sequence Processor Energy System Energy Total Energy

(a), (b) -5.5 % -5.7 % -5.8 %
(a), (c) -5.4 % -4.6 % -4.7 %
(a) -2.8 % -3.6 % -3.7 %

are obtained by first applying transformation (a) and then transformation (b).

8. Concluding Remarks

Our preliminary software power optimization framework has been tested consider-
ing several full-size benchmarks. Different source level transformations have been
applied, including those proposed in this paper. Table 15 shows the measured en-

Table 15. Processor energy improvements for some benchmarks

Application Total Energy

CRC-16 -5.6 %
WAVE -9.6 %
HASH -4.0 %
Bubble Sort -3.7 %
Matrix Multiplication -6.2 %
IIR Filter -5.8 %

ergy reduction of the transformed code with respect to the original one. Note that
the reported energy reductions are an underestimate of the actual ones, since the

The impact of source code transformations on software power and energy consumption

constant cost of application start/exit has a strong influence for these small bench-
marks.Current effort is devoted to analyze the impact of different cache/memory
configurations, less conservative than the one considered in this paper.

The systematic analysis of source-to-source transformations, part of which has
been described in this paper, allowed to highlight potential benefits and possible
side-effects, as summarized in Tables 16, 17, 18 and 19.

Table 16. Loop transformations

ID Transformation Advantages Side-effects

L1 Loop unrolling ↑ Loop count ↑ Code size
↑ Parallelism ↑ I-cache miss
Enables compiler optimizations ↑ I-cache miss
Enables (L2) (D4)

L2 Variable expansion ↑ Parallelism ↑ Loop body code size
↓ Data-dependent stalls

L3 Loop distribution ↓ Loop body code size ↑ Branching
↓ I-cache miss ↓ Timing performance

L4 Exit-condition ↓ Condition complexity
L5 Loop fusion ↓ Branching ↑ Loop body code size

↓ D-cache miss
Enables (L1), (L8)

L6 Loop interchange ↑ Parallelism ↑ Memory access efficiency
↑ Array access efficiency
↑ Loop-invariant expression #

L7 Loop tiling ↓ D-cache miss ↑ Code size
↑ Array access efficiency ↑ Branching

L8 Software pipelining ↓ Pipeline stalls ↑ I-cache miss
↑ Parallelism

L9 Loop unswitch ↓ I-cache miss ↑ Code size
↓ Branching

Table 17. Data transformations

ID Transformation Advantages Side-effects

D1 Array declaration ↑ Use of low-power N/A
sorting

addressing modes
D2 Array scope ↑ Use of low-power ↑ Memory usage

modification
addressing modes

D3 Temporary array ↓ D-cache miss ↑ Branching
insertion

D4 Scalarization of ↓ D-cache access ↑ Code size
array elements ↑ Register usage efficiency

D5 Local copy of ↓ D-cache access ↑ Code size
global variable ↑ Register usage efficiency

D6 Global variable ↓ Memory access N/A
initialization

D7 Pointer-chain ↓ Memory access N/A
reduction ↓ Executed instructions

The impact of source code transformations on software power and energy consumption

Table 18. Inter-procedural transformations

ID Transformation Advantages Side-effects

S1 Function inlining ↓ Context switching ↑ Code size
Enables compiler optimizations

S2 Scope reduction of Enables compiler optimizations ↑ Code size
by-address parameters

Table 19. Operator and control flow transformations

ID Transformation Advantages Side-effects

C1 Modulo division ↓ ALU usage ↑ Code size
elimination

C2 Conditional expression Enables shortcuts N/A
reordering

C3 Function call ↓ Context switching ↑ Code size
preprocessing ↑ Branching

References

1. E. Macii, M. Pedram and F. Somenzi, “High-level power modeling, estimation, and
optimization,” IEEE Trans. On CAD, Vol. 17, N. 11 (1998) 1061–1079.

2. W. Ye, N. Vijaykrishnan, M. Kandemir and M.J. Irwin, “The design and use of Sim-
plePower: a cycle-accurate energy estimation tool,” Proc. of IEEE Design Automation
Conference, (2000) 340–345.

3. W.–T Shiue and C. Chakrabarti, “Memory exploration for low power embedded sys-
tems,” Proc of IEEE Symp. on Circuits and Systems, Vol. 1 (1999) 250–253.

4. M.B. Kamble and K. Ghosse, “Analytical energy dissipation models for low power
caches,” Proc of IEEE Symp. Low Power Electronics and Design, (1997) 143–148.

5. C. Brandolese, W. Fornaciari and F. Salice, “Code-level transformations for software
power optimization,” CEFRIEL, Tech. Rep. N. RT-02-004, (2002).

6. S. Gupta, M. Miranda, F. Catthoor and R. Gupta, “Analysis of high-level address
code transformations for programmable processors,” Proc. of IEEE Design Automation
Conference in Europe, (2000) 9–13.

7. C. Hulkarni, F. Catthoor and H. De Man, “Code transformations for low power caching
in embedded multimedia processors,” Proc. of IPPS/SPDP, (1998) 292–297.

8. E. De Greef, F. Catthoor and H. De Man, “Program transformation strategies for
memory size and power reduction of pseudoregular multimedia subsystems,” IEEE
Trans. on Circuits and Systems for Video Technology, Vol. 8, N. 6 (1998) 719–733.

9. C. Brandolese, W. Fornaciari, L. Pomante, F. Salice and D. Sciuto, “A multi-level strat-
egy for software power estimation,” Proc. of IEEE Intnl. Symp. on System Synthesis,
(2000) 187–192.

10. C. Brandolese, W. Fornaciari, F. Salice and D. Sciuto, “Source-Level Execution Time
Estimation of C Programs,” Proc. of IEEE Hardware/Software Codesign Workshop,
(2001) 98–103.

11. N. Bellas, I.N. Hajj, C.D. Polychronopoulos and G. Stamoulis, ”Architectural and
compiler techniques for energy reduction in high-performance microprocessors,” IEEE
Trans. on VLSI, Vol. 8, N. 3 (2000) 317–326.

12. V. Tiwari, S. Malik and A. Wolfe, “Compilation techniques for low energy: an overview,”

The impact of source code transformations on software power and energy consumption

Proc. of IEEE Intnl. Symp. on Low Power Electronics, Digest of Technical Papers,
(1994) 38–39.

13. L. Benini and G. De Micheli, “System-level power optimization: Techniques and tools,”
ACM Trans. on Design Automation of Electronic Systems, Vol. 5 (2000) 115–192.

14. R. Mehta, R.M. Owens, M.J. Irwin, R. Chen and D. Ghosh, “Techniques for low energy
software,” Proc. of Intnl. Symp. on Low Power Electronics and Design, (1997) 72–75.

15. D. Burger and T.M. Austin, “The SimpleScalar Tool Set, version 2.0,” University of
Wisconsin-Madison, Comp. Sci. Dept., Tech. Rep. N. 1342, http://www.cs.wisc.
edu/∼mscalar/simplescalar.html (1997).

16. The Stanford SUIF Compiler Group , “SUIF Compiler System,” Stanford University,
http://suif.stanford.edu/ (1999).

